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Missing from Current ML:
Understanding & Generalization -
Beyond the Tranm g Disbribution
* Learning theory only deals with generalization

within the same distribution

* Models learn but do not generalize well (or have
high sample complexity when adapting) to
modified distributions, non-stationarities, etc.

e Humans do a lot better!!!



Missing from Current ML:
Understanding £ Generalization -
Bevyo nd the T’I’Q ning Distribution

* If not iid, need alternative assumptions, otherwise no
reason to expect generalization

—Inductive biases inspired from brains
 How do distributions change?

* How can human-verbalizable knowledge be
represented & re-used?



ML FOR CONSCIOUSNESS & CONSCIOUSNESS FOR ML

* Formalize and test specific hypothesized
functionalities of consciousness

Can we see
I trick AT * Get the magic out of consciousness

* Understand evolutionary advantage of
consciousness: computational and statistical
(e.g. systematic generalization)

Provide these advantages to learning agents

Wy jolyon.co.uk



CONSCIOUS PROCESSING HELPS HUMANS DEAL WITH OOD SETTINGS

Faced with novel or rare situations, humans call upon conscious attention to combine
on-the-fly the appropriate pieces of knowledge, to reason with them and imagine
solutions.

- we do not follow our habitual routines, we think hard to solve new problems.
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SYSTEM 1 VS. SYSTEM 2 COGNITION

2 systems (and categories of cognitive tasks):

System 1

* Intuitive, fast, UNCONSCIOUS, 1-
step parallel, non-linguistic, habitual

* Implicit knowledge
e Current DL
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Manipulates high-level /
semantic concepts, which can
be recombined

combinatorially — |

System 2

* Slow, logical, sequential, CONSCIOUS,
linguistic, algorithmic, planning, reasoning

* Explicit knowledge
« DL 2.0




CORE INGREDIENT FOR CONSCIOUS REASONING:
ATTENTION 0000000 HO0O0O0O0O000000

* Focus on a one or a few elements at a time in (Bahdanau et al ICLR 2015)
order to reason / resolve coherent interpretation
among these variables / modules

 Content-based soft attention is convenient Q0000 O Q0000000
(NLP SOTA), can backprop to learn where to
attend, what to think about

e Attention is an internal action, needs a /
learned attention policy, may explain subjective /

experience (Graziano 2013), Attention Schema
*  Modules communicating through attention: RIMs, -

Goyal et al arXiv:1909.10893 £ Mila

Theory

* Operating on unordered SETS of (key, value) pairs



FROM ATTENTION TO INDIRECTION

Attention

Attention = dynamic connection

Receiver gets the selected value

Value of what? From where?

—> Also send ‘name’ (or key) of sender

Keep track of 'named’ objects: indirection

Manipulate sets of objects (transformers)

P.S. contrary to convnets doing object recognition, sequential tasks involving memory and attention typically involve a
more difficult optimization problem, and fighting underfitting (including the issue of long-term dependencies)
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FROM ATTENTION TO CONSCIOUSNESS

C-word not taboo anymore in cognitive neuroscience

Global Workspace Theory Top-d
op-down

Bottom-up
(Baars 1988++, Dehaene 2003++) attention

attention

Bottleneck of conscious processing

 WHY A BOTTLENECK?

* Selected item 1s broadcast, stored in short-term
memory, conditions perception and action

» System 2-like sequential processing, conscious
reasoning & planning & imagination

e Can only run 1 simulation at a time, unlike a movie,

only few abstract concepts involved at each step



THOUGHTS, CONSCIOUSNESS, LANGUAGE

* Consciousness: from humans reporting

* High-level representations @ language

* High-level concepts: meaning anchored in low-level
perception and action —> tie system 1 & 2

* Grounded high-level concepts

—> better natural language understanding

—> language = clues about high-level concepts

* Grounded language learning
c.g. BabyAI: (Chevalier-Boisvert and al ICLR 2019)



FROM REASONING TO OOD GENERALIZATION?

* Current industrial-strength ML (including in NLP) suffers from robustness
issues due to poor performance OOD

* Humans use higher-level cognition (system 2) for out-of-distribution f\:\ﬁ ‘;
generalization i\”} . \ -

* Why and how does it help?
* How is that related with agency? causality?

* How do we incorporate these principles in deep learning to obtain both system 1
and system 2 deep learning?



CAUSAL UNDERSTANDING - PREDICT EFFECT OF
INTERVENTIONS - OOD GENERALIZATION

e Causal understanding = decomposing knowledge into pieces (causal
mechanisms) = building an abstract model of how the world works

(\Y
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* Losing the IID hypothesis, we need other hypotheses OOD

* Causal understanding rests on the notion of INTERVENTION
and the assumption that causal mechanisms are stationary

* Intervention = action which breaks the default flow of causality
* Good causal model: requires a world model of the effect of actions

* Good causal model: can infer what intervention explains a change in distribution
and can predict the effect of these actions by combining , even if they never
happened in the past
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World Model, External Policy & Internal Policy

World model

Imagined
experiment
Real world

Exploratory/ ‘
reasoning Imagined (U 5
agent outcome

Experiment / actions / queries

Learning
compositiona
knowledge

Learns to imagine useful experiments

Experimental results / data

Updated world model

Model-based RL
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World Model, External Policy & Internal Policy

Why do we need all these pieces?
Dangerous world: Try actions in your head (world model) first

Compositional knowledge: World model’s knowledge decomposed into its
independent mechanisms (not easy to do that with fast policy)

Need to act quickly: Searching through all possible plans and evaluating them
with world model is too expensive - train a fast-acting external policy

Expensive actions: Training ext. policy through direct experimentation = waste
(need to iterate), better to train the external policy by interrogating the model

Internal vs external policy: Avoid danger, internal exploration to train external
policy & plan external actions, internal policy = thinking
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HUMAN INSPIRATION FOR INDUCTIVE BIASES:
IMPLICIT VS VERBALIZABLE KNOWLEDGE

* Most knowledge in our brain is implicit and not verbalizable (hence the explainability
challenge, even for humans)

* Some of our knowledge is verbalizable and we can reason and plan explicitly with it,
using system 2

* The concepts manipulated in this way are those we can name with language, allow us to
reason OOD

=>» clarify these assumptions as priors to be able to embed them in
ML architectures and training frameworks which bridge abstract
perception, abstract reasoning and abstract action.



SPARSE DEPENDENCIES BETWEEN ABSTRACT VARIABLES

Also consistent with Baar’s Global Workspace Theory (1997) of conscious processing.

Linguistic example: "if I drop the ball, it will fall on the ground>

EFFECT

Ball
position
att

inertia
Ball / mechanism
position
at t,
Dropping

/ mechanism
Hand I

holding
at t,

INTERVENTION

Drop, CAUSE
action

(gates mechanisms)

An abstract outcome
can be predicted
accurately from very
few conditioning
abstract variables
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ABSTRACT VARIABLES PLAY A CAUSAL ROLE

COUNTERFACTUAL
Linguistic example: 'if I had dropped the ball, it would have fallen on the ground”

EFFECT

Ball
position
att

Ball
position
at t,

Variables play the role
INTERVENTION of cause, effect, agent,
Hand (gates mechanisms) . . .
) action, intervention
holding
at t,
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REUSABLE CAUSAL MECHANISMS

COUNTERFACTUAL
Linguistic example: "if I had dropped the phone, it would have fallen on the ground”

EFFECT
Phone
position
att

position
att

The same mechanism
can be reused on many
instance tuples

INTERVENTION
(gates mechanisms)

holding
att

CAUSE

18
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SYSTEMATIC GENERALIZATION

Linguistic example:

EFFECT

Z0G
position
att

inertia
20G / mechanism
position
at t,
Dropping

/ mechanism
Hand I

holding
at t,

INTERVENTION

Drop, CAUSE
action

(gates mechanisms)

COUNTERFACTUAL
"if I had dropped the ZOG, it would have fallen on the ground”

xy

V 4

"

y

We make inferences
assuming that the same
mechanism can be
reused on novel
instances (if the object
has the right
affordances / type)
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SPARSE LOCALIZED INTERVENTIONS

Linguistic example:

EFFECT
Phone
position
att

inertia

Phone / mechanism
position
at t,
Dropping

/ mechanism
Hand I

holding
at t,

INTERVENTION
(gates mechanisms)

Drop, CAUSE
action

PLANNING
"if I decided to drop the phone, it would fall on the ground”

y

Only one abstract entity
is typically affected by
the abstract action =
abstract intervention.
Typically only one
attribute of that entity is
directly affected.

20



INDEPENDENT MECHANISMS
Scholkopf et al 2012

Updating a verbalizable fact about the world generally does not affect any other piece of knowledge.

Consider how we try to factorize code into reusable but independent pieces:

Ideally, knowledge is
factorized into
independent ‘pieces of
code’, i.e., which cannot

be better compressed by
merging them.

Better having a separate piece of code for dropping and for watching.
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DISCRETE, SYMBOLIC, ABSTRACT CONCEPTS

* Language allows communication of simplified, DISCRETE, messages among humans
* Thoughts manipulate such discrete entities
* Evidence that hippocampus represents discrete concepts

* The bottleneck of discretization in the communication between brain modules may further
facilitate systematic generalization, making different brain modules hot-swappable for one

another (e.g. replace a noun by another in a sentence)
< realistic abstract —
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DIRECT MAPPING BETWEEN
ABSTRACT VARIABLES AND ABSTRACT ACTIONS

"Dropping" <= "the phone"

Follows up on (E. Bengio et al, 2017;
V. Thomas et al, 2017; more recently
see Kim et al ICML 2019)

For each instantiated abstract action, there is generally

Temporally

. . Temporall
one abstract entity, and one abstract attribute of that extended exteflded Y
entity, which that abstract action intends to change ZbStrsft events abstract
.. . entity .
(although there may be changes in intermediate Sttributes action space

elements and downstream effects as well). space

However, the same entity (object) can be affected or

- - _ Encoder &
controlled in many different ways, different abstract

attention

Concrete &

actions (verbs) by many different agents (subjects). Concrete & time-
time- synchronous
The same action type (verb) can of course be applied on synchronous low-level

many different entities (objects). Sensory space action space
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WHAT CAUSES CHANGES IN DISTRIBUTION?

Underlying physics: actions are localized

Hypothesis to replace iid assumption: in space and time.

changes = consequence of an intervention on few causes or mechanisms

Extends the hypothesis of (informationally) Independent Mechanisms (Scholkopf et al 2012)

ICLR 2020: A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms,
Bengio, Deleu, Rahaman, Ke, Lachapelle, Bilaniuk, Goyal, Pal

=» local inference or adaptation in the right model

Change due
to intervention

i Ke et al 2019, 2020; Brouillard et al NeurlPS 2020 AR |
& Mila y




DISENTANGLING THE CAUSES

Realistic settings: causal variables are not directly observed.
Need to learn an encoder which maps raw data to causal space.

Consider both the encoder parameters and the causal graph structural parameters as meta-
parameters trained together wrt proposed meta-transfer objective.

Data generation (unknown to the learner)

O—0O
O<+-0O

0—~0 | ¥ (6p) t(0e) Ny
(A, B) Decoder D (X,Y) Encoder £ (U, V)

- Simplest possible scenario: linear mixing (rotating decoder) and unmixing (rotating decoder)



DISCOVERING LARGER CAUSAL GRAPHS

Learning Neural Causal Models from Unknown Interventions

Ke, Bilaniuk, Goyal, Bauer, Scholkopf, Larochelle, Pal & Bengio 2019 arXiv:1910.01075

See also Brouillard et al NeurlIPS 2020 Asia graph, CE on ground truth edges, comparison against other

« Learning small causal graphs, avoid exponential ~ causalinduction methods

explosion of # of graphs by parametrizing Our method (Eaton & Murphy, 2007a) (Peters et al., 2016) (Zheng et al., 2018)
factorized distribution over graphs 0.0 0.0 10.7 3

» With enough observations of changes in
distribution: perfect recovery of the causal graph

R
without knowing the intervention; converges O o
faster on sparser graphs .\ f

* Inference over the intervention:
faster causal discovery
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MODEL ARCHITECTURE

Use N neural networks to represent causal graph with N variables

0 0088 0007 [0 0 0
o(y) = | 0.894 0 . 0.045 | — {‘{((;kl} Softmax
Each neural network models: 0.973 0.116 0

1
- Who are the direct causal parents :
=  Structural parameters
- What is the relationship between them

0
«  Functional parameters 1-hot sample A

0

0.19
0.81

1-hot sample B

1-hot sample C'

Masking sample with configuration MLP



RIMS: MODULARIZE COMPUTATION AND OPERATE ON
SETS OF NAMED AND TYPED OBJECTS

Recurrent Independent Mechanisms

Multiple recurrent sparsely interacting
modules, each with their own
dynamics, with object (key/value pairs)
input/outputs selected by multi-head
attention

Results: better ood generalization

Ongoing work: hierarchy, top-down
broadcasting, spatial layout of modules
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Goyal et al 2019, arXiv:1909.10893, ICLR 2021
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Builds on rich recent litterature on object-centric representations (mostly for images)
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Modules + Global Workspace — gimeersson-.

Dehaene et al 2017

1. Parallel, competing specialists 2. Write to shared workspace 3. Broadcast workspace contents

Adding to RIMS a I
shared global

workspace \ j \
similar to the

GWT greatly

improves OOD »\

behavior
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Table 2: FourRoom Navigation Task: Success Rate of the .
proposed method vs. the baselines on the FourRoom naviga- without GW
tion environment illustrated on the right, with the agent in
red, its field of visibility greyed out, and the object to get in .
green. g1o .
£, with GW
RIMs ‘ RMC ‘ LSTM ‘ Ours g .
g . Tracking
0.72 £0.02 | 0.67 £0.05 | 0.62+0.02 | 0.96 £ 0.02 i bouncing balls
o (Goyal et al 2021,
. '/ 0.2 .
'o’-\_— M | submitted)
...\/—> I a 10 15 20 25 30 35 40 45

Time steps




GLOBAL WORKSPACE ARCHITECTURE

Create global coherence
through a communication
bottleneck replacing full
pairwise communication.

Activated specialists are
denoted by a blue shade
and the intensity depends
on the degree of
activation.

| Feed Forward Layer |

Computation

a) RIMs b) Transformer

1 2
T ma EIIIIIIEE

Feed Forward Layer

w
3
g
E
—m 2, W
3 Shared Workspace

Computation

a) RIMs + SW b) Transformer + SW

2-step process (1 and 2 in figures), bottom half:
1) specialists compete for write access to workspace, a subset of is activated (in blue).
2) shared content broadcast to all the specialists.

Computation

Computation

Computation
N
—— ——
Computation

Computation

(IIIITTL]
AAAAAAAA

Computation

Z{W |

Shared Workspace

c) TIMs + SW

d) Universal Transformer

E

AAAAAAAA

‘ Shared Workspace

d) Universal Transformer + SW

A

Position-wise FFN

|:| Feed forward layer
I:l Shared workspace

|
[
[
\
{
{

Updated state of
specialist (t+1)
Initial state of
specialist (t)
Activated specialist

TIMs mechanism

Inter-module
communication

Pairwise
communication

Write step

Broadcast step
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SCHEMAS AND SLOTS

Separate values (slots) from rules (schemas)

Object | Schema I | Schema?2 | Schema 3 Figure 1: As a motivat-
Files Pacman Normal Scared .
Ghost Ghost ing example,. we show
Top Frame two successive frames
SCOFF A v ] of the game PacMan
B v and show how procedu-
](; j ral and declarative knowl-
E v edge must be dynamically
Bottom Frame factorized. The “B” ghost
A v has a persistent object
I . “ 2 5 file (with its location and
Object Object Object Object > Yy D Ve velocity), yet its proce-
file file file file E 7 dure mostly depends on
t i whether it is in its scared
or normal routine.
Figure 2: Our SCOFF model.
Schemata are sets of param-
eters that specify the dynam- . . L. .
ics of objects. Object files Object Files and Schemata: factorizing declarative and
are active modules that main- . .
tain the fime-varying state of procedural knowledge in dynamical systems
an object, seek information Lamb, Goyal, Blundell, Mozer, Beaudoin, Levine & Bengio,

from the input, and select
schemata for updating. ICLR 2021




NEURAL PRODUCTION SYSTEMS

Mechanisms (rules) only take 1, 2 or 3 arguments and

modify one of their arguments.

Sequentially trigger only one mechanism at a time which
best fits with a subset of variables in working memory

Each rule takes 2 or more arguments, evaluate more or less

greedy selection procedures

R1

2 R3

Competing
Production Rules

O,

()

OIO

Working Memory (Set of variables)

ol e
RIS
e

Rule,
Ru|e1

slot, slot, slot; slot,

slot, slot, slot, slot,

Goyal et al 2021, submitted
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MSE

NPS TOY EXPERIMENTS

Learn to discover, disentangle and apply geometric

] ) transformations to MNIST digits
Learn to parse and compute Reverse Polish Notation

sequences. Baseline = GRU RNN. 7] Foerign  [2] TansateUp |3 a
Rotate Right Translate Up Rotate Right
—— Baseline
NPS | BB 1 ls]4] [1]218]4] [1]2]s]4 W:als4] [1[2]8]4
0.04 Translate Up Rotate Right Translate Up Rotate Right

IHEEBEE

1284 s+ Wz2ls[+] [IM:z[+] M2[3]+

0.02 Jotate Right Rotate Right Translate Up

0B 0 E0B

0.01
| BB 12 |l 4 W i BB 1[2]s |8 1 ]2 Bl 4
0.00 Translate Up Rotate Right Translate Up Rotate Right
10 15 20 25 30 35 40 45 50 I
1 BB 1]2]3 @ 12 Bl 4 Wz a B | BB
NPS disentangles the three _ _
& Mila _ _ Each rule converges to one of the underlying operations 3
o underlying operations (¥, %X, =)



DISCRETE-VALUED NEURAL COMMUNICATION

‘m

How many objects have the s the cyan object on the top of

hape of the orange object? 2 bottom?
T3 T: bottom
s, 3 Ours: bottom

visual reasoning task.

—

. . . Original vector
Table 2: Performance of transformer models with discretized commugication

Split into segments
(discretization heads)

—

—

ofrll the Sort-of-Clevr

. s

— Shared codebook = {Z,,Z,, ....., 2} —» Zz

d N\ 2

Nearest neighbor
Discretized vector Z

—

Method

Ternary Accuracy Binary Accuracy

Unary Accuracy

Modular architectures
(transformers, RIMs, GNNs)
Quantize value vector in attention

Transformer baseline 57.25 £1.30 76.00 £ 1.41 97.75 £ 0.83

Discretized transformer (G=16) 61.33 +£2.62 84.00 £ 2.94 98.00 £+ 0.89

Discretized transformer (G=8) 62.67 £1.70 88.00 + 0.82 98.75 £ 0.43

Discretized transformer (G=1) 58.50 £4.72 80.50 £ 7.53 98.50 £ 0.50
(a) 2D shapes (b) 3D shapes (c) Adding

p_val 0.424 p_val 0.699

p_val <0.01 p_val <0.01

p_val <0.01

00D-1

Model . Baseline . Discretized

00D-2 in-distr.

00D-1

Model . Baseline . Discretized

00D-2

log(1/MSE)

p_val <0.01

p_val <0.01
p_val <0.0

In-distr. 00D

Method . RIM(baseline) . Discretized RIM

mechanism

Each attention head uses a
different code, but from same
codebook

Better OOD generalization

(Liu et al, submitted, 2021)
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Causal reasoning over events factor graph

Node of graph = event at particular time, involving a small set of variables
* Content of episodic memory
® Factor = causal mechanism

* Generic knowledge about a few high-level variables, cortical module

Directed edges: from past to future, causal direction

v
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LEARNING TO REASON & PLAN

. Reasoning, long-range credit assignment and planning are
inference, inherently computationally expensive

« Brains do not use exhaustive search but instead generate
good candidates

« Conscious processing seems involved in evaluating them for
global coherence across the brain’s modules

. Attention mechanisms are part of the reasoning policy,
converting declarative knowledge into selective
computations for inference and decision-making
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CONTRAST WITH THE SYMBOLIC ATl PROGRAM

Avoid pitfalls of classical Al rule-based symbol-manipulation

Need efficient large-scale learning

Need semantic grounding in system 1 (implicit knowledge)
Need distributed representations for generalization

Need efficient = trained search (also system 1)

Need uncertainty handling

But want

Systematic generalization
Factorizing knowledge in small exchangeable pieces

Manipulating variables, instances, references & indirection
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language

attenthm

indirection &

CONSCIOUSNESS PRIORS

reasoning

cbnsciousness

V

system 2

systematic

variables

°9
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meta-learning

/ generalization

modularity/ causality

compositionality

agency

out-of-distribution
generalization

non-stationarity

multi-agent

interactions

Sparse factor graph in space of high-level
semantic variables

Semantic variables are causal: agents,
intentions, controllable objects

Many of these variables are discrete

Simple mapping between high-level semantic
variables / thoughts and words / sentences
Shared ’rules’ across instance tuples (as
arguments), w/ variables & indirection
Distributional changes due to localized causal
interventions (in semantic space)

Meaning (e.g. grounded by an encoder) is stable
& robust wrt changes in distribution

Credit assignment is only over short causal
chains
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SOME OPEN QUESTIONS WHICH COULD USE BRAIN INSPIRATION

1. How to jointly learn the encoder, the inference machinery, the mechanisms and how they form an
explanatory graph?

2. How to handle ambiguous abstract variables (given sensors) and manage the resulting inference?
3. How to jointly learn the tied abstract variable space and abstract action space?
4. How to learn an inference & attention policy which selects what event / object / attribute to attend?

* How to combine system 1 habitual inference (VAE-like?) with system 2 iterative inference (MCMC?)?

5. What heuristics to exploit short-term and long-term memory to rapidly select relevant entities, events,
agents, objects and causal mechanisms for inference and credit assignment?

6. How to efficiently search / plan in the space of abstract actions anchored on abstract events?

* How to generate interesting relevant hypothetical explanatory graphs & plans?

7. How to efficiently perform credit assighment across long time spans through the causal graph?
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