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Missing from Current ML: 
Understanding & Generalization -
Beyond the Training Distribution

• Learning	theory only deals	with generalization
within the	same distribution

• Models learn but	do	not	generalize well (or	have	
high	sample complexity when adapting)	to	
modified distributions,	non-stationarities,	etc.

• Humans do	a	lot	better!!!



Missing from Current ML: 
Understanding & Generalization -
Beyond the Training Distribution

• If	not	iid,	need alternative	assumptions,	otherwise no	
reason to	expect generalization
– Inductive	biases inspired from brains

• How	do	distributions	change?
• How	can human-verbalizable knowledge be
represented &	re-used?



ML FOR CONSCIOUSNESS & CONSCIOUSNESS FOR ML

• Formalize and test specific hypothesized 
functionalities of consciousness
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• Get the magic out of consciousness

• Understand evolutionary advantage of 
consciousness: computational and statistical 
(e.g. systematic generalization)

• Provide these advantages to learning agents



Faced with novel or	rare	situations,	humans call	upon conscious attention	to	combine	
on-the-fly the	appropriate pieces of	knowledge,	to	reason with them and	imagine	
solutions.

à we do	not	follow our habitual routines,	we think hard	to	solve new	problems.
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CONSCIOUS PROCESSING HELPS HUMANS DEAL	WITH OOD	SETTINGS
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SYSTEM 1 VS. SYSTEM 2 COGNITION
2 systems (and categories of cognitive tasks):

System 1
• Intuitive, fast, UNCONSCIOUS, 1-

step parallel, non-linguistic, habitual
• Implicit knowledge
• Current DL

System 2
• Slow, logical, sequential, CONSCIOUS, 

linguistic, algorithmic, planning, reasoning
• Explicit knowledge
• DL 2.0

Manipulates high-level / 
semantic concepts, which can 

be recombined 
combinatorially



CORE INGREDIENT FOR CONSCIOUS REASONING: 
ATTENTION

• Focus on a one or a few elements at a time in 
order to reason / resolve coherent interpretation 
among these variables / modules
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• Content-based soft attention is convenient 
(NLP SOTA), can backprop to learn where to 
attend, what to think about

• Attention is an internal action, needs a 
learned attention policy, may explain subjective 
experience (Graziano 2013), Attention Schema 
Theory

• Operating on unordered SETS of (key, value) pairs

• Modules communicating through attention: RIMs, 
Goyal et al arXiv:1909.10893

(Bahdanau et al ICLR 2015)

Attention



FROM ATTENTION TO INDIRECTION

Attention

• Attention = dynamic connection 
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• Receiver gets the selected value

• Value of what? From where? 

à Also send ‘name’ (or key) of sender

• Keep track of 'named’ objects: indirection

• Manipulate sets of objects (transformers)

P.S.	contrary to	convnets doing object recognition,	sequential tasks involving memory	and	attention	typically involve a	
more	difficult optimization problem,	and	fighting underfitting (including the	issue	of	long-term dependencies)



FROM ATTENTION TO CONSCIOUSNESS

C-word not taboo anymore in cognitive neuroscience

Global Workspace Theory
(Baars 1988++, Dehaene 2003++)

• Bottleneck of conscious processing

• WHY A BOTTLENECK?

• Selected item is broadcast, stored in short-term 
memory, conditions perception and action

• System 2-like sequential processing, conscious 
reasoning & planning & imagination

• Can only run 1 simulation at a time, unlike a movie, 
only few abstract concepts involved at each step
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THOUGHTS, CONSCIOUSNESS, LANGUAGE

• Consciousness: from humans reporting

• High-level representations          language
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,
<latexit sha1_base64="vV9KmI3DSqORXXjKQpnPOIDgOOM="></latexit>

• High-level concepts: meaning anchored in low-level 
perception and action à tie system 1 & 2

• Grounded high-level concepts 

à better natural language understanding

à language = clues about high-level concepts

• Grounded language learning
e.g. BabyAI: (Chevalier-Boisvert and al ICLR 2019)



FROM REASONING TO OOD GENERALIZATION?
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• Current industrial-strength ML (including in NLP) suffers from robustness 
issues due to poor performance OOD

• Humans use higher-level cognition (system 2) for out-of-distribution 
generalization

• Why and how does it help?

• How is that related with agency? causality?

• How do we incorporate these principles in deep learning to obtain both system 1 
and system 2 deep learning?



CAUSAL UNDERSTANDING à PREDICT EFFECT OF 
INTERVENTIONS à OOD GENERALIZATION
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• Causal understanding = decomposing knowledge into pieces (causal 
mechanisms) = building an abstract model of how the world works

• Losing the IID hypothesis, we need other hypotheses OOD 

• Causal understanding rests on the notion of INTERVENTION  
and the assumption that causal mechanisms are stationary

• Intervention = action which breaks the default flow of causality
• Good causal model: requires a world model of the effect of actions
• Good causal model: can infer what intervention explains a change in distribution 

and can predict the effect of these actions by combining , even if they never 
happened in the past



World	Model,	External Policy	&	Internal Policy

Exploratory/
reasoning
agent

World model

Real world

Experiment / actions / queries

Updated world model

Experimental results / data

Learning 
compositional
knowledge

Imagined
experiment

Imagined
outcome

Learns to imagine useful experiments

Model-based RL



World	Model,	External Policy	&	Internal Policy
Why do	we need all	these pieces?
• Dangerous	world: Try actions	in	your head (world	model)	first

• Compositional knowledge:	World	model’s knowledge decomposed into its
independent mechanisms (not	easy to	do	that with fast policy)

• Need to	act quickly:	Searching through all	possible	plans	and	evaluating them
with world	model	is too expensiveà train	a	fast-acting	external policy

• Expensive actions:	Training	ext.	policy through direct	experimentation =	waste
(need to	iterate),	better to	train	the	external policy by	interrogating the	model

• Internal vs	external policy:	Avoid danger,	internal exploration	to	train	external
policy &	plan	external actions,	internal policy =	thinking



HUMAN INSPIRATION FOR INDUCTIVE BIASES: 
IMPLICIT VS VERBALIZABLE KNOWLEDGE
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• Most knowledge in our brain is implicit and not verbalizable (hence the explainability
challenge, even for humans)

• Some of our knowledge is verbalizable and we can reason and plan explicitly with it, 
using system 2 

• The concepts manipulated in this way are those we can name with language, allow us to 
reason OOD

è clarify these assumptions as priors to be able to embed them in 
ML architectures and training frameworks which bridge abstract 
perception, abstract reasoning and abstract action.



Linguistic example:																																															"if I drop the ball, it will fall on the ground”
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SPARSE	DEPENDENCIES	BETWEEN ABSTRACT	VARIABLES

An	abstract	outcome
can be predicted
accurately from very
few	conditioning
abstract	variables

Also consistent	with Baar’s Global	Workspace Theory	(1997)	of	conscious processing.
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Linguistic example:																									"if I had dropped the ball, it would have fallen on the ground”
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ABSTRACT	VARIABLES	PLAY A	CAUSAL	ROLE

COUNTERFACTUAL

Variables	play the	role
of	cause,	effect,	agent,	
action,	intervention
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Linguistic example:																				"if I had dropped the phone, it would have fallen on the ground”
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REUSABLE	CAUSAL	MECHANISMS

COUNTERFACTUAL

The	same mechanism
can be reused on	many
instance	tuples
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Linguistic example:																		"if I had dropped the ZOG, it would have fallen on the ground”
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SYSTEMATIC GENERALIZATION

COUNTERFACTUAL

We make inferences
assuming that the	same
mechanism can be
reused on	novel
instances	(if	the	object
has	the	right	
affordances	/	type)
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Linguistic example:																				"if I decided to drop the phone, it would fall on the ground”
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SPARSE	LOCALIZED	INTERVENTIONS

PLANNING

Only one	abstract	entity
is typically affected by	
the	abstract	action	=	
abstract	intervention.
Typically only one	
attribute of	that entity is
directly affected.
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Updating a	verbalizable fact about	the	world	generally does not	affect	any other piece of	knowledge.

Consider how	we try to	factorize code	into reusable but	independent pieces:
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INDEPENDENT	MECHANISMS

Ideally,	knowledge is
factorized into
independent ‘pieces of	
code’,	i.e.,	which cannot
be better compressed by	
merging them.

Scholkopf et	al	2012

Better having a	separate piece of	code	for	dropping and	for	watching.
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DISCRETE,	SYMBOLIC,	ABSTRACT	CONCEPTS

EFFECT

• Language allows communication	of	simplified,	DISCRETE,	messages	among humans

• Thoughts manipulate such discrete entities

• Evidence	that hippocampus represents discrete concepts

• The	bottleneck of	discretization in	the	communication	between brain modules	may further
facilitate systematic generalization,	making different brain modules	hot-swappable for	one	
another (e.g.	replace	a	noun by	another in	a	sentence)



For	each instantiated abstract	action,	there is generally
one	abstract	entity,	and	one	abstract	attribute of	that
entity,	which that abstract	action	intends to	change	
(although there may be changes	in	intermediate
elements and	downstream effects as	well).

However,	the	same entity (object)	can be affected or	
controlled in	many different ways,	different abstract	
actions	(verbs)	by	many different agents	(subjects).

The	same action	type	(verb)	can of	course	be applied on	
many different entities (objects).
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DIRECT	MAPPING BETWEEN	
ABSTRACT	VARIABLES	AND	ABSTRACT	ACTIONS Follows	up	on	(E.	Bengio	et	al,	2017;	

V.	Thomas	et	al,	2017;	more	recently	
see	Kim	et	al	ICML	2019)

Temporally
extended
abstract	
action	space

Concrete &	
time-
synchronous
low-level
action	space

Temporally
extended
abstract	events
&	entity
attributes
space

Concrete &	
time-
synchronous
sensory space

Encoder	&					attention
skills

"Dropping"															"the	phone"



WHAT CAUSES CHANGES IN DISTRIBUTION?

Hypothesis to replace iid assumption: 
changes = consequence of an intervention on few causes or mechanisms

Underlying physics:	actions	are	localized
in	space and	time.
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Change due
to intervention

Extends the hypothesis of (informationally) Independent Mechanisms (Scholkopf et al 2012)

è local inference or adaptation in the right model

ICLR 2020: A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms, 
Bengio, Deleu, Rahaman, Ke, Lachapelle, Bilaniuk, Goyal, Pal

Ke et	al	2019,	2020;	Brouillard	et	al	NeurIPS 2020



DISENTANGLING THE CAUSES

● Realistic settings: causal variables are not directly observed.

● Need to learn an encoder which maps raw data to causal space.

● Consider both the encoder parameters and the causal graph structural parameters as meta-
parameters trained together wrt proposed meta-transfer objective.

• Simplest possible scenario: linear mixing (rotating decoder) and unmixing (rotating decoder)



DISCOVERING LARGER CAUSAL GRAPHS

Learning Neural Causal Models from Unknown Interventions
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Ke, Bilaniuk, Goyal, Bauer, Scholkopf, Larochelle, Pal & Bengio 2019 arXiv:1910.01075 

• Learning small causal graphs, avoid exponential 
explosion of # of graphs by parametrizing 
factorized distribution over graphs

• With enough observations of changes in 
distribution: perfect recovery of the causal graph 
without knowing the intervention; converges 
faster on sparser graphs

• Inference over the intervention:
faster causal discovery

See also Brouillard	et	al	NeurIPS 2020



MODEL ARCHITECTURE

Use	N	neural	networks	to	represent	causal	graph	with	N	variables

Each	neural	network	models:
○ Who	are	the	direct	causal	parents

■ Structural	parameters	
○ What	is	the	relationship	between	them

■ Functional	parameters



RIMS: MODULARIZE COMPUTATION AND OPERATE ON 
SETS OF NAMED AND TYPED OBJECTS

Recurrent Independent Mechanisms
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Goyal et al 2019, arXiv:1909.10893, ICLR 2021

Builds on	rich recent litterature on	object-centric representations (mostly for	images)

Multiple recurrent sparsely interacting 
modules, each with their own 
dynamics, with object (key/value pairs)  
input/outputs selected by multi-head 
attention

Results: better ood generalization

Ongoing work: hierarchy, top-down 
broadcasting, spatial layout of modules



Modules + Global Workspace
Adding to RIMS a 
shared global 
workspace
similar to the 
GWT greatly
improves OOD 
behavior

1. Parallel, competing specialists 2. Write to shared workspace 3. Broadcast workspace contents

Figure 1: Step 1: an ensemble of specialists doing their own default processing; at a particular
time-step, depending upon the input, a subset of the specialists becomes active. Step 2: the active
specialists get to write information in a shared global workspace. Step 3: the contents of the
workspace are broadcast to all specialists.

Distributed specialists. From a computational perspective, articulated multi-component archi-36

tectures composed of sparsely interacting specialists show desirable scaling properties (e.g., more37

specialists can seamlessly be added), increased robustness (the system can tolerate the removal of38

individual specialists), and efficiency (information is processed predominantly locally, reducing the39

cost of communication between specialists). However, modularization also requires mechanisms to40

establish sharing of compatible representations across specialists. While portions of a task might be41

solved by independent specialists, synchronization is critical particularly when there are statistical,42

functional, or causal dependencies among the specialists.43

As a concrete illustration, consider the task of driving a car in terms of specialists. One specialist44

might monitor the position of the car with respect to lines on the road, and another specialist might45

adjust the steering direction based on the perceptual data. In addition, there might be specialists46

which provide alerts when certain events occur, such as loud sounds, reaching a critical intersection47

on a route, or coming into close proximity to the car in front.48

Coherence through a shared workspace. In cognitive science, the Global Workspace Theory49

(GWT) [Baars, 1993] suggests an architecture allowing specialist components to interact. The key50

claim of GWT is the existence of a shared representation—sometimes called a blackboard, sometimes51

a workspace—that can be modified by any specialist and that is broadcast to all specialists, along with52

the notion that write access is limited to maintain coherence. Our interpretation of this restriction53

on write access is that it stems from an assumption on the form of the joint distribution between54

high-level concepts. GWT makes a claim, not particularly relevant to our work, that the workspace is55

associated with the conscious contents of cognition. In this paper, we explore a communication and56

coordination scheme similar to the one proposed by GWT for a modular neural net.57

In terms of our driving example, the workspace could be used to override default behaviors by giving58

high priority to specialists who provide alerts of various sorts (loud sounds, presence of a child in59

the street), allowing specialists which respond to such alerts to take control of behavior over default60

driving routines. This scenario implies that prioritization of signals in a shared workspace is critical.61

A shared communication channel necessitates common representations. For a multitude of62

specialists to cooperate, a common language is necessary. For example, in the driving scenario,63

alerts may come from auditory or visual processing specialists, but regardless of the source, a signal64

for danger must be placed in the workspace to override default behavior, whether that behavior is65

controlled by a radio-tuning specialist or a steering specialist. Although specialists can be pre-wired66

to have compatible communication interfaces, we will model an architecture in which an ensemble of67

specialists is trained in coordination, which should lead to a shared language [Colagrosso and Mozer,68

2005]. Internally, individual specialists can use whatever form of representations that serves them, but69

their inputs and outputs require alignment with other specialists in order to synchronize. For example,70

an unusual event such as a rough thud under the wheels might not have been previously experienced,71
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Table 2: FourRoom Navigation Task: Success Rate of the
proposed method vs. the baselines on the FourRoom naviga-
tion environment illustrated on the right, with the agent in
red, its field of visibility greyed out, and the object to get in
green.

RIMs RMC LSTM Ours

0.72 ± 0.02 0.67 ± 0.05 0.62 ± 0.02 0.96 ± 0.02

4.3 BabyAI: FourRoom Navigation Task246

We evaluate the proposed method on the classical four-room reinforcement learning environment as247

shown in fig. 4.3 from the MiniGrid environment Chevalier-Boisvert et al. [2018]. The agent must248

navigate in a maze composed of four rooms interconnected by 4 gaps in the walls. To obtain a reward,249

the agent must reach the green goal square. Both the agent and the goal square are randomly placed250

in any of the four rooms. This task is a bit difficult to solve without requiring memory, due to (1)251

the partial observability of the environment and (2) the sparsity of the reward, given that the agent252

receives a reward only after reaching the goal, and (3) environments are procedurally generated.253

Table 4.3 shows the success rate of the proposed method as well as the baselines on the FourRooms254

environment. Success is measured by the percent of time the agent can find the goal in an unseen255

maze. Table 4.3 also includes a comparison with the other baselines (LSTM, RIMs [Goyal et al.,256

2019], RMC [Santoro et al., 2018]). As is evident, the proposed method successfully solves the task257

much better. For more details about the environment and the reinforcement learning setup, we ask258

the reader to refer to appendix, section D.259

4.4 Synthetic Experiments260 Table 3: Results on Memorization Task: Here we eval-
uate the proposed method on the standard memorization
tasks. We show that the proposed model matches the
performance of state of the art models on these standard
memorization tasks.

Task LSTM LSTM+SALU Ours

Double Copy 62% 62% 99%
Priority Sort 75% 99% 95%

We further evaluated these models261

on two standard memorization tasks:262

double-copy and priority sort. We263

compare against two baseline mod-264

els: a vanilla LSTM model and a265

memory-augmented model with the266

soft-attention look-up table as mem-267

ory (LSTM+SALU) [Munkhdalai et al.,268

2019]. As shown in Table 3, the pro-269

posed architecture quickly solves the double-copy task with input length 50. On the priority sort270

problem, the LSTM+SALU model demonstrated the strongest result, but the difference between the271

proposed method and the LSTM + SALU model is very small. For more details, we ask the reader to272

refer to appendix section B.273

5 Conclusion274

We have proposed a shared workspace model to establish coherence and coordination among modular275

specialists. The proposed architecture combines several key properties: knowledge and expertise276

is divided among specialists, they compete to post new contents to the workspace, and after being277

updated, the shared workspace is accessible to all specialists for their own updates. All communication278

occurs through key-value attention, which ensures that the specialists are interchangeable, and that279

any specialist can pass information to the workspace. Experiments on prediction and reinforcement280

learning tasks highlight the advantages brought by the conjunction of modularity and the shared281

memory.282
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(Goyal et al 2021, 
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Create global	coherence
through a	communication	
bottleneck replacing full	
pairwise communication.

Activated specialists are	
denoted by	a	blue shade
and	the	intensity depends
on	the	degree of	
activation.	
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GLOBAL	WORKSPACE ARCHITECTURE
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2-step	process (1	and	2	in	figures),	bottom half:
1) specialists compete for	write access to	workspace,	a	subset of	is activated (in	blue).	
2) shared content	broadcast	to	all	the	specialists.



Separate values	(slots)	from rules (schemas)
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SCHEMAS AND	SLOTS

Object Schema 1 Schema 2 Schema 3
Files Pacman Normal Scared

Ghost Ghost
Top Frame

A X
B X
C X
D X
E X

Bottom Frame
A X
B X
C X
D X
E X

Figure 1: As a motivat-
ing example, we show
two successive frames
of the game PacMan
and show how procedu-
ral and declarative knowl-
edge must be dynamically
factorized. The “B” ghost
has a persistent object
file (with its location and
velocity), yet its proce-
dure mostly depends on
whether it is in its scared
or normal routine.

We propose a method of separately representing knowledge about the state of a particular object37

token—the information that is maintained in an object file—and abstract knowledge about the38

dynamics of the object type. We refer to this latter type of knowledge as a schema (plural schemata), a39

term which in the cognitive science literature means a framework for organizing complex knowledge.40

Here, we specifically use schema to refer to procedural knowledge—knowledge about the dynamics41

of state evolution—in contrast to the declarative knowledge in an object frame that describes the states42

themselves (Figure 1). The combination of files and schemata is sufficient to predict future states43

of visual environments, critical for planning and goal-seeking behavior. For the sake of simplifying44

terminology, we will refer to object files as ‘files’.45

Object-oriented programming (OOP) provides a way to think about the relationship between files46

and schemata. In OOP, each object is an instantiation of an object class and it has a self-contained47

collection of variables whose values are specific to that object and methods that operate on all48

instances of the same class. The relation between objects and methods mirrors the relationship49

between our files and schemata. In both OOP and our view of visual cognition, a key principle is50

the encapsulation of knowledge: internal details of objects (files) are hidden from other objects, and51

methods (schemata) are accessible to all and only objects to which they are applicable.52

The modularity of knowledge in OOP supports human programmers in writing code that is readily de-53

bugged, extended, and reused. We conjecture that the corresponding modularity of files and schemata54

will lead to neural network models with more efficient learning and more robust representations.55

Modularity is the guiding principle of the model we propose, which we call SCOFF, an acronym for56

schema / object-file factorization. Like other neural net models with external memory [e.g., 11, 5, 14],57

SCOFF includes a set of slots which are each designed to contain a file (Figure 2). In contrast to most58

previous external memory models, the slots are not passive contents waiting to be read or written by59

an active process, but are dynamic, modular elements that seek information in the environment that60

is relevant to the object they represent, and when critical information is observed, they update their61

states, possibly via information provided by other files. Event-based OOP is a good metaphor for this,62

where external events can trigger the action of objects.63

As Figure 2 suggests, there is a factorization of declarative knowledge—the properties and history64

of an object, as contained in the files—and procedural knowledge—the way that object behave, as65

contained in the schemata. Whereas declarative knowledge can change rapidly, procedural knowledge66

is more stable over time. This factorization allows any schema to be applied to any file, when the file67

deems it appropriate. The model design ensures systematicity in the operation of a schema, regardless68

of the slot to which a file is assigned. Similarly, a file can access any applicable schema regardless69

of which slot it sits in. Furthermore, a schema can be applied to multiple files at once, and multiple70

schemata could be applied to a file (e.g., Figure 1). In OOP, systematicity is similarly achieved by71

virtue of the fact that the same method can be applied to any object instantiation and that multiple72

methods exist which can be applied to an object of the appropriate type.73

Our key contribution is to demonstrate the feasibility and benefit of factorizing declarative knowledge74

(the properties and history of an object) and procedural knowledge (the way objects behave). This75

2

factorization enforces not only an important form of systematicity, but also of exchangeability: the76

model behaves exactly the same regardless of the assignment of schemata to schemata-slots and the77

assignment of objects to file-slots. With this factorization, we find improved accuracy of next-state78

prediction models and improved interpretability of learned parameters.79

2 The schemata / object-file factorization (SCOFF) model80

SCOFF (Figure 2) is an architectural backbone that supports the separation of procedural and declar-81

ative knowledge about dynamical entities (objects) in an input sequence. The input sequence82

{x1, . . . ,xt, . . . ,xT }, indexed by time step t is processed by a CNN to obtain a deep embedding,83

{z1, . . . , zt, . . . , zT }, which then serves as input to a network with nf files and ns schemata.84

Files are active processing components that maintain and update their internal state. Essentially, a file85

is a layer of GRU or LSTM units with three additional bits of machinery, which we now describe.86

1. Our earlier metaphor identifying files in SCOFF with objects in OOP is apropos in the sense87

that files are event driven. The file operates in a temporal loop that continuously awaits88

relevant signals in the input. Relevance is determined by the file’s current state, and its89

determination is based on a special case of a key-value attention mechanism, which we90

describe in detail below. When a file is triggered by an input, the file updates by deciding91

which schema to apply. When it is not triggered, its state remains unchanged for the next92

time step. (The triggering mechanism is thus distinct from input gating in a GRU [3] or93

LSTM unit: it is all-or-none, and it operates holistically on all units in the layer.) At most94

nsel files can thus be activated at each time step, based on a competition between files. The95

competition is necessary to ensure differentiation of the files during training, as we will96

demonstrate shortly.97

2. Triggering causes a file to perform a one-step update of its state layer of GRU or LSTM units,98

conditioned on the input signal received. The weight parameters needed to perform this99

update, which we will denote generically as ✓, are not—as in a standard GRU or LSTM—100

internal to the layer but rather are provided externally. Each schema j is nothing more than a101

set of parameters ✓j which can be plugged into this layer. SCOFF uses a key-value attention102

mechanism to perform soft selection of the appropriate schema (parameters).103

3. Triggered files may also seek information from other files, again using a key-value attention104
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the internal state comprised of all the files contents. This updating is an extra wrapper around the109

ordinary update that takes place in a GRU or LSTM layer. It provides additional flexibility in that110
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Object	Files	and	Schemata:	factorizing declarative and	
procedural knowledge in	dynamical systems
Lamb,	Goyal,	Blundell,	Mozer,	Beaudoin,	Levine &	Bengio,	
ICLR	2021



Competing 
Production Rules

Working Memory (Set of variables)

 V1  V2  V3  V4

 R1  R2  R3

Mechanisms (rules)	only take 1,	2	or	3	arguments	and	
modify one	of	their arguments.

Sequentially trigger	only one	mechanism at	a	time	which
best	fits with a	subset of	variables	in	working memory

Each rule takes 2	or	more	arguments,	evaluate more	or	less
greedy selection procedures
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NEURAL	PRODUCTION	SYSTEMS
RuleN

Rule2
Rule1

…

slot1 slot2 slot3 slot4

slo
t 1

slo
t 2

slo
t 3

slo
t 4

Goyal	et	al	2021,	submitted
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RRWaWe RLghW TUaQVOaWe US RRWaWe LefW TUaQVOaWe DRZQ1 2 3 4
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RRWaWe LefW RRWaWe RLghW TUaQVOaWe US TUaQVOaWe DRZQ RRWaWe LefW

2 31 4 1 2 3 4 21 3 4

21 3 4 1 2 3 4 21 3 4

RRWaWe RLghW

1 2 3 4 2 31 4

TUaQVOaWe US TUaQVOaWe DRZQ RRWaWe LefW RRWaWe RLghW TUaQVOaWe US RRWaWe RLghW

2 31 4 1 2 3 4

Learn to	parse and	compute Reverse	Polish Notation	
sequences.	Baseline	=	GRU	RNN.
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NPS	TOY	EXPERIMENTS

NPS	disentangles	the	three	
underlying	operations	(➕ ,	✖ ,	-)

Learn to	discover,	disentangle and	apply geometric
transformations	to	MNIST	digits

Each rule converges	to	one	of	the	underlying operations



(Liu	et	al,	submitted,	2021)
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DISCRETE-VALUED NEURAL	COMMUNICATION

Figure 1: In the discretization processing, a communication vector is first divided into different
segments, which we call discretization heads. Each head is discretized separately to the nearest
member of a collection of latent vectors called codebook which is shared across all components.After
discretization, the heads obtained for each communication vector are concatenated back into the same
shape as the original communication vector.

a discrete latent space vector e 2 R
L⇥m where L is the size of the discrete latent space (i.e., a L-way

categorical), and m is the dimension of each latent embedding vector ej . Here, L and m are both
hyperparameters. In addition, by dividing each target vector into G segments or discretization heads,
we separately discretize each head and concatenate the results. More concretely, the discretization
process for each vector h 2 H ⇢ Rm is described in the following. First, we divide a vector h into G

segments s1, s2, . . . , sG as

h = CONCATENATE(s1, s2, . . . , sG),

where each segment si 2 Rm/G. Second, we discretize each segment si separately:

DISCRETIZE(si) = eoi , where oi = argmin
j2{1,...,L}

||si � ej ||.

Finally, we concatenate the discretized results to obtain the final discretized vector Z.76

Z = CONCATENATE(DISCRETIZE(s1), DISCRETIZE(s2), DISCRETIZE(sG))

The multiple steps described above can be summarized as:77

Z = q(h, L,G) (1)

where q(·) is the whole discretization process with the codebook, L is the codebook size, and G is78

number of segments per vector.79

In the next subsection, we use the following additional notation. The function � is arbitrary and80

thus can refer to the composition of an evaluation criterion and the rest of the network following81

discretization. Given any function � : Rm
! R and any family of sets S = {S1, . . . , SK}, we define82

the corresponding function �
S
k for all k 2 [K] by �

S
k (h) = �(h) if h 2 Sk and �

S
k (h) = 0 otherwise,83

where [K] = {1, 2, . . . ,K}. Let e 2 E ⇢ RL⇥m be fixed and we denote by Q1, . . . , QLG all the84

possible values after the discretization process: i.e., q(h, L,G) 2 [k{Qk} for all h 2 H ⇢ Rm.85

2.2 Analysis86

Discretization can improve robustness and reduce intrinsic-dimensionality, but potentially trades off87

against expressiveness. In this subsection, we study this trade-off concretely, and show how our two88

new hyperparameters L (size of the codebook) and G (number of discretization heads) navigate this89

trade-off. Our results show that the size of the codebook L affects intrinsic-dimension in a weak90

(logarithmic) fashion, while the number of dimensions m and the number of discretization heads91

G scales the intrinsic dimension in a linear way. Intuitively, a discrete language has combinatorial92

expressiveness, making it able to model complex phenomena, but still lives in a much smaller space93

than the world of unbounded continuous-valued signals (as G can be much smaller than m).94

Our analysis shows how the discretization process can (1) improve robustness against noise and (2)95

reduce intrinsic-dimensionality. These two advantages are demonstrated in Theorems 1–2 in terms of96

the bound on the difference between what we want to get in expectation and what we obtain in reality97
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Table 2: Performance of transformer models with discretized communication on the Sort-of-Clevr
visual reasoning task.

Method Ternary Accuracy Binary Accuracy Unary Accuracy

Transformer baseline 57.25 ± 1.30 76.00 ± 1.41 97.75 ± 0.83
Discretized transformer (G=16) 61.33 ± 2.62 84.00 ± 2.94 98.00 ± 0.89
Discretized transformer (G=8) 62.67 ± 1.70 88.00 ± 0.82 98.75 ± 0.43
Discretized transformer (G=1) 58.50 ± 4.72 80.50 ± 7.53 98.50 ± 0.50

(a) 2D shapes (b) 3D shapes (c) Adding

Figure 4: Performance of models with discretized communication for out-of-distribution generaliza-
tion tasks.

Would DVNC improve OOD generalization of models in tasks where the inter-specialist communica-240

tion patterns are different in OOD settings from in-distribution settings. 3)If random noises are added241

into the model, would DVNC decrease variance?. We conducted experiments using reasoning tasks242

to answer these questions243

5.1 Discretization of communication among specialist components improves performance in244

reasoning tasks245

Visual Compositional reasoning in terms of objects, and their relations central ability in intelligence246

and cognition When using images and video datasets,247

The first task is equilateral-triangles detection where the model is tasked with detecting the presence248

of equilateral triangles in images (Goyal et al., 2021b). The second task is Sort-of-CLEVR relational249

reasoning, where the model is tasked with answering questions about certain properties of various250

objects and their relations with other objects (Santoro et al., 2017).Transformer models are used in251

both tasks using sequence of pixels as inputs in the same strategy as in Goyal et al 2021(Goyal et al.,252

2021b).Results of attention of the last two layers of blocks were discretized. Discretized transformers253

show statistically significant improvement upon baseline in both tasks (Table 2). Details of the task254

settings can be found in Appendix.255

(a) 2D shapes (G) (b) 2D shapes (L) (c) 3D shapes (G) (d) 3D shapes (L)

Figure 5: Models with DVNC have improved out-of-distribution generalization in wide range of
hyperparemeter settings. Red dots are performance of models with discretized communication. Black
dashed lines are performance of baseline method without discretization
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• Modular architectures	
(transformers,	RIMs,	GNNs)

• Quantize value	vector in	attention	
mechanism

• Each attention	head uses	a	
different code,	but	from same
codebook

• Better OOD	generalization



Causal reasoning over events factor graph
• Node of graph = event at particular time, involving a small set of variables

• Content of episodic memory

• Factor = causal mechanism

• Generic knowledge about a few high-level variables, cortical module

• Directed edges: from past to future, causal direction
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LEARNING	TO	REASON &	PLAN

● Reasoning,	long-range	credit assignment and	planning	are	
inference, inherently computationally expensive

● Brains do	not	use	exhaustive	search but	instead generate
good	candidates

● Conscious processing seems involved in	evaluating them for	
global	coherence across the	brain’s modules

● Attention	mechanisms are	part	of	the	reasoning policy,	
converting declarative knowledge into selective
computations	for	inference and	decision-making
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CONTRAST WITH THE SYMBOLIC AI PROGRAM

Avoid pitfalls of classical AI rule-based symbol-manipulation

• Need efficient large-scale learning

• Need semantic grounding in system 1 (implicit knowledge)

• Need distributed representations for generalization

• Need efficient = trained search (also system 1)

• Need uncertainty handling

37

But want

• Systematic generalization

• Factorizing knowledge in small exchangeable pieces

• Manipulating variables, instances, references & indirection
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CONSCIOUSNESS	PRIORS

consciousness

system	2

systematic
generalization

out-of-distribution
generalization

meta-learning

agency

non-stationarity multi-agent
interactions

language

causality

reasoning

modularity/
compositionality

attention

indirection	&
variables

• Sparse factor graph in space of high-level 
semantic variables

• Meaning (e.g. grounded by an encoder) is stable 
& robust wrt changes in distribution

• Semantic variables are causal: agents, 
intentions, controllable objects

• Many of these variables are discrete
• Simple mapping between high-level semantic 

variables / thoughts and words / sentences
• Shared ’rules’ across instance tuples (as 

arguments), w/ variables & indirection
• Distributional changes due to localized causal 

interventions (in semantic space)

• Credit assignment is only over short causal 
chains



1. How	to	jointly learn the	encoder,	the	inference machinery,	the	mechanisms and	how	they form an	
explanatory graph?

2. How	to	handle ambiguous abstract	variables	(given sensors)	and	manage	the	resulting inference?

3. How	to	jointly learn the	tied abstract	variable	space and	abstract	action	space?

4. How	to	learn an	inference &	attention	policy which selects	what event /	object /	attribute to	attend?

• How	to	combine	system	1	habitual inference (VAE-like?)	with system	2	iterative inference (MCMC?)?	

5. What heuristics to	exploit	short-term and	long-term memory	to	rapidly select	relevant	entities,	events,	
agents,	objects and	causal	mechanisms for	inference and	credit assignment?

6. How	to	efficiently search /	plan	in	the	space of	abstract	actions	anchored on	abstract	events?

• How	to	generate interesting relevant	hypothetical explanatory graphs	&	plans?

7. How	to	efficiently perform credit assignment across long	time	spans through the	causal	graph?
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SOME	OPEN	QUESTIONS	WHICH	COULD	USE	BRAIN	INSPIRATION



THANK	YOU!


