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Abstract

We formulate a probabilistic model of image generation and derive optimal inference algo-
rithms for finding objects and object features within this framework. The approach models
images as a collage of patches of arbitrary size, some of which contain the object of interest
and some of which are background. The approach requires development of likelihood-ratio
models for object versus background generated patches. These models are learned using boost-
ing methods. One advantage of the generative approach proposed here is that it makes explicit
the conditions under which it is optimal. We applied the approach to the problem of finding
faces and eyes on arbitrary images. Optimal inference under the proposed model works in real
time and is robust to changes in lighting, illumination, and differences in facial structure,
including facial expressions and eyeglasses. Furthermore, the system can simultaneously track
the eyes and blinks of multiple individuals. Finally we reflect on how the development of per-
ceptive systems like this may help advance our understanding of the human brain.
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1. Introduction

Since its official beginnings at the Dartmouth conference in 1956, the cognitive ap-
proach has become the dominant paradigm in the social sciences. Historically, the
approach has fashioned many heated debates: early attention vs. late attention,
working memory vs. short term memory, serial vs. parallel processing, analogical
vs. propositional representations, symbolic vs. sub-symbolic processing, modular
vs. interactive architectures. Unfortunately, many of these debates have turned out
to be undecidable, contributed little to our understanding of human nature, and have
had little impact on society at large (see Fig. 15).

Modern approaches and methods are needed that avoid scholastic debates. One
approach which we have found particularly useful was originally proposed by Marr
[29]. The approach focuses on understanding the nature of the problems faced by the
brain and finding possible solutions to these problems [6]. When pursuing this endea-
vor we have found that probability theory, in particular the use of probabilistic gen-
erative models, was a fruitful analytical tool. The third author of this paper referred
to this methodological stance as probabilistic functionalism [30]. One characteristic of
probabilistic functionalism is the focus on solving specific problems under general
conditions rather than solving abstract problems under restricted laboratory condi-
tions. To focus simultaneously on the specificity of the problem and the generality of
the solution is critical, otherwise one can easily get caught in frustrating theoretical
debates or by trick solutions that inform us little about the brain. The current paper
can be seen as an application of the methods of probabilistic functionalism to help
understand the problem of eye and eye-blink detection. We do so by formulating an
analytical model of the problem at hand, studying how optimal inference would pro-
ceed under such a model, and evaluating the performance of the optimal inference
algorithm in natural conditions.

The study of face perception has been revitalized thanks to recent progress in cog-
nitive neuroscience. The advent of modern neuro-imaging is revolutionizing the
study of the mind and presenting a picture of the human brain far different from
a general purpose computing machine. Single neuron recording and imaging studies
are showing specific neural systems that play a crucial role in the perception of faces,
facial features, and facial expressions. These include the fusiform face area, superior
temporal sulcus, orbital frontal cortex, frontal operculum, right somatosensory cor-
tex, and the amygdala [25,16].

Face perception has been a traditional area of research in developmental psychol-
ogy, a discipline that studies how the human mind develops from infancy to adult-
hood. Face processing in general and eye detection in particular is deemed so
important in this field that some of its most influential researchers have postulated
the need for innate eye detection and gaze processing modules. These ideas are still
controversial but recent experiments have shown that from birth human infants are
exceptionally sensitive to the eye and to mutual gaze engagement [10,23]. These sys-
tems may help tune the newborn infant towards interaction with their caregivers [1].

In recent years there has been an emerging community of machine perception sci-
entists focused on automatic detection of faces and facial behavior. The special
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importance of the eyes is becoming quite clear within this community. There are at
least two reasons for this: (1) Proper registration. In a recent evaluation of state of
the art face recognition system it was proposed that a large proportion of the failures
of these system was due to poor alignment and registration of facial features, partic-
ularly in outdoors conditions. Good eye detection in realistic environments may thus
have a tremendous impact on the accuracy of face perception technologies [31]. (2)
Information value. Eyes and eye movements are a particularly important source of
information in human interaction. Indeed, the Facial Action Coding System of Ek-
man and Friesen [8], arguably the most comprehensive standard for coding facial
behavior, devotes 15 categories to describe eye behavior (see Table 1). Only the
mouth surpasses the eyes in the number of categories assigned to it. This reflects
the fact that eye behavior is extremely rich and particularly informative about the
state of human beings.

Current work on eye detection divides into approaches based on visible spectrum
cameras and approaches based on near-infra-red (NIR) cameras. In indoor and rel-
atively controlled conditions the spectral properties of the pupil under NIR illumi-
nation provide a very clean signal that can be processed very fast and accurately
[17,21,22]. While NIR based methods are practical and worth pursuing, it is also
important to pursue visual spectrum methods for the following reasons: (1) NIR
based methods tend to produce a large number of false positives when used in rela-
tively uncontrolled illumination conditions; (2) NIR based methods do little to fur-
ther our understanding about the perceptual problem the brain solves when
processing faces in natural conditions.

Of all the eye related behaviors perhaps the most important is blinks, action unit
45 in the Facial Actions Coding System. This is due to its relevance in several fields,
Table 1
FACS codes involving eyes

Code Descriptor Muscles involved Example

AU5 Upper lid raiser Levator palpebrae superioris
AU6 Cheek raiser Orbicularis oculi, pars orbitalis
AU7 Lid tightener Orbicularis oculi, pars palebralis
AU41 Lid droop Relaxation of levator palpebrae superioris
AU42 Slit Orbicularis oculi
AU43 Eyes closed Relaxation of levator palpebrae superioris;

orbicularis oculi, pars palpebralis
AU44 Squint Orbicularis oculi, pars palpebralis
AU45 Blink Relaxation of levator palpebrae superioris;

orbicularis oculi, pars palpebralis
AU46 Wink Relaxation of levator palpebrae superioris;

orbicularis oculi, pars palpebralis
AU61 Eyes turn left Lateral and medial rectus
AU62 Eyes turn right Lateral and medial rectus
AU63 Eyes up Superior rectus
AU64 Eyes down Inferious rectus
AU65 Walleye Lateral rectus
AU66 Crosseye Medial rectus
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including neurology, physiology, and psychology. For example, blink rate is known
to vary with physiological and emotional arousal, cognitive effort, anxiety, fatigue,
and deceit [18,7,24,36,21]. Ji and Yang [22] presents a state of the art method to de-
tect blinks in real time using NIR imaging. Approaches based on visual spectrum
images also exist. Bartlett et al. [2] present an approach to detect blinks in indoors
environment using Support Vector Machines. Cohn et al. [4] describe an approach
that uses hand-coded eye-blink detectors. They report results comparable to those
of Bartlett et al. [2] on the same testing dataset. Both systems handled out-of-plane
rotations of the head by fitting a 3D deformable model of the head and then re-ren-
dering the image into a frontal view.
2. A generative model for images

In this section, we frame the problem of finding faces and facial features as a
Bayesian inference problem: We formulate a model of how images are generated
and then derive an algorithm for making optimal inferences under this model.
One advantage of generative models is that probability estimates of the categories
of interest are computed explicitly, facilitating integration with other potential
sources of information not necessarily considered at design time. In addition gener-
ative models force us to make our assumptions explicit, facilitating progress towards
more effective algorithms.

Unless otherwise stated, capital letters will represent random variables and small
letters specific values taken by those variables. When possible we use informal short-
hand notation and identify probability functions by their arguments. For example,
p(y) is shorthand for the probability (or probability density) that the random matrix
Y takes the specific value y.

We model the image as a collage of rectangular patches of arbitrary size and
location, some patches rendering the object of interest, the others rendering the
background. Given an image our goal is to discover the patches that rendered
the object. Let Y be a random matrix representing an image with a fixed number
of pixels. Let y be a specific sample from Y. Let A ¼ ða1; a2; . . . ; anÞ be an enu-
meration of all possible rectangular image patches, e.g., ai determines the position
and geometry of a rectangle on the image plane. Let yai be a matrix whose ele-
ments are the values of y for the pixels in the rectangle ai. Let H = (H1, . . . ,Hn)
be a random vector that assigns each of the n patches to one of three categories:
Hi takes the value 1 when the patch ai renders the object of interest, it takes va-
lue �1 when it renders the background, and value 0 when it is not rendered (see
Figs. 1 and 2).

The image generation process proceeds as follows (see Fig. 1). First a segmenta-
tion h is chosen with probability p(h). Then for each patch ai if Hi = 1 then an image
of the size of ai is chosen from the object distribution q( Æ |ai,1) independently of all
the other patches. If Hi = �1 then a background image yai is chosen from the back-
ground distribution q( Æ |ai,�1). If Hi = 0 then ai is not rendered. The observed image
y is the collection of the rendered patches.



Fig. 1. The hidden variable H determines which image patches will render the background (�1) which
patches will render the object of interest (1) and which patches will not be rendered (0). The set of rendered
patches determine the observed image.

Fig. 2. The segmentation on the left contains the patch that generated the object of interest (i.e., the face).
It will be hard for this segmentation to explain the image as a collection of background patches. The
segmentation on the right does not contain the object patch. Since the background model includes wrongly
shifted versions of faces it will be easy to explain the image as a collection of background patches.
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The model is specified by the prior probabilities p(h) and by the object and back-
ground rendering distributions q. The prior is specified by the marginal probabilities
{P(Hi = 1) : i = 1, . . . , n}, with the constraint that values of h that do not partition
the image plane have zero probability, and by one of the two following constraints:
(I) For cases in which we know there is one and only one object of interest on the
image plane, only values of h with a single 1 are allowed. (II) For cases in which there
may be an arbitrary number of objects of interest we assume the location of a ren-
dered object does not inform us about the location of other objects, expect for the
fact that each pixel can only be rendered by a single object or background element.
More formally, for i = 1, . . . ,n, the random variables {Hj : j „ i} are independent of
Hi when conditioning on the event {Hi „ 0}. For a given image y our goal is to detect
patches rendered by the object. There are two cases of interest: (I) We know there is
one and only one patch rendered by the object. (II) There is an unknown and arbi-
trary number of patches rendered by the object model.
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2.1. Case I: single object

Suppose we know there is one and only one patch in the image plane that ren-
dered the object of interest. Then our goal is to find the most probable patch
k̂ 2 f1; . . . ; ng given the image y, i.e.,

k̂ ¼ argmax
i

P ðHi ¼ 1jyÞ: ð1Þ

Using the law of total probability we have that

P ðHi ¼ 1jyÞ ¼
P

hP ðHi ¼ 1ÞpðhjHi ¼ 1Þpðyjh;Hi ¼ 1Þ
pðyÞ : ð2Þ

Note that p(h|Hi = 1) is zero if the segmentation h contains the patch ai and one
otherwise. Moreover, for any h that includes ai we have that

pðyjh;Hi ¼ 1Þ ¼
qðyai ; ai; 1Þ
qðyai ; ai;�1Þ Zðh; yÞ; ð3Þ

where

Zðh; yÞ ¼
Y
i:hi 6¼0

qðyai ; ai;�1Þ: ð4Þ

The term Z(h,y) describes how well the image y can be explained by the segmenta-
tion h with all the patches rendering background, no objects. Thus

P ðHi ¼ 1jyÞ ¼ PðHi ¼ 1Þ
qðyai ; ai; 1Þ
qðyai ; ai;�1Þ

P
hpðhjHi ¼ 1ÞZðh; yÞ

pðyÞ

¼ PðHi ¼ 1Þ
qðyai ; ai; 1Þ
qðyai ; ai;�1Þ

EðZðH ; yÞjHi ¼ 1Þ
pðyÞ : ð5Þ

The term E(Z(H,y)|Hi = 1) represents how well the image y can be explained as a
mosaic of background patches, provided one of those patches is ai. If the back-
ground distribution model q( Æ |ak,�1) includes wrongly shifted and scaled versions
of the object of interest then E(Z(H,y)|Hi = 1) should be small for the patch that
actually rendered the object, and large otherwise. This is due to the fact that the
patch that includes the object will be hard to explain by the background model
(see Fig. 2). More formally if EðZðH ; yÞjHk̂ ¼ 1Þ 6 EðZðH ; yÞjHi ¼ 1Þ for
i = 1, . . . ,n then

k̂ ¼ argmax
i

P ðHi ¼ 1jyÞ ¼ argmax
i

P ðHi ¼ 1Þ
qðyai ; ai; 1Þ
qðyai ; ai;�1Þ

¼ argmax
i

log P ðHi ¼ 1Þ þ log
qðyai ; ai; 1Þ
qðyai ; ai;�1Þ : ð6Þ

The optimal inference algorithm prescribes scoring all possible patches in terms of a
function that includes the prior probability of that patch containing an object and a
likelihood ratio term. The patch that maximizes this score is then chosen.
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2.2. Case II: multiple objects

This case applies, for example, in face detection problems for which we do not
know a priori how many faces may appear on the image plane. To formalize the
problem we define a function U measuring the degree of match between any two
arbitrary segmentations h and h0:

Uðh; h0Þ ¼
Xn

i¼1

qðHi;H 0
iÞ; ð7Þ

qðHi;H 0
iÞ ¼ dHi;1 þ dHi ;�1ð ÞdHi;H 0

i
; ð8Þ

where d is the Kroenecker delta function. q counts the number of patches for which
both h and h0 assign the same ‘‘object’’ or ‘‘background’’ label and ignores all the
patches that are not rendered by h. Our goal is to find a partition ĥ that optimizes
the expected match

ĥ ¼ argmax
h0

EðUðH ; h0ÞjyÞ ¼
X
h

pðhjyÞUðh; h0Þ: ð9Þ

The optimal assignment follows:

ĥi ¼
1 if pðHi ¼ 1jyÞ > pðHi ¼ �1jyÞ;
�1 else:

�
ð10Þ

Thus, to find the optimal assignment we need to scan all possible image patches
a1, . . . ,an, compute the log-posterior probability ratio

log
PðHi ¼ 1jyÞ
PðHi ¼ �1jyÞ ; ð11Þ

and assign ‘‘object’’ labels to the patches for which this ratio is larger than 0.
Using the law of total probability we have that

P ðHi ¼ 1jyÞ ¼
X
h

P ðHi ¼ 1ÞpðhjHi ¼ 1Þpðyjh;Hi ¼ 1Þ; ð12Þ

where p(h|Hi = 1) is zero if the segmentation h contains the patch ai, one otherwise,
and

pðyjh;Hi ¼ 1Þ ¼ qðyai ; ai; 1Þ
Y

j 6¼i:hj 6¼0

qðyaj ; aj; hjÞ: ð13Þ

Thus for k = �1, 1 we have that

P ðHi ¼ kjyÞ ¼ P ðHi ¼ kÞqðyai ; ai; kÞ
X
h

pðhjHi ¼ kÞ
Y

j 6¼i:hj 6¼0

qðyaj ; aj; hjÞ ð14Þ

and due to the fact that {Hj:j „ i} are independent of Hi given {Hi „ 0} it follows that

log
PðHi ¼ 1jyÞ
PðHi ¼ �1jyÞ ¼ log

P ðHi ¼ 1Þ
P ðHi ¼ �1Þ þ log

qðyai ; ai; 1Þ
qðya ; ai;�1Þ : ð15Þ
i
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To make optimal inferences all we need is a model for the prior probability of object
locations and a model for the log-likelihood ratios of image patches of arbitrary
geometry. In Section 3, we will see how these models can be learned using boosting
methods.
3. Learning likelihood ratios using gentleboost

The inference algorithmpresented above requires a likelihood ratiomodel.Given an
arbitrary image patch y we need an estimate for the ratio between the probability of
such a patch being generated by the object class vs the background class. In this paper,
we learn these likelihood ratios using GentleBoost, a boosting algorithm developed by
Friedman et al. [14]. Boosting [13,12] refers to a family of machine learning algorithms
for learning classifiers by sequential accumulation of experts that focus on themistakes
made by previous experts. Friedman et al. [14] showed that boosting methods can be
reinterpreted from the point of view of sequential statistical estimation, an interpreta-
tion that makes it possible to use it in the generative framework proposed here.

The goal is to learn a model for the log-likelihood ratio of arbitrary image
patches. During training we are given a set of examples {(yi,zi):i = i, . . . ,m}, where
yi is an image patch, and zi 2 {�1,+1} its category label, i.e., object or background.
The model used in GentleBoost is of the following form:

pðyÞ ¼ 1

1þ ef�2
P

jfjðyÞg
; ð16Þ

where p(y) is the probability that image patch y belongs to one of the two categories
of interest, and fi(y) is the opinion of the ith expert, as defined in Fig. 3. GentleBoost
can be seen as an application of the Newton–Raphson optimization algorithm to the
problem of minimizing the following v2 error [14]

q ¼
X
i

ti � pðyiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðyiÞð1� pðyiÞÞ

p ; ð17Þ

where ti = 0.5(zi + 1) 2 {0,1} is the category label for the ith training input yi. Since
p(yi) is the probability of a Bernoulli random variable with mean p(yi) and standard
deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðyiÞð1� pðyiÞÞ

p
, then q can be seen as the number of standard deviations

between the observed label and the average label value. As the number of examples
in the training set increases, minimizing the v2 error becomes identical to maximizing
the likelihood. However, when the number of samples is small, v2 estimators can be
more efficient than maximum likelihood estimators.

3.1. Selecting wavelets and tuning curves

GentleBoost chooses a set of experts f1, f2, . . . in a sequential manner. Each New-
ton–Raphson step results on the selection of the expert that maximally reduces the
current v2 error given the already selected set of experts. In practice this can be done
in a variety of ways. We use the following approach:



Fig. 3. The GentleBoost approach used in this paper.
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We start with a large pool of wavelets {w1, . . . ,wn}, about 170,000 in our case (see
Section 5), and define an expert as the combination of a wavelet w and a tuning curve
h to be defined below. By iteration t of the Newton–Raphson method, we have al-
ready selected t�1 experts. At this point we go over each wavelet w in our pool
and for each wavelet we estimate the tuning function h : R 7! ½�1; 1� that minimizes
q given the outputs of the wavelet w and the information provided by the t�1 experts
already selected. This function can be shown to have the following form:

hðwðyÞÞ ¼ EPt ½ZjwðyÞ�; ð18Þ
where Z 2 {�1,1} is the category label, and the expectation is taken with respect to
the distribution induced by the weights assigned by GentleBoost to the different
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training data (see Fig. 3). We estimate the function h using the Nadaraya–Watson
kernel regression method for density estimation [34]. The training examples used
in this regression method are the set of triplets {(w(yi),zi,Pt(yi)):i = 1, . . . ,m}, where
w (yi) is the regressor variable, zi the label we wish to predict, and Pt(yi), the weight of
example yi,zi).

We call the function h the tuning curve for the wavelet w. After we find the optimal
tuning curves for all the wavelets in the original pool, we choose the wavelet ŵ and
corresponding tuning-curve ĥ that minimize q. This pair defines the expert selected
for iteration t, i.e.,

ftðyÞ ¼ ĥðŵðyÞÞ: ð19Þ
The process is iterated, each time adding a new wavelet and tuning curve, until q no
longer decreases. This procedure is illustrated in Figs. 5 and 3.

By the end of training process we have a model for the posterior probability of the
object class given arbitrary image patches y

pðyÞ ¼ 1

1þ ef�2
P

ftðwtðyÞÞg
: ð20Þ

This posterior probability estimate reflects the particular proportion p of examples
of each class used during training. The inference algorithm in (22) requires log-like-
lihood ratios, not log-posteriors. These can be easily derived from (20) using Bayes
rule

log
qðyai ; ai; 1Þ
qðyai ; ai;�1Þ ¼ log

1� p
p

� �
þ log

pðHk ¼ 1jyaiÞ
pðHk ¼ �1jyaiÞ

� �

¼ log
1� p
p

� �
þ 2f ðxÞ: ð21Þ

Combining (6) and (20) we get

k̂ ¼ max
i

pðHi ¼ 1jyÞ ¼ max
i

log pðHi ¼ 1Þ þ 2f ðyaiÞ: ð22Þ
4. Situation based inference

One common approach to eye detection is based on the operation of a set of inde-
pendent feature detectors [19,11]. The output of these detectors (e.g., a detector for
the left eye, a detector for the right eye, a detector for the tip of the nose, etc.) is inte-
grated by looking for configurations that match the distribution of interfeature dis-
tances typical of the human face [38,27,26]. Unfortunately this method scales
exponentially with the number of false alarms of each feature detector. Suppose
our goal is to find the center of an eye with 1 pixel accuracy. This requires for back-
ground models to include examples of eyes shifted by 1 pixel from the center posi-
tion. In practice, a detector efficient at distinguishing eyes slightly shifted from
center is also likely to produce a large number of false positives when scanning gen-
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eral backgrounds that do not include faces, creating an unsurmountable problem for
methods that rely on feature detection.

The approach we propose here is based on the idea of a bank of situational or con-
text dependent experts operating at different levels of specificity. For example, since
the eyes occur in the context of faces, it may be easier to detect eyes using a very large
context that include the entire face and then formulate feature detectors specifically
designed to work well under such context. While we may think of these as face detec-
tor, we can also think of them as eye detectors that happen to have very large recep-
tive fields. This form of eye detection works under very general context conditions,
avoiding the proliferation of false alarms, but provides poor information about the
precise location of the eyes. These eye detectors are complemented by context-specific
eye detectors that provide very precise information about the position of the eyes.

More formally, let y represent an observed image, S represent a contextual situ-
ation (e.g., the location and scale of a face on the image plane), and O represent
the location of the left eye of that face on the image. Using the law of total proba-
bility we have that

pðojyÞ ¼
Z

pðsjyÞpðojsyÞdh: ð23Þ

Here p(s|y) works as a situation detector. Its role is to find regions in the image plane
that are likely to contain eyes due to the fact that they contain faces. The p(o|sy) term
is a situation specific eye detector. For example it may work when the location and
scale of the face on the image plane is known. In this example p(s|y) partitions the
image pixels into those belonging to the face, yf, and those belonging to the back-
ground, yb. Once the position and scale of the face are known, the background pro-
vides no additional information about the position of the eye, i.e.,

pðojyf ; yb; sÞ ¼ pðojyf sÞ: ð24Þ

The situational approach proposed here can be iterated, where one first detects a
general context, followed by detection of a context within a context, each time
achieving higher levels of precision and specificity allowed by the fact that the con-
text models become smaller and smaller on each iteration.
5. Real-time system architecture

In the next sections we describe and evaluate an algorithm that performs optimal
inference under the assumptions of the generative model described above. The cur-
rent system utilizes two types of eye detectors: The first type, which can be thought of
as a face detector, starts with complete uncertainty about the possible location of
eyes on the image plane. Its role is to narrow down the uncertainty about the loca-
tion of the eyes while operating in a very wide variety of illumination and back-
ground conditions. The second type of detector operates on the output of the first
detector. As such it can assume a restricted context and achieve high location accu-
racy. Once the most likely eye location is chosen, the image patch surrounding the



Fig. 4. Flowchart for face, eye, and blink detection.

Fig. 5. Flowchart for one iteration of the feature selection procedure.
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eyes is passed to a blink detection for analysis. The flowchart for this procedure is
shown in Fig. 4.

While the system described here operates on video images in real time, it currently
treats each frame as independent of the previous frames, making it equally useful for
static images as for video. Treating each video frame independently allows the sys-
tem to simultaneously code eye location and behavior on multiple faces that may
come in and out of the scene at random times.

5.1. Stage I: eye detection in general background conditions

As described above the first component of the inference process locates regions of
the image plane that contain faces, and thus eyes. This module operates under very
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general background and illumination conditions and greatly narrows down the plau-
sible locations of eyes on the image plane. It makes no prior assumptions about the
location of the face.

The general procedure for the image search is similar to the multiscale search of
Rowley et al. [32], who trained a single binary classifier to classify face vs. non-face
for patches of fixed size (20 · 20 pixels), then used that classifier to classify all pos-
sible patches in the image. Faces larger than the original size were found by repeating
the search in copies of the image scaled to smaller sizes (thus, a 20 · 20 pixel face in a
1/4 size copy of the image corresponds to an 80 · 80 pixel face in the corresponding
location in the original).

We use a very similar scheme, however rather than a binary classifier, we devel-
oped a likelihood-ratio model using a dataset of Web images provided by Compaq
Research Laboratories. This dataset contains 5000 images containing frontal upright
faces taken under a variety of illumination conditions, facial expressions, facial hair,
eyeglasses, hats, etc., of widely varying image quality. Faces were cropped and scaled
to 24 · 24 pixels square. The negative examples were sampled from a dataset of 8000
images collected from the Web and known not to contain faces. Similarly, these
images contained a wide variety of natural indoor and outdoor scenes, text, illustra-
tions, posed images of objects, etc., with varying image quality. The advantage of
this Web dataset is that it includes far more variability than most other closed
databases.

Due to the multi-scale search, about 1 billion total patches are possible in these
8000 images. For the initial negative examples for training, 10,000 square patches,
of arbitrary size and at arbitrary locations in the images, were sampled from this
dataset. Patches were then scaled down to 24 · 24 pixels. The set of negative samples
changes during training thanks to the bootstrap round (described below), so ulti-
mately all 1 billion possible patches were used at some time during training (see
Fig. 8).

The likelihood-ratio model was trained using the GentleBoost method described
in Section 3. GentleBoost sequentially chooses wavelets from a large pool and com-
bines them to minimize a v2 error function. The pool of wavelets we choose from was
based on [37] and consists of Haar-like wavelets. The main reason for their use is that
their output can be computed very fast by taking the sum of pixels in two, three, or
four equal-sized, adjacent rectangles and taking differences of these sums. To this
original set we add a center-surround type wavelets and mirror image wavelets that
are sensitive to patches symmetric about vertical axis (see Fig. 7).

The GentleBoost approach described in Section 3.1 requires computing tuning
curves on each of the wavelet candidates. It is very computationally expensive to per-
form an exhaustive search over all these wavelets—in a 24 · 24 pixel window, there
are over 170,000 possible wavelets of this type. To speed up training, we break the
wavelet selection step into two stages (see Fig. 5). First, at each round of boosting,
we take a random sample of 5% of the possible wavelets. For each wavelet we find
the tuning curve that minimizes the loss function q if that particular wavelet were
added to the pool of already chosen wavelets. In step two, we refine the selection
by finding the best performing single-wavelet classifier from a new set of wavelets



Fig. 6. The Integral Image: (A) The value of the pixel at (x,y) is the sum of all the pixels above and to the
left. (B) The sum of the pixels within rectangle D in the original image can be computed from points in the
integral image by x4�x2�x3 + x1.

Fig. 7. Each wavelet is computed by taking the difference of the sums of the pixels in the white boxes and
grey boxes. (A) Wavelet types include those in [37], plus a center-surround type wavelet. (B) In the
refinement step, the same wavelet types superimposed on their reflection about the y axis are also possible.

Fig. 8. Examples of faces and non-faces used in training the face detector.
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generated by shifting and scaling the best wavelet by two pixels in each direction, as
well as composite wavelets made by reflecting each shifted and scaled wavelet hori-
zontally about the center and superimposing it on the original. Using the chosen
classifier as the weak learner for this round of boosting, the weights over the exam-
ples are then adjusted using to the GentleBoost rule. This wavelet selection process is
then repeated with the new weights, and the boosting procedure continues until the
performance of the system on a validation set no longer decreases.
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The inference algorithm calls for likelihood ratio models at multiple scales. Like-
lihood ratios for larger image patches are obtained by linearly scaling the patches
down to 24 · 24 pixels and then applying the likelihood ratio model trained on that
particular scale. Thanks to the choice of Haar-like wavelets for the higher level image
representation, this interpolation step can accomplished in constant time regardless
of scale (see [37,33] for a more detailed explanation).

Following [37], rather than training a ‘‘monolithic’’ classifier which evaluates all
its wavelets before it makes a decision, we divided the classifier into a sequence of
smaller classifiers which can make an early decision to abort further processing on
a patch if its likelihood-ratio falls below a minimum threshold. We can think of this
as a situational cascade where each level of the cascade is trained only on patches
Fig. 9. The first two wavelets (A) and their respective tuning curves (B) for face detection. Each wavelet is
shown over the average face. The tuning curves show the evidence for face (high) vs. non-face (low), as a
function of the output of the wavelet, shown increasing from left to right. The first tuning curve shows that
a dark horizontal region over a bright horizontal region in the center of the window is evidence for an eye,
and for non-eye otherwise. The second tuning curve is bimodal, with high contrast at the sides of the
window evidence for a face, and low contrast evidence for non-face.

Fig. 10. The face detection window can vary from closely cropping the face (negative z-axis) to loosely
cropping the face (positive z-axis). The points show typical eye locations relative to the face detection
window over a sample database of face images. We model this variability with a three-dimensional
Gaussian, where the x- and y-axes are space, and the z-axis is scale, i.e., ratio of distance between eyes to
size of the face-detector window. We use this to model the prior probability of a location containing an eye
given the face detection window.
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that survived the previous levels. After each element of the cascaded is trained, a
boot-strap round (ala Sung and Poggio [35]) is performed, in which the full system
up to that point is scanned across a database of non-face images, and false alarms
are collected and used as the non-faces for training the subsequent strong classifier
in the sequence. Training the current face-detector took about ten days on a
1.1 GHz Athlon-based PC. Fig. 12 shows the first two wavelet chosen by the system
along with the tuning curves for those wavelets.
Fig. 11. Examples of positive (left) and negative (right) example patches used for training three different
eye detectors. Each patch is 24 · 24 pixels. (A) For this detector, positive examples were chosen centered
on the eye (t = 0), with scaling factor q = 1. (B) This detector uses the same scaling factor in (A), but with
offset parameter t chosen such that the eye is off center to maximize pixels generated by face. (C) With a
smaller value of q = .22, the eye fills the window.

Fig. 12. The first, third, and sixth wavelets (A) and their respective tuning curves (B) for the left eye
detector centered on the eye with scale factor q = 1. Each wavelet is shown over the average positive (eye)
example. The tuning curves show the evidence for eye (high) vs. non-eye (low) as the wavelet output
increases (shown increasing from left to right). The first tuning curve shows that a dark vertical region over
a bright vertical region in the center of the window is evidence for an eye, and for non-eye otherwise. The
middle tuning curve looks for a horizontal band that goes dark–light–dark towards the left of the window
as evidence for an eye, which appears to be testing for the bridge of the nose. The rightmost wavelet also
can be interpreted as a bridge of the nose detector, however it also indicates that too much difference
between the left and right parts of the wavelet are evidence against eye.
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At recognition time the inference algorithm calls for scanning the entire image
plane and looking for square patches of arbitrary scale and location with large like-
lihood-ratios. In practice we start scanning patches of size 24 · 24, the minimum
scale of interest and shift one pixel at a time until all possible patches of this size
are scanned. Each larger scale is chosen to be 1.2· the previous scale, and the corre-
sponding offsets are scaled by the same proportion, for an additional
(n�24s) · (m�24s)/s2 patches per scale. For a 640 · 480 pixel image, this produces
over 400,000 total patches (see Fig. 6).

Because the early layers in the cascade need very few wavelets to achieve good per-
formance (the first stage can reject 60% of the non-faces using only 2 wavelets, using
only 20 simple operations), the average number of wavelets that need to be evaluated
for each window is very small, making the overall system very fast while still main-
taining high accuracy. The current system is capable of achieving 30 fps on images of
320 · 240 on a 3 GHz Intel Pentium 4-based desktop PC, with a minimum face size
of about 24 · 24 pixels. Performance on the CMU-MIT dataset (a standard, public
data set for benchmarking frontal face detection systems) is comparable to other
state-of-the art systems. Using CMU-MIT as a validation set, we fixed performance
at 92% hit rate with 10 false alarms for the experiments in this paper. While CMU-
MIT contains wide variability in images due to illumination, occlusions, shadows,
and differences in image quality, the performance in controlled environments, such
as in the BioID dataset (used later in this study), containing faces that are frontal,
focused and well lit, with simple background, is often close to 100% hit rate or fron-
tal faces with few, if any, false alarms. While performance falls off as the face deviates
from frontal (see Section 6.2), there are a wide variety of applications, in particular
those in which the subject is watching a screen or driving on a road for example,
for which frontal-view accuracy is sufficient. We discuss the ways to overcome
this limitation in Section 7. Source code for this is stage available at http://
kolmogorov.sourceforge.net.

5.2. Stage II: eye detection in the context of faces

The first stage in the eye detection system specialized on finding general regions of
the image plane that are highly likely to contain eyes. The output of the system is
very resistant to false alarms but does not specify well the precise location of the
eyes. The second stage specializes on achieving high accuracy provided it operates
on the regions selected by the previous stage. This stage uses the same searching tech-
niques as the previous stage: all patches at multiple scales, within a sub-region of the
face restricted in both location and scale, are submitted to a boosted classifier which
returns the eye versus non-eye log-likelihood ratio. This log-likelihood ratio is then
combined with the prior for probability of eye given location and size with respect to
the face detection window to produce a final log posterior ratio of eye versus non-
eye.

The data used for training was from the CMU-MIT face database and the Com-
paq face database used for training the face detection system. These images varied
widely in image quality, lighting condition, background, facial expression, head size

http://kolmogorov.sourceforge.net
http://kolmogorov.sourceforge.net
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and orientation, head size (with respect to the image), and image quality, and contain
faces with eyes closed as well as open. Positive examples were selected by cropping
patches from each image such they contain eyes at a canonical scale and location
with respect to their face (described below), then scaling the patch to 24 · 24 pixels.
Non-eye examples were taken from the same images at multiple non-eye locations
and scales within the faces, with constraints described below. This resulted in 4826
positive eye examples and 10,000 non-eye examples.

There are many possible ways to crop and center the eye patches for training. We
present experimental results of several different choices of cropping and centering.
We can parameterize the choice by introducing variables d is the distance between
the eyes, r is the ratio of the distance between the center of the eye and the left
and upper edges of the face cropping window, t is an offset parameter, and q is a scale
parameter. Positive training samples were then prepared by cropping example
images such that r = q(d + td) and scaling them to 24 · 24 pixels. In other words,
the size of the window was chosen to be proportional to the distance between the
eyes, and could be off center by some fixed amount. Thus, a small q results in a small
receptive field with high resolution and a large q results in a large receptive field with
relatively low resolution, while t shifts the location of the eye with respect to the cen-
ter of the patch.

From the situational inference approach, one might expect that pixels which are
generated by background contain relatively little additional information once we
know we are within a face, thus we should choose a t and q that maximizes the num-
ber of pixels in the positive example patches that are generated by face—i.e., about
the size of the face and centered on the center of the face (i.e., the eye is off-center
slightly), so that very few background pixels enter into the window. However, given
a fixed input size of 24 · 24, it is possible that smaller values of q, such as one that
just covers the eye (resulting in higher resolution examples with less surrounding
context) allow us to maximally benefit from the information in pixels generated by
the eye only. We present results on varying these parameters experimentally to find
the best choice of offset parameter t and scale parameter q in Section 6.

The situational inference approach also allows us to constrain how we choose
non-eye examples: We model our prior belief about the eye location p as a normal
distribution, with parameters for the mean and standard deviation of the true eye
position and scale with respect to the window chosen by the face detector, as mea-
sured against the training set. In Fig. 10, we show the locations of eyes with respect
to the size of the face detection window for some example data. Down on the vertical
axis shows increasing ratio of the size of the face detection window to the distance
between the eyes. When the face detector selects a small window relative to the true
face size, resulting in a small detection width to eye distance ratio, the eyes tend to be
far apart with respect to the detection window. When the face detector selects a large
window compared to the distance between the eyes, the eyes tend to be located closer
together, near the center of the detection window.

Using these statistics about the true eye positions with respect to the estimated
face location, we can restrict the set of patches for searching—and thus for train-
ing—to a maximum Mahalanobis distance M from the mean location and scale of
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each eye. Choosing M = 16.27 gives a 99.9% confidence interval for one of the
patches containing the eye (see Appendix B).

Using these criteria, for each example face, we created two positive training
examples (one for each eye), and six negative training examples, where the negative
examples were selected randomly from the set of patches satisfying the maximum
distance from the mean eye patch size and location criterion. To make best use of
our data, we flipped the positive and negative examples from the right eye about
the horizontal axis and combined them with the left eye examples to train a single
left eye detector. Then this left eye detector was flipped about the horizontal axis to
get a right eye detector. Examples of eyes and non-eyes used in training is shown in
Fig. 11.

Once we have collected a set of positive and negative examples, we train this stage
of the situational inference cascade with GentleBoost as described above. We found
that it is possible to achieve excellent performance with only 50–100 wavelets without
over-fitting, as tested on a validation set. Since this already allows the system to
operate in real-time with high accuracy, we decided to keep the training time short
(about 30 min) and the code simple and skip the attentional-cascade and boot-strap
techniques for this level of the situational inference (though future work may use
these techniques to see if they can slightly improve speed and/or accuracy). Fig. 9
shows example wavelets and their corresponding tuning curves for the best eye-
detector.

While Stage I of our system (face detection) makes no assumptions about the
number of faces on the image plane, the second stage (precise location of the
eyes) assumes that there is one patch rendering the left eye and one patch render-
ing the right eye. If the goal is to maximize the probability of choosing the cor-
rect rendering patch optimal inference requires choosing the patch that maximizes
the log-posterior ratio (21). However, if the goal is to minimize the expected
squared distance from the eye, optimal inference asks for computing the mean
of the posterior distribution. Both approaches can be seen as examples of a more
general algorithm that chooses the N patches with highest log-posterior ratios and
producing a weighted average of the opinions of those patches about the location
of the feature of interest. In Section 6, we present accuracy results using different
values of N.

5.3. Stage III: blink detection

Like face detection and eye detection, blink detection is done with a boosted clas-
sifier. In this case, the task is a binary classification task over a single patch per im-
age, thus there is no need to perform a search across multiple patches. Instead, we
use estimates of the eye locations to create a 44 · 22 pixel patch containing the eyes,
doing scaling and rotation with simple linear interpolation. Training data was col-
lected from 120 eye-open images and 120 eye-closed images collected from the
Web by using the eye detector to label the eye locations, then cropping and rotating
the region around the eyes to an upright frontal view. The dataset will be available at
http://mplab.ucsd.edu. Fig. 13 shows examples of the training data collected this

http://mplab.ucsd.edu


Fig. 13. Example open eyes (A) and closed eyes (B) used to train the blink detector. About 120 images of
each type were taken from the web to include a wide variety of lighting conditions, facial types, glasses,
and image quality. The eye detection system was used to automatically crop, scale and rotate the image
patches to an upright frontal view.
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way. GentleBoost is then used to select wavelets and tuning curves for this discrim-
ination task. Fig. 14 shows example wavelets and their corresponding tuning curves
for the best blink detector.
6. Experimental results

6.1. Testing datasets

We tested the performance of the eye detector on three different types of datasets.
The first dataset was the BioID dataset [15,20], a freely available collection of face
images with eyes labeled. This dataset contains 1521 images with good lighting con-
ditions and frontal faces, and most subjects had their eyes open. This was to make it
easier to compare our results with other eye-detection systems. The second dataset
was more challenging, consisting of 400 images collected from the Web and digital
cameras. We are making this dataset available at http://mplab.ucsd.edu. These
images varied widely in image quality, lighting condition, background, facial expres-
sion, head orientation, head size (with respect to the image), and image quality, and
contained 200 eyes-open and 200 eyes-closed examples. Measuring performance on
this dataset allows us to compare how different parameter choices affect the quality
of the system in unconstrained situations. We believe that if one can achieve good
performance in this highly unconstrained dataset, then one can expect very good per-
formance in better controlled situations. None of the images in this testing dataset
was used in training.

The third dataset consisted of ten different heads in 153 different poses each, arti-
ficially generated from the USF Human ID 3D database [3]. Each head in the data-
base, obtained using a laser scanner, contains structure (3D coordinates) and texture
(24-bit RGB color) information for each point on the surface, suitable for rendering
a high-quality still of the face at any position. Each of the ten randomly chosen heads
we used for our experiments was positioned from �40 to 40� in elevation and 0–40�
in azimuth, in increments of 5�, then rendered. This dataset was used to provide an
estimate of the performance of the face detection and eye detection components of
the system as the pose was varied.

http://mplab.ucsd.edu
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6.2. Eye detection experiments

We tested the effect of the size and location of the receptive field used for eye
detection. The receptive field size was expressed as the ratio q of the distance be-
tween the eyes. Location was expressed as ‘‘face-centered’’ or ‘‘eye-centered.’’
Varying patch size from small enough to cover just the iris (q = .11) to large en-
ough to cover an area four times the size of the head (q = 2.5) results in a U-
shaped curve, with the best performance coming from the patch with size q = 1,
which covers about 80% of the face. The best centering condition was eye-centered.
The median accuracy of the best eye-detector under these conditions is 1/5 of an
iris on the BioID dataset and 1/3 of an iris on the difficult dataset from the
Web. Tables 2 and 3 show the results for each patch condition using different deci-
sion methods. These include choosing the maximum likelihood patch, taking the
weighted average of the 10 most likely patches, taking the maximum posterior
patch, and taking the weighted average of the 10 patches with the largest posterior.
The fourth technique yielded the best results. Fig. 17 shows examples of this sys-
tem at work.

The fact that the detector trained to consider pixels covering much of the head
performs much better than the detector trained to focus on the eye-area only sug-
gests that the detailed structure of the appearance of the eye (which at the larger res-
olution is mostly blurred out) is not as important as having access to the surrounding
features (nose, eyebrows, corners of eyes, etc.). For the larger receptive field, dark
shadows, closed versus open eyes, or specularities from glasses have less impact on
the overall visual appearance of the pixels under consideration than the detector that
only focuses on the eye. On the other hand, a receptive field that is much larger than
the face loses the ability to discriminate much detail in the face, while considering
many background pixels which have no bearing on the location of the eye within
the face.

The performance on the dataset generated from the 3D database illuminates how
performance changes as head-pose changes. As seen in Fig. 16, the face detector
achieves about 92% for fully frontal faces (comparable to its performance on
CMU-MIT), and falls off smoothly as the head deviates from frontal view. However,
provided the head is detected in the first place, accuracy on eye-detection is not
strongly degraded from 1/3 of an iris width as pose changes from frontal. Indeed,
if elevation and azimuth is kept between ±20�, median distance from the center of
the labeled eye position remains nearly constant (see Fig. 16).

6.3. Blink detection

The best performing eye detection, with scale parameter q = 1 and zero offset
from the center of the eye, was used to automatically crop, scale, and rotate 120
examples of closed eyes and open eyes. These examples were used to train a blink
detector. We stopped training after 500 wavelets and tuning curves had been chosen.
The resulting classifier was then used to classify an additional 120 eyes-open and
eyes-closed faces taken from the web and labeled by hand.



Table 2
Results on the BioID dataset of eye detection under different choices of patch size, offset and ocessing (mean or max of likelihood or posterior ratio)

Post-processing q = .11 q = .22 q = .5 q = 1 q = 1 q = 1.5 q = 1.5 q = 2.5
eye-centered eye-centered eye-centered eye-centered face-ce eye-centered face-centered eye-centered

Max likelihood ratio 4.66 ± 0.19 2.25 ± 0.14 0.30 ± 0.03 0.27 ± 0.01 0.41 ± 0.35 ± 0.02 0.59 ± 0.05 1.33 ± 0.06
Mean likelihood ratio 3.40 ± 0.23 2.07 ± 0.16 0.24 ± 0.04 0.21 ± 0.02 0.33 ± 0.31 ± 0.03 0.65 ± 0.04 1.26 ± 0.06
Max posterior ratio 10.43 ± 0.34 2.68 ± 0.11 0.29 ± 0.02 0.26 ± 0.01 0.41 ± 0.36 ± 0.01 0.55 ± 0.02 0.96 ± 0.03
Mean posterior ratio 9.47 ± 0.45 2.81 ± 0.16 0.24 ± 0.03 0.21 ± 0.01 0.31 ± 0.28 ± 0.02 0.55 ± 0.02 0.89 ± 0.04

Each cell displays the mean distance, in irisis, from the true center of the eye to the estimated of the eye. The ± terms indicate standard error of the
mean. The post-processing is explained in Section 5.2. The patch conditions are described in 6.2.
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Table 3
Results on the Web dataset of eye detection under the same conditions as Table 2

Post-processing q = .11 q = .22 q = .5 q = 1 q = 1 q = 1.5 q = 1.5 q = 2.5
eye-centered eye-centered eye-centered eye-centered face-centered eye-centered face-centered eye-centered

Max likelihood ratio 4.64 ± 0.38 2.13 ± 0.19 0.38 ± 0.04 0.37 ± 0.03 0.48 ± 0.05 0.52 ± 0.05 0.67 ± 0.06 1.35 ± 0.10
Mean likelihood ratio 4.01 ± 0.46 1.82 ± 0.24 0.34 ± 0.05 0.33 ± 0.03 0.40 ± 0.05 0.47 ± 0.06 0.69 ± 0.06 1.38 ± 0.10
Max posterior ratio 6.28 ± 0.75 2.81 ± 0.23 0.38 ± 0.05 0.36 ± 0.03 0.43 ± 0.03 0.50 ± 0.04 0.60 ± 0.04 1.00 ± 0.07
Mean posterior ratio 5.78 ± 0.71 2.73 ± 0.22 0.32 ± 0.04 0.31 ± 0.02 0.36 ± 0.03 0.42 ± 0.04 0.57 ± 0.03 0.94 ± 0.06
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Fig. 15. Median distance from center of labeled eye positions on the Web data-set as the scale parameter q
and offset parameter t are varied. The graphs show the result using only the log-likelihood ratio (A) and
the log-posterior ratio, which combines the prior and likelihood (B). The conditions, described in Section
6.2, are: (1) q = .11, eye centered, (2) q = .22, eye-centered, (3) q = .5, eye-centered, (4) q = 1, eye-centered,
(5) q = 1, face-centered, (6) q = 1.5, eye-centered, (7) q = 1.5, face-centered, and (8) q = 2.5, eye-centered.

Fig. 14. Features superimposed on the average open eye image (A) and their respective tuning curves (B)
for the blink detector.

I. Fasel et al. / Computer Vision and Image Understanding 98 (2005) 182–210 205
To assess the effects of precise localization of the eyes we compared systems that
found the eyes based on the output of Stage I alone (face detection) and systems that
located the eyes using Stage I and II. The effects were dramatic: adding stage II in-
creased performance from 56.53% ± 8% to 83.48% ± 6%.
7. Conclusions

The study of the representations that sustain face perception in humans has re-
cently become a subject of interest in cognitive science [5]. One heated debate centers
on whether these representations are holistic in nature or whether they are are



Fig. 16. Performance for face detection and eye detection as pose changes. Each curve shows performance
for heads at a fixed azimuth as the elevation is varied from �40 to 40�. (A) Face detection rate falls off as
pose deviates from frontal. (B) Median distance from the true eye label remains nearly constant for heads
between ±20� from frontal.
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feature based [9]. In line with the methodological stand of probabilistic functionalism
[30] instead of positioning ourselves on this debate we focus on understanding the
nature of the problem of detecting faces and facial features. To do so we developed
an image generation model and derived its corresponding optimal inference algo-
rithm. The algorithm was implemented and tested with an emphasis on robustness
under natural conditions. We learned several important lessons:

(1) We found that it is very difficult to analyze eye behavior (e.g., blinks) without
explicitly localizing the eyes. Based on our previous work on expression recog-
nition we think eye localization with precision in the order of 1/4 of an iris may
be necessary for reliable recognition of facial expressions. Thus it seems reason-
able to expect that the brain may allocate resources to precisely locate facial fea-
tures, including the eyes.

(2) We found that it is very difficult to develop detectors that are both robust (i.e.,
work in very general conditions) and spatially accurate. There seems to be a
trade-off between robustness and accuracy. Eye detectors that localize the eyes
precisely within the face exhibit unacceptable false-alarm rates when operating
outside the face. Eye detectors that avoid false-alarm rates in cluttered environ-
ments, are not sufficiently precise about the location of the eyes. We explored a
solution to this tradeoff, based on a cascade of detectors that operate at different
levels in the robustness/localization trade-off. Some of these detectors capture
the general context in which one may find eyes. By doing so they minimize false
alarms at the cost of precise position information. Precise spatial localization is
achieved by detectors that operate in specific contexts. If this is the strategy
adopted by the brain, one would expect to find at least two types of neurons.
The first type would respond to large contextual regions (e.g., faces). Neurons
of this type are expected to be robust to changes in illumination but also to
provide poor spatial resolution. We also expect to find a second type of neurons



Fig. 17. Examples of the eye detection system at work.
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specialized on precise spatial localization of features in specific contexts. For
example, neurons of this type may be maximally excited by eyes precisely aligned
and maximally inhibited by small deviations from alignment. This second type of
neurons may exhibit a large number of false alarms when operating out of con-
text, making it very difficult for neuroscientists to ascertain what they respond to.
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(3) In this paper, we developed the necessary likelihood-ratio and prior models
using supervised learning methods. It would be of interest to investigate whether
such models can be learned using unsupervised learning methods. Another pos-
sibility is that evolution took care of developing such models. Provided a set of
useful wavelets is available, our face detector would require in the order of 50 kb
to be encoded by the genome. It takes an additional 2 kb to encode eye detectors
within faces.

(4) We focused on a system specialized on detection of eyes in a particular pose:
upright frontal. In many cases (e.g., detection of fatigue in car drivers) analysis
of upright-frontal views is all that is needed since frontal orientations are nominal
and deviations from such orientation typically indicate fatigue or lack of atten-
tion [22]. In-plane rotation invariance can be easily achieved by scanning across
rotations, in the same way we scan across scales and in-plane locations. There are
several ways one could generalize the system to work under rotations in depth.
One approach we experimented with in the past fits 3D morphable models and
warps them into frontal views [2]. While this method is very effective under con-
trolled illumination conditions, it is expensive computationally and brittle when
exposed to outdoor conditions. Another approach we are pursuing is amixture of
experts architecture, where each expert specializes on specific face views. Indeed
there is experimental evidence for the existence of view specific face detection neu-
rons in infero-temporal cortex (IT) in monkeys [28]. Due to rotational symmetry
of the face, pose invariance can be achieved by covering an octant of the sphere of
possible face orientations, i.e., p/2 steradians. Assuming each pose expert can
handle ±5�, as is the case on the system presented here, it would take approxi-
mately 1=ð2 tanð5ÞÞ � 6 experts to cover an octant. This is certainly not an
unreasonable number of experts, thus making mixtures of pose experts a very
attractive architecture for future systems. Development of systems specialized
in non-frontal views is currently difficult due to the lack of labeled datasets that
include sufficient number of images in multiple poses and illumination condi-
tions. Collecting such databases is critical to accelerate progress in this field.
Appendix A. Examples

See Fig. 17.
Appendix B. Gaussian confidence regions

Let Z be n-d Gaussian, zero mean with covariance In. Let r a covariance matrix,
with eigenvectors p and eigenvalues k, i.e., r = pkpT. Let l 2 Rn. Let Y = p (k)1/
2Z + l. Thus Y is Gaussian with covariance R and mean l.

For a given a > 0 we want the probability that (Y�l)T R�1(Y�l) takes values
smaller or equal to a. Now note
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ðY � lÞTR�1ðY � lÞ ¼ ZTZ ¼
Xn

i¼1

Z2
i ; ðB:1Þ

which is a v2 random variable with n degrees of freedom. This is the key to obtaining
confidence intervals.
B.1. Example

Suppose n = 3, Y is gaussian with mean l and covariance r and we want to cal-
culate the value a such that

P ððY � lÞTr�1ðY � lÞ < aÞ ¼ 0:001;

i.e., we want a volume that captures 99.9% of the probability. First we go to the v2

distribution with 3� of freedom and find that the critical value for 1/1000 is 16.27.
Thus

P ððY � lÞTr�1ðY � lÞ < 16:27Þ ¼ PðZTZ < 16:27Þ ¼ 1=1000: ðB:2Þ

Thus the 99.9% confidence region for Y is given by the set of values y such that

ðy � lÞTr�1ðy � lÞ 6 16:27: ðB:3Þ
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