
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Neural Networks 23 (2010) 973–984

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2010 Special Issue

Detecting contingencies: An infomax approach
Nicholas J. Butko ∗, Javier R. Movellan
University of California, San Diego, United States

a r t i c l e i n f o

Keywords:
Active learning
Real-time learning
Information maximization
Contingency detection
Social robotics
Control theory

a b s t r a c t

The ability to detect social contingencies plays an important role in the social and emotional development
of infants. Analyzing this problem from a computational perspective may provide important clues for
understanding social development, as well as for the synthesis of social behavior in robots. In this paper,
we show that the turn-taking behaviors observed in infants during contingency detection situations are
tuned to optimally gather information as to whether a person is responsive to them. We show that
simple reinforcement learning mechanisms can explain how infants acquire these efficient contingency
detection schemas. The key is to use the reduction of uncertainty (information gain) as a reward signal.
The result is an interesting form of learning in which the learner rewards itself for conducting actions
that help reduce its own sense of uncertainty. This paper illustrates the possibilities of an emerging area
of computer science and engineering that focuses on the computational understanding of humanbehavior
and on its synthesis in robots. We believe that the theory of stochastic optimal control will play a key role
providing a formal mathematical foundation for this newly emerging discipline.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Peter picks up the phone: ‘‘Hello, this is Peter’’, he says. A voice
responds, ‘‘Arratsalde on... Zer moduz’’. Surprised, Peter repeats,
‘‘Hello, this is Peter’’. The voice responds, ‘‘Euskaraz badakizu?’’
Peter says, ‘‘I think you are calling the wrong number. Who are
you trying to reach?’’ The voice responds, ‘‘Ez dut ulertzen. Astiro-
astiro hitz egin mesedz’’. Peter did not understand a single word,
but he had the distinct impression that there was a person trying
to communicatewith him at the other end of the line. It did not feel
at all like a pre-recorded message.

Infants face situations like this very early in their lives.
They do not understand human language, but they still need to
identify what entities are responsive to them and when they are
so. Developmental psychologists refer to this ability to identify
responsive entities as ‘‘contingency detection’’, ‘‘contingency
analysis’’, ‘‘contingency perception’’, and ‘‘contingency learning’’.

There is a large body of evidence suggesting that the ability to
detect contingencies plays a crucial role in the social and emotional
development of infants (Bigelow, 1999; Bahrick & Watson, 1985;
Watson, 1972, 1979, 1985). For example, it has been hypothesized
that infants use contingency, not appearance, as the main cue
to detect conspecifics. The appearance of human beings becomes
special to infants because they can generate contingencies. This
point of view traces back to an experiment conducted by John
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Watson in 1972. In this experiment, 2-month-old infants learned
to move their heads to activate a mobile located above their
cribs (Watson, 1972). Each infant in the experimental group was
presented with a mobile that rotated in response to the motion
of her head. For the infants in the control group, the mobile
moved in a pre-recorded, non-contingent manner. After four daily
10 min sessions, and an average of 200 total responses, there
was evidence that the infants in the experimental group had
learned that they could control themobile. At the same time, these
infants displayed a number of powerful social responses towards
the mobile, including vigorous cooing and smiling. Essentially
the mobile began functioning as a ‘‘social stimulus’’. Watson
hypothesized that contingency was being used by these infants as
a cue to define and identify caregivers.

Movellan and Watson (1987, 2002) conducted a similar
experiment with 10-month-old infants. Infants were seated in
front of a robot that did not look particularly human. The ‘‘head’’
of the robot was a rectangular prism whose sides contained
geometric patterns (see left side of Fig. 1). The robot could
make sounds and turn its head to the right or left. Infants were
randomly assigned to an experimental group or a matched control
group. In the experimental group, the robot produced sounds in
response to the infants’ vocalizations. In the control group, the
robot reproduced the same responses that had been recorded
in the matched experimental session. In this way, infants in the
control group experienced exactly the same robot activity, except
that it was pre-recorded and not responsive to them. After a few
minutes of exposure to the robot,many infants in the experimental
group were treating the robot as if it were a social agent: they
produced 5 timesmore vocalizations than the infants in the control
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Fig. 1. Left: schematic of the robot head used in Movellan and Watson (1987).
Right: Baby-9. The image of the robot is seen reflected on amirror positioned behind
the baby.

group, and they followed the ‘‘line of regard’’ of the robot when
it rotated (Movellan & Watson, 1987, 2002). Similar results were
later replicated with 12-month-old children (Johnson, Slaughter,
& Carey, 1998).

Particularly striking was the quality of interactions that were
observed in some infants in the experimental group: (1) Their
vocalizations toward the robot appeared to be like questions. Each
vocalization was followed by 5–7 s of silence, during which the
infants seemed to be activelywaiting for an answer from the robot.
(2) After a few such vocalizations and less than a minute into the
experiment,most observers report that these infants know that the
robot is responding to them.

The video of one such baby, hereafter named ‘‘Baby-9,’’
will be the focus of this document. This video is available at
doi:10.1016/j.neunet.2010.09.001 and is an essential companion
to this document. The reader is recommended to watch this
video to better understand the focus of this paper. Most people
that watch the video report that Baby-9 has clearly detected the
responsiveness of the robot. Many of these additionally indicate
that Baby-9 is actively querying the robot, as if questioning
whether or not it is responsive.
Challenge problems: understanding the pattern of behavior that
Baby-9 exhibited poses theoretical challenges with important
consequences for the scientific study of social development in
infants:

1. What does itmean to ‘‘ask questions’’ for an organism like Baby-
9 that does not have language?

2. Was it smart for Baby-9 to schedule his vocalizations in theway
that he did?

3. Was it smart for him to decide within a few responses and
less than a minute into the experiment that the robot was
responsive?

4. Whatmechanisms can explain the transition from the relatively
slow learning that Watson observed in 2-month-old infants
to the very fast and active learning that was observed in
10-month-old infants like Baby-9?

In this paper, we explore a computational approach to these
theoretical questions based on the framework of stochastic optimal
control. Originally developed by engineers to control complex
systems like airplanes and industrial robots, stochastic optimal
control is giving behavioral scientists a unifying theory to describe
diverse human skills such as reaching, walking, eye-movements,
and concept learning (Bertsekas & Shreve, 1996; Butko &Movellan,
2008, 2009, 2010; Nelson & Movellan, 2001; Nelson, Tenenbaum,
& Movellan, 2001). We propose that the same framework can
be used to understand the development of social interaction. In
particular, the behavior observed in Baby-9’s video can be seen as a
sensory–motor schema optimized for gathering information as to
whether or not a social contingency is present.

In the paperwe showhow social skills, like the ones observed in
Baby-9, could be acquired using standard reinforcement learning
mechanisms. The key for this to happen is to use information
as an intrinsic reward. This opens the possibility that the same
mechanisms that are used to learn how to reach, walk, and
look, could also be used to acquire social skills, including the
development of symbolic communication.

A long term goal of this paper is to illustrate how stochastic
optimal control may be used to provide a computational basis for
the study of humandevelopment. The approach provides amodern
alternative to behaviorist approaches that were popular in the first
half of the 20th century, and to cognitive/mentalist approaches
that dominated in the second half. We aim for the approach
illustrated in this document to provide a computational basis to
help bridge the study of the brain, the study of development, and
the synthesis of intelligent behavior in robots.

2. Stochastic optimal control

Due to the inherent variability of situations that organisms
encounter through their lives, biological motion can seldom rely
on a predetermined sequence of actions. Instead, the behavior
of organisms is more like a dance with the environment, in
which sensory information is continuously polled to generate
actions that are tuned to the current state of the world. Influential
developmental psychologists, such as Piaget, have long argued that
these sensory–motor schema provide the primordial conditions
out of which high-level cognitive processes develop.

Control theory is a rigorous mathematical formalism for
analyzing the sensory–motor dance between complex systems and
the environment. Its focus is solving the problem of how to map
sensory information into motor commands to generate intelligent
behavior in real time. To give the reader a better intuition for the
control theory formalism, we present a simple example. The point
of this example is to illustrate the different elements of the control
theory formalism. Refer to the Appendix A, for information on
mathematical notation and conventions.
Simple control theory example—reaching: consider a robot who
is trying to reach for an object as quickly as possible, while using as
little energy as possible. To analyze this scenario in the language of
control theory, wemust specify the relevant states xt that the robot
can encounter, actions ut that the robot can take to affect the state,
observations yt that the robot can use to get feedback about its
progress, and the goal ρ that the robot is trying to achieve. In each
of these, themomentary nature of the dancewith the environment
is captured by the subscript t , denoting that each element can and
does constantly change.

For this problem, the relevant state xt consists of the current
angles between each of the robot’s joints. The robot affects these
angles by applying voltages ut to each of its motors. The relation-
ship between voltages and changing joint angles is captured in
the world dynamics, also known as system dynamics, given by the
electro-mechanic equations of motion. This is defined by a prob-
ability distribution p(xt+1 | xt , ut) that specifies probable next
states xt+1 given current states xt and actions ut . By expressing this
relationship as a probability distribution, the robot can express the
natural variability in the voltages it sends, as well as unpredictable
external perturbations, such as people grabbing its arm.

The robot gets feedback yt about its progress from sensors, such
as encoders that measure the angle at each joint. The sensor model
p(yt+1 | xt+1) describes the encoders’ readings given particular
joint configurations.

The joint angles xt determine the position pt of the robot hand
in 3D Euclidean space. The robot’s goal of touching a target at a
position p∗ can be specified using a reward function that measures
the Euclidean distance between the current position of hand and
the desired posture. In addition, we could penalize actions that
consume toomuch energy. For example, the reward could take the
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following form:

rt = −‖pt − p∗
‖
2
− k‖ut‖

2 (1)

where k ≥ 0 is a constant that penalizes for using toomuch energy.
Given such a problem specification, the theory of stochastic

optimal control provides algorithms to find optimal ‘‘control
laws’’. These are also known as ‘‘policies’’, or simply ‘‘controllers’’.
Controllers are the technical equivalent of the sensory–motor
schemas that Piaget discussed. Formally, a control policy c is a
collection of functions c = (c1, c2, c3 . . .) indexed by time t . Each
function ct maps the history of data Ht available to the robot to an
action Ut to be taken by the robot:

Ut = ct(Ht). (2)

The information history Ht consists of everything the robot has
seen and done prior to taking an action at time t . This includes the
entire history of actionsU1 · · ·Ut−1 and the entire history of sensor
values Y1, . . . , Yt , i.e.,

Ht = (U1, . . . ,Ut−1, Y1, . . . Yt). (3)

Stochastic optimal control is essentially a computational theory of
intentional, goal oriented behavior. The goals are specified using
a reward variable Rt that represents the desirability of states
and actions at particular points in time. The overall goal of the
controller is typically expressed as a weighted sum of the expected
accumulation of future rewards:

ρ(c) =

τ−
t=1

αtE[Rt | c] (4)

where τ is the temporal horizon, or terminal time. Controllers are
evaluated in terms of the expected reward gathered before the
terminal time. Depending on the situation, this terminal time can
be finite, or infinite. The αt terms are non-negative constants that
modulate the relative importance of rewards at different points in
time. Stochastic optimal control considers the problem of finding
control policies c that optimize the goal function ρ(c).

Stochastic optimal control has been traditionally applied to
optimization of physical goals (e.g., maintaining a motor’s velocity
under variable loads, regulating a room’s temperature, andmaking
smart weapons). In this document we show how the same
approach also illuminates the development of social behavior from
a computational point of view.

3. Formalizing the contingency detection problem

In order to analyze the contingency problem within the
stochastic optimal control framework, we must formalize it with
the same elements as the motor control problem described above:
states, actions, observations, system dynamics, sensor models, and
goal. Our formalizationwas inspired by JohnWatson’s contingency
detection model (Watson, 1985), in which background noise and
responsive caregivers are modeled as Poisson processes. While
Watson focused on the inference problem, i.e., the development of
algorithms to infer the presence or absence of contingency given a
history of sensory–motor experiences ht , we focus on the control
problem, i.e., how to schedule behaviors in real time to ensure
that sensory–motor experiences ht are as informative as possible
in a limited period of time. We will investigate the problem of
detecting social contingency from the point of view of a bare-
bones baby robot (see Fig. 2). This idealized baby robot has a
single binary sensor and a single binary actuator. The sensor tells
the robot whether a sound is present, and the actuator produces
vocalizations. Therewill be twoplayers: (1) a social agent that plays
the role of the caregiver, and (2) a baby robot that plays the role of
the infant. The agent and robot are situated in an environmentwith
random background activity. When the social agent is present, she
responds to the sounds produced by the baby robot, introducing a

Fig. 2. A bare-bones social robot.

Fig. 3. Illustration of two contingency clusters produced by themodel. The variable
S indicates which of the two clusters is active in the current situation.

contingency between the robot’s actuator and the robot’s sensor.
Our goal is to find an optimal control policy for the baby robot
to detect, as efficiently and accurately as possible, whether or
not such a contingency is present and, by extension, whether
the social agent is present. While at first sight this may appear
to be a simple problem, the following complications need to be
considered:

• Self-feedback: when the robot makes a sound, the sensor
will register the sound with some delay, creating spurious
contingencies.

• Variability in background conditions: if the baby robot is in a
noisy room, the sensor will be frequently active. If it is in a quiet
room, the sensor will be seldom active. The baby robot needs
to consider the level of background activity when deciding
whether or not a social agent is present.

• Variability in social agents’ responsiveness: social beings
are highly unpredictable, with different individuals having
different levels of responsiveness. The baby robot needs to
consider the potential levels of activity of the agent when
deciding whether or not an agent is present.

These considerations point to three causal factors that activate
the baby robot’s sensor: (1) self-feedback, (2) background activity
independent of the robot, and (3) responsive social agents. The
baby robot may find itself in one of two possible situations, or
contingency clusters, which we identify with the following names:
‘‘responsive agent absent,’’ and ‘‘responsive agent present’’ (see
Fig. 3). When the robot makes a sound and no responsive agent
is present, the robot’s auditory sensor will activate for a period of
time due to self-feedback. Afterward, the sound sensor becomes
active at random times due to background activity. In addition to
the self-feedback and background periods, there is a critical period
of time during which social agents will respond to the robot’s
sounds, but only if a responsive agent is present (see Fig. 3).
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3.1. State, action, observation, system dynamics, and sensor model:

The state Xt of the baby robot’s environment contains five
relevant variables: S, Zt , K1, K2, K3. The first variable S encodes
whether a responsive agent is present (S = 1) or absent (S =

0). The second variable Zt is a timer that encodes the amount of
time since the baby robot’s last vocalization. This timer determines
which of three periods the baby robot is in: (1) a self-feedback
period, which occurs immediately after a sound is made, (2) a
critical period, during which social agents are more likely to
respond to the last baby robot vocalization, and (3) a background
period, unlikely to contain responses to the last vocalization. These
three time periods are defined by the parameters 0 ≤ τ s

1 ≤ τ s
2 <

τ a
1 ≤ τ a

2 . If the timer Zt is between τ s
1 and τ s

2 , then the robot is in its
self-feedback period. If the timer takes a value between τ a

1 and τ a
2 ,

then the system is in the critical period, during which social agents
are likely to respond to the last vocalization. If Zt is larger than
τ a
2 , then the observed sounds are unlikely to be related to the last
baby robot vocalization (See Fig. 3). The last three state variables
K1, K2, K3 are real-valued numbers that represent the expected
rates of sensor activity during self, agent, and background periods.
The state variables S, K1, K2, K3 are assumed to be static. The timer
variable Zt increases by one on each time step until the baby robot
vocalizes, at which point it resets to 1.

The action Ut represents the activation of the robot’s sound ac-
tuator (e.g., a loudspeaker). At each moment, the baby robot can
choose to vocalize (Ut = 1), meaning that it will activate the loud-
speaker at time t . Otherwise it can choose to not vocalize, i.e., de-
activate the loudspeaker (Ut = 0). By choosing the ‘‘vocalize’’
action, the baby robot is implicitly choosing to reset the timer Zt
that governs the unfolding of natural, social turn-taking behavior.
By choosing the ‘‘do not vocalize’’ action, the baby robot is choosing
to let the timer run its course.

We let Yt represent the activation of the baby robot’s sound
sensor (e.g., a microphone). Yt = 1 indicates that the sound level
is larger than a fixed threshold θ , otherwise Yt = 0. At each time
step the sensor activates in a probabilistic manner. The probability
that it becomes active is determined by K1, K2, K3. If the timer Zt
is such that the system is in the self-feedback period, then the
probability of activation is K1. If Zt is such that the system is in the
critical period of agent response, then the probability of activation
is K2. Otherwise the system is in the background period and the
probability of activation is K3. If an agent is present and responding
(S = 1) then K2 and K3 will be different. If an agent is not present
(S = 0), then the agent and background activity rates are the same,
i.e., K2 = K3.

Under this model, the problem of detecting that a responsive
agent is in the room is equivalent to the problem of detecting
whether the background timeK3 and agent timeK2 rates of sensory
activation are different.

3.2. Inference process

The baby robot is assumed to follow an optimal probabilistic
inference process. The specifics of this process are explained in the
Appendix. For now, it suffices to say that at every point in time
t , this process correctly determines the probability p(s | ht) that
a social agent is responding s given the history of vocalizations
and sounds ht . If this probability is close to 0.5, the robot is
uncertain about the presence or absence of a contingency. If p(S =

1 | ht) ≈ 1, the robot is quite certain that a responsive agent
is present. If p(S = 1 | ht) ≈ 0, the robot is quite certain a
responsive agent is not present. A common measure of the level
of uncertainty about a random variable is the entropy, in bits, of
the probability distribution of that variable, i.e.,

H(S | ht) = −

1−
s=0

p(s | ht) log2 p(s | ht). (5)

For example, if p(S = 1 | ht) = 0.5 then the entropy is 1 bit (high
uncertainty). If p(S = 1 | ht) = 0.99 or p(S = 1 | ht) = 0.01 then
the entropy is 0.08 bits (low uncertainty).

3.3. Goal: information maximization

The goal of the baby robot is to gather as much information as
possible and as quickly as possible about S, i.e., about the presence
or absence of a social contingency. We call control policies that
are optimized for the goal of information gathering ‘‘information
maximization controllers’’ (infomax controllers for short).

Suppose by time t , the robot has access to the history ht of
sensor data and actions performedup to that time. A naturalway to
define an infomax controller is to let the reward at time t be equal
to the amount of information that ht provided about S, i.e.,
rt = I(S, ht) (6)
where I is the mutual information operator, an information
theoretic quantity that corresponds to the intuitive notion of
‘‘information about’’ (see Appendix). Mutual information encodes
the amount of information that the history of observed data ht
provides about the state S. This information can be expressed as
a difference of entropies,
I(S, ht) = H(S) −H(S | ht) (7)
where H(S) is the initial uncertainty (entropy) about S, i.e., how
uncertain the baby robot is about whether or not a social agent
is present and responding before it has done or heard anything.
This initial uncertainty is a constant independent of the available
data and thus independent of the controller. H(S | ht) is the
uncertainty about S given the available data ht . This value depends
on the data history ht , and therefore on the controller. Since H(S)
is independent of the controller, we can ignore it and simply use
the following reward function:
Rt = −H(S | ht). (8)
This reward function promotes controllers that choose vocaliza-
tions that lead the baby robot to have high confidence (low en-
tropy) about S. From a pure infomax standpoint, Baby-9 did not
necessarily care that the social agent was responding to him. In-
stead, he cared about knowing whether or not it was responding
to him. He would be just as happy after discovering that the un-
responsive outcome was the correct one, just so long as he was
confident in that discovery.

This brings us to the first challenge problem:
• What does itmean to ‘‘ask questions’’ for an organism like Baby-

9 that does not have language?
From an infomax point of view, questions are behaviors that are
expected to provide information about variables of interest. We
hypothesize that Baby-9 was asking about the state variable S: ‘‘Is
that thing out there responding to me?’’ To say that Baby-9 was
asking questions about the state S means that his vocalizations
helped him resolve his uncertainty about S. To say that he was
asking good questions about S means that his vocalizations helped
him resolve his uncertainty about S as quickly as possible. In order
to analyze whether Baby-9 was doing something smart, i.e. asking
good questions, wemust first find the optimal controller, and then
compare Baby-9’s behavior with that of the optimal controller.

4. Optimal infomax controller for detecting social contingen-
cies

4.1. Model parameters

The model described above has the following parameters:
• ∆t : the sampling period used to discretize time.
• τ s

1 ≤ τ s
2 < τ a

1 ≤ τ a
2 : latency parameters that determine the

self-feedback period, the period for agent likely responses, and
the background period.
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Fig. 4. Top: raster plot of 150 trials. On each trial a robot made a sound and
subjects were asked to talk back to the character and let it know that they were
listening. Dark indicates that the audio sensor was active. Bottom: probability of
the audio sensor being active as a function of time. The probabilities are estimated
by averaging across the 150 trials in the raster plot.

• θ : the threshold used to binarize the output of a sound sensor.
• π : the probability that an agent is present, prior to collecting

any data.
• The time horizon τ over which the controller optimizes the

information reward.

In order to set these parameters to reasonable valueswe conducted
a study with four people that played the role of caregivers. They
were presented with a humanoid robot that made sounds at
randomly selected intervals. The participants were asked to treat
the robot as if it were a baby, and to respond verbally to the sounds
it made. The ages of the participants were 4, 6, 24, and 35 years.
Each participant interacted independently with the robot for a five
minute period. During this time, the robot vocalized at random
intervals and the participants responded to it in the way that was
most natural to them.

There were a total of 150 trials, during which the vocalizations
of the robot and participants were digitized. Each trial started
with a vocalization of the robot and ended 4 s later. The sound
intensity threshold θ was chosen automatically by applying a
k-means clustering procedure to the digitized sound data.

Fig. 4 shows the probability of activation of the binarized sound
sensor as a function of time over 150 trials. The first peak in
activity of the sound sensor is due to self-feedback, i.e., the sensor
is recording its own sound. This peak occurs at 360 ms, indicating
a delay between the time at which the program told the robot to
make a sound, and the time at which the sound was detected by
the sound sensor. By about 1300 ms after the end of the robot’s
vocalization, there is a second, smaller peak of activity in the
sensor, which is now caused by the vocalizations of the human
participants.

We chose ∆t large enough to make self-feedback delays
negligible, thus fixing τ s

1, τ
s
2 = 0, but small enough to capture

the behaviors of interest. We found ∆t = 800 ms to be a good
compromise. The limits for the agent activation intervals were set
to τ a

1 = 1, τ a
2 = 3, i.e., 800 ms and 2400 ms respectively. The prior

probability that an agent is present was set to π = 0.01, thereby
requiring a significant amount of data to become convinced that an
agent is present. The reason for choosing this conservative value for
π is explained below. The time horizon parameter τ was set to 40
time steps, i.e., 32 s. This value was chosen because, at the time, it
was the longest horizon for which we could compute an optimal

controller in a reasonable amount of time. As we explain later, we
found that after approximately 12 time steps (approximately 10 s)
the controllers stabilize. This indicates that it does not pay to use
horizons longer than 10 s in situations governed by the statistics of
social interaction.

4.2. Computation and analysis of the optimal controller

Infomax control is a specific instance of a general class of
control problems known as partially observable Markov decision
processes (POMDPs). In infomax control, information gain acts as
a reward signal. The utility function optimized by the controller is
the long term gathering of information about states of the world
that are not directly observable. While finding exact solutions to
infomax control problems is generally difficult, in this particular
case there is a recursive statistic At that summarizes the observable
data history without any loss of information. This allowed us to
find an optimal controller using standard dynamic programming
algorithms (Bertsekas, 2007) (See Appendix C).

The solution found using dynamic programming was a large
lookup table that mapped each possible statistic at of the
sensory–motor history ht into a binary action ut . Such a lookup
table is provably optimal for every possible state, but it does not
give us much intuition about which features of the sensory–motor
history were important for making the optimal decision. In order
to gain a better understanding of how the controller solved the
problem, we developed a simple model that was evaluated on its
ability to predict what the optimal controller would do next. We
focused on the behavior of the controller for time steps 18 ≤

t ≤ 24, because these are times that are not too close to the
beginning and end of the controller’s window of interest. We
found that the following control policy matched the action of
the optimal controller with 98.5% accuracy over all possible data
history conditions:

ct(ht) =


1 if Zt > τ a

2 and
Var(K2 | ht , St = 1)

n2,t

> 9
Var(K3 | ht , St = 1)

n3,t
0 else

(9)

where Zt is the time since the last vocalization of the robot, and
Var(K2 | ht , St = 1) is the current uncertainty (variance) about K2,
the sensor activation rate during the critical period in which social
agents respond to the robot’s vocalizations. Var(K3 | ht , St = 1) is
the current uncertainty (variance) about K3, the sensor activation
rate during background noise periods, i.e. periods under which
social agents are unlikely to respond to the last vocalization of the
robot. The denominators dividing the variances indicate the total
number of time steps collected up to date for the agent period (n2,t)
versus the background period (n3,t ). Dividing the variance by the
number of observations accounts for how much the variance can
be expected to reduce further with new observations.

Thus, the optimal controller always waits at least τ a
2 s, the

longest period of time under which agents are likely to respond,
before making a new vocalization. In addition, it does not vocalize
unless it is significantly more uncertain about the rate of sensor
activation during the critical period of social response than about
the rate of activation during background periods. The effect is to
homeostatically keep the uncertainty about the agent interval and
the uncertainty about the background interval at a fixed ratio. If the
agent rate is too uncertain, then the controller chooses to vocalize,
thereby earning an opportunity to learn more about the rate of the
agent intervals. If the background rate is too uncertain, then the
controller chooses to remain silent, thereby gaining information
about background intervals.
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Notably, for a vocalization to occur, the uncertainty about the
sensor activation rate K3 during the agent period has to be at
least 9 times larger than the uncertainty about the rate during
the background period K2. This may be due to the fact that
vocalizations are more costly, in terms of information return, than
silent periods. If the baby robot chooses to vocalize at time t , it
gains no information during the times [t + τ s

1, t + τ s
2] since self-

feedback observations are not informative about S. In addition,
during times [t + τ a

1 , t + τ a
2 ] the controller instructs the robot

not to act and thus during those periods the robot can only gain
information about K2, not K3. By contrast if the robot chooses to
remain silent at time t , no timewill bewasted due to self-feedback.
Moreover, the robot can still choose to act or not to act in the future
without constraints. This helps explain why uncertainty about the
agent activity rate K2 needs to bemuch larger than the uncertainty
about the background activity rate, K3, before an action occurs.

Note that ‘‘greedy’’ one-step controllers (Nelson & Movellan,
2001; Nelson et al., 2001) that seek asmuch information reward as
possible immediately, at the expense of future expected rewards
would fail on this task. The reason is that when the baby robot
chooses to vocalize, its self-vocalization prohibits it from getting
any information about K2 or K3 temporarily, while it would still
get a small amount of information about K3 by choosing to remain
silent. Thus a greedy controller ends up deciding to never vocalize.
Looking into the future allows the baby robot to conclude that
vocalizing periodically provides a better long term information
return than always choosing silence.

4.3. Comparison with the behavior of Baby-9

We compared the behavior of the optimal infomax con-
troller described above to the behavior observed in the video
of Baby-9. This video lasts 43 s, during which Baby-9 pro-
duced 7 vocalizations. The first vocalization occurred 5.58 s into
the experiment. The intervals, in seconds, between the begin-
ning of two consecutive infant vocalizations were as follows:
{4.22, 10.32, 5.32, 6.14, 5.44, 3.56}. Most observers report that
Baby-9 clearly has detected that there is a responsive agent in the
room by the end of the 43 s.

We ran the optimal controller with a receding time horizon
of 24 time steps (19.2 s), i.e., at each point in time the controller
behaved so as to maximize the expected information to be gained
over a period of 19.2 s into the future. As in the Baby-9 experiment,
every time the baby robot’s controller made a sound, it was given
a response, simulating a social agent. Fig. 5 shows the result of the
simulation.

The top graph shows the vocalizations of the optimal controller,
which serves as a model of Baby-9. The infomax controller
exhibited turn-taking behaviors that were very similar to the ones
observed in Baby-9: the infomax controller makes a sound and
follows it by a period of silence as if waiting for the outcome of
a question.

This turn-taking behaviorwas not built into the system. Instead,
it emerged from the requirement to maximize information gain
given the time delays and levels of uncertainty typical in social
interactions.

The controller produced six vocalizations over a period of 43 s.
The average interval between vocalizations was 5.92 s which is
remarkably close to the average of 5.83 s of silence between
vocalizations for Baby-9. There seems to be a tendency both in the
model and in Baby-9 for the early silence intervals to be longer than
the later ones.

This provides an answer to the second challenge problem in the
introduction to this document:
• Was it smart for Baby-9 to schedule his vocalizations in theway

that he did?
Baby-9’s behavior was smart in the sense that he asked good

questions: questions that helped to quickly resolve his uncertainty

Fig. 5. The horizontal axis represents time in seconds. From top to bottom:
(1) Responses of the infomax controller (which simulates a baby). Note that the
social agent responded every time the baby robot vocalized, but otherwise the
environment was silent. (2) Posterior probability for the presence of a responsive
agent as a function of time. (3) Posterior distribution for the agent and background
rates after 43 s. (4) Ratio of the uncertainty about the agent’s response rate versus
the uncertainty about the background’s response rate.

about whether the rectangular prism in front of him was actually
a contingent social agent. In fact, Baby-9’s pattern of vocalizations
and silences was very close to optimal. This also explains the sense
of intentionality that most people intuitively perceive when they
watch the video of Baby-9. The behavior of Baby-9 makes a great
deal of sense if one were to assume that his goal is to discover
whether social agents are responsive to him.

The second graph from the top in Fig. 5 shows the system’s
beliefs about the presence of a responsive agent. These beliefs
are updated in real time using standard Bayesian inference (see
Appendix). In our simulation, we chose a conservative prior
probability π = 0.01 for the presence of social contingency to
force the controller to gather a significant amount of data before
deciding that there is a social contingency present. Note that in
spite of this conservative prior, by the end of the 43 s, the posterior
probability that there is a responsive agent is very close to 1. The
third graph shows the posterior probability distributions about the
agent and background response rates by the end of the 43 s period.
Note that these two distributions are very different, consistent
with the idea that there is indeed a responsive agent present.

This provides an answer to the third challenge problem in the
introduction:

• Was it smart for him to decide within a few responses and
less than a minute into the experiment that the robot was
responsive?

Given the statistics of social interaction, it was indeed very smart
for Baby-9 to decide within a few responses and less than aminute
into the experiment that a social contingency was present.

Finally, the last graph in Fig. 5 shows the ratio between the
uncertainty about K2, the sensor rate during agent periods, and the
uncertainty about K3, the sensor rate during background periods.
Note that when this ratio reaches the value of 9, the optimal
controller vocalizes.

5. Learning to detect contingencies

In the previous section, we used standard dynamic program-
ming algorithms to find an optimal infomax controller. We found
that this model appeared to describe well the turn-taking behav-
iors observed in some 10-month-old infants when they are trying
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A B C

Fig. 6. (A) Performance of infomax TD Learning in the finite horizon (12-step), and receding-horizon (50-step) case, based on the total number of vocalizations made since
birth. (B)When a receding-horizon controller with 6.5 s of memory and a 3.5 s deadline is used to approximate an optimal controller with a perfect memory andmuch longer
deadline, the final information gathering performance is nearly identical. (C) The number of time steps spent acting, exploring, and listening to the world that are required
to achieve 80% social agent identification accuracy.

to detect the presence of social contingency. This begs the ques-
tion: how did these infants acquire a policy for finding social con-
tingency that is so close to optimal?

One possibility is that children are born with these policies.
The differences in contingency detection efficiency found between
2-month-old infants and 10-month-old infants may be due to
the maturation of brain structures. Just like teeth mature to
allow more efficient chewing, some brain structures may be
specially programmed by evolution tomechanisticallymature into
a machine for more efficient detection of contingency.

Another possibility is that children are born with something
akin to a dynamic programming algorithm that allows them to find
the optimal controller. The advantage of dynamic programming is
that it finds controllers guaranteed to be optimal. However, the
dynamic programming hypothesis has several drawbacks: (1) it
requires detailed and precise knowledge of the system dynamics
and observation model; (2) it is very time and memory intensive;
(3) it is not easily implementable on neural-like hardware; (4) it
provides no mechanisms to benefit from experience interacting
with the world.

An alternative to both pre-programmed controllers and dy-
namic programming is reinforcement learning (RL). RL is an area
of machine learning and control in which the goal is to learn con-
trol policies that approximate the solutions given by dynamic pro-
gramming without requiring detailed and precise knowledge of
the system dynamics (Sutton & Barto, 1988). RL is easily imple-
mentable in neural-like hardware and provides a natural set of
mechanisms to make good use of experience and interaction in
the world. Unfortunately, RL itself has drawbacks. While dynamic
programming requires a good deal of time, memory, and computa-
tional effort, RL requires many trial and error experiences to learn
efficient policies. In a sense, the difficulty of the computation is of-
floaded to the world around the robot, and to interaction with its
environment. The amount of experience required in some cases is
so great that RL cannot be considered as a plausiblemodel of learn-
ing in a developmentally reasonable time frame.

5.1. Infomax RL results

In this section, we consider whether the optimal contingency
detection strategies observed in some 10-month-old infants could
be explained as the manifestation of an RL process driven by an
information based reward system (infomax RL). To demonstrate
the computational plausibility of the infomax RL hypothesis, it
suffices to show that at least one RL algorithm can learn within
a developmentally plausible period of time. We chose this time
frame to be 60,000 vocalizations, which was meant to be a
conservative ballpark estimate, based on 200 vocalizations per day
of the infant’s first 10 months of life.

We implemented infomax RL using temporal difference (TD)
learning, a popular RL algorithm that has been shown to have
correspondences in the pattern of dopamine release from neurons
in the basal ganglia (Schultz, Dayan, & Montague, 1997) (See
Appendix D).

Empirically, we found that the number of vocalizations needed
for the TD learning algorithm to converge grew as a fifth power of
the temporal horizon τ . Convergence within 60,000 vocalizations
was only achievable with horizons of 12 time steps (10 s) or less.
A horizon of 16 time steps required 230,000 vocalizations, and a
horizon of 20 time steps required 700,000 vocalizations, which is
muchhigher than our estimate of a reasonable developmental time
frame.

We then investigated the question of how 10 s controllers
compare optimal controllers with longer time horizons. Given the
statistics of social interaction, does it pay off to use time horizons
longer than 10 s?

Fifty new simulations were performed, each with different
starting points and with a time horizon of 12 time steps. As
expected, on average, infomax RL converged after less than 60,000
vocalizations. We then used dynamic programming to compute
optimal 12-step and 50-step controllers in order to serve as
evaluation standards for the controller learned from experience.
The performance of the optimal 12-step controllers found using
dynamic programming (an exact method) was identical to the
12-step controllers found using infomax RL (an approximate
method), indicating that infomax RL converged to an optimal
solution.

To compare the learned controller to the 50-step optimal
controller, we adopted a receding-horizon approach: the 12-step
learned controller was artificially limited to eight time steps of
memory (about 6.5 s), and then chose the action that would help it
gather as much information as possible in the next four time steps
(about 3.5 s). This limited memory controller, which had learned
from experience and information reward over a simulated ten
month time frame, was almost as good as the performance of the
optimal 50-step controller: after 60,000 vocalizations, the average
performance was better than 99.5% of the optimal performance
(see Fig. 6(A) and (B)).

This provides an answer to our fourth and final challenge
problem:
• Whatmechanisms can explain the transition from the relatively

slow learning that Watson observed in 2-month-old infants
to the very fast and active learning that was observed in
10-month-old infants like Baby-9?

Simple reinforcement learning algorithms, in which uncertainty
reduction is used as a reward signal, are a plausible mechanism
to explain how infants improve on their capacity to detect
contingencies. In 10 months of simulated experience, infomax RL
agents perform 99.5% as well as the best possible controller.
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6. Real-time robot implementation

Once computed, the optimal infomax policy can be applied to
sensor data in real time, trivially, on any modern computer. To
test how well this policy would work in real life, we implemented
it on RobovieM, a humanoid robot developed at ATR’s Intelligent
Robotics and Communication Laboratories. While the robot was
not strictly necessary to test the real-time controller, it greatly
helped to improve the quality of the interactions developed
between humans andmachines, thereby providing amore realistic
method for testing the controller.

For the binary sensor, we chose to average acoustic energy over
500 ms windows and binarize it using the threshold θ that was
found by applying a k-means algorithm to the acoustic portion of
the natural interaction data that were collected previously. The
actuator was a small loudspeaker producing a 200 ms robotic
sound. The self-feedback delay parameters of the controller were
chosen by measuring the time delay between issuing a command
to produce a sound and receiving feedback from the audio sensor.
The agent delay parameters were the same as in the simulation of
Baby-9.

The robot was programmed to change its posture based on
the controller’s belief about the presence/absence of a responsive
agent: a posture that indicated a high level of attention when the
controller believed that an agent was present, and a posture that
indicated boredomwhen it believed that an agent was not present.

Overall, the infomax controller was remarkably effective in a
wide range of environments, and it required very little compu-
tational and sensory resources. In standard office environments,
with relatively high levels of noise, the controller reliably detects
within 3 or 4 vocalizations whether or not a responsive agent is
present. We have demonstrated this system at both scientific talks
and poster sessions. Demonstrations at talks, which generally have
relatively low noise levels, work very well. During poster sessions,
the rooms are typically very noisy, but it only takes a fewmore vo-
calizations for the controller to gather enough information tomake
reliable decisions. The level of performance is remarkable consid-
ering the difficulty of these adverse conditions, and the simplicity
of the sensors being used.

7. Conclusions

There is evidence that the ability to detect social contingencies
plays an important role in the social and emotional development
of infants (Bigelow, 1999; Bahrick & Watson, 1985; Watson,
1972, 1979, 1985). Analyzing this problem from a computational
perspective provided important clues for understanding social
development in infants and for the synthesis of social behavior in
robots.We framedour analysis of contingency detectionwithin the
theory of stochastic optimal control. In particular, we formulated
contingency detection as a control problem in which the goal is to
gather information as efficiently as possible about the presence or
absence of contingencies.

A popular model of the social contingency detection problem
describes social agents and background noise as Poisson processes
(Watson, 1985). We showed that under this model, the optimal
information gathering policy exhibits turn-taking behaviors very
similar to the ones found in some 10-month-old infants: vocaliza-
tions followed by periods of silence of about 6 s. The results suggest
that some 10-month-old infants have an exquisite understanding
of the statistics of social interaction and have acquired efficient
policies to operate in this world. Even though these infants lack
a language, they are already asking questions: they schedule their
vocalizations in a manner that maximizes the expected informa-
tion return given the temporal statistics of social interaction.

One of our goals was to explore to what extent social
development can be bootstrapped from simple perceptual and

learning primitives so that it can be synthesized in robots. For
example, our approach does not require high-level conceptual
primitives, such as the concept of people or the idea that
people have minds. In our model, the terms ‘‘responsive agent
present’’ and ‘‘responsive agent absent’’ are just mnemonic labels
for contingency clusters that may not correspond to categories
easily describable with words. Indeed, in John Watson’s original
experiment (Watson, 1972), 2-month-old infants seemed to group
together responsive caregivers and contingent mobiles.

We showed that simple temporal difference reinforcement
learning mechanisms could explain how infants acquire the
efficient social contingency detection strategies observed in some
10-month olds. The key is to use the reduction of uncertainty
(information gain) as a reward signal. The result is an interesting
form of learning in which the learner rewards itself for conducting
actions that help reduce its own sense of uncertainty. Traditional
models of classical and operant learning emphasize the role of
external reward stimuli, like food or water. The brain is probably
set up to recognize these stimuli and to encode them as rewarding
because it is advantageous to do so. Infomax control suggests
that it may also be similarly advantageous for organisms to
recognize uncertainty and to encode the reduction of uncertainty
as rewarding. There is some evidence that the brain may indeed
reward reduction in uncertainty with the same mechanisms that
it rewards food or water. It has been found that dopamine-
releasing neurons located in the substantia nigra pars compacta
and ventral tegmental area play an important role in reward based
learning (Montague, Hyman, & Cohen, 2004; Schultz et al., 1997;
Wise, 2004). Initially the activity of these neurons was studied
for basic forms of reward, such as food and water. However, in
recent years it has been found that the same neurons that signal
the expected amount of physical rewards, like food or water, also
signal expected information gain. Thus it appears that information
gain may indeed have a special status as an intrinsic motivational
reward in the brain (Bromberg-Martin & Hikosaka, 2009).

The long term goal of this paper is to illustrate the possibilities
of a science of behavior and development that is anchored
on rigorous computational analysis. As proposed by Edelman
and Vaina (2001) and Marr (1982), the goal of computational
approaches is to help understand the problems faced by the brain,
as well as the solutions it finds, when operating in everyday life.
This approach offers a modern alternative to the behaviorist and
the mentalist/cognitive approaches that dominated psychology in
the 20th century.

Computational analysis has proven to be a very useful tool
for the study of the brain. Our hope is to illustrate that it
may also prove useful to understand social development, and to
synthesize it in robots. It is remarkable that, after all these years,
neither the behaviorist nor the cognitive/mentalist traditions in
psychology have significantly contributed to the synthesis of
intelligent behavior. We believe that stochastic optimal control
may provide a formal mathematical foundation for an emerging
area of computer science and engineering that focuses on the
computational understanding of human behavior, and on its
synthesis in robots.
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Appendix A. Definitions and conventions

Unless otherwise stated, capital letters are used for random
variables, small letters for specific values taken by random
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variables, and Greek letters for fixed parameters. When the
context makes it clear, we identify probability functions by their
arguments: e.g., p(x, y) is shorthand for the joint probability mass
or joint probability density that the random variable X takes the
specific value x and the random variable Y takes the value y.
We use subscripted colons to indicate sequences: e.g., X1:t

def
=

{X1 · · · Xt}. We work with discrete time stochastic processes, with
the parameter ∆t ∈ R representing the sampling period. We use
E for expected values and Var for variance. The symbol ∼ indicates
the distribution of random variables. For example, X ∼ Poisson(λ)
indicates that X has a Poisson distribution with parameter λ. We
use δ(·, ·) for the Kronecker delta function, which takes value 1 if
its two arguments are equal, otherwise it takes value 0.
• Beta Variables:

X ∼ Beta(β1, β2) (10)

p(x) = Beta(x, β1, β2)

=
Γ (β1 + β2)

Γ (β1)Γ (β2)
(x)β1−1(1 − x)β2−1 (11)

E(X) =
β1

β1 + β2
(12)

Var(X) =
β1β2

(β1 + β2)2(β1 + β2 + 1)
(13)

where Γ is the Gamma function

Γ (z) =

∫
∞

0
tz−1e−tdt. (14)

• Entropy:

H(Y ) = −

∫
p(y) log p(y)dy. (15)

• Conditional Entropy:

H(Y | x) = −

∫
p(y|x) log p(y | x)dy (16)

H(Y | X) = −

∫
p(x, y) log p(y | x)dxdy (17)

=

∫
p(x)H(Y | x)dx. (18)

• Mutual Information: the information about the random vari-
able Y provided by the specific value x from the randomvariable
X is defined as follows:

I(Y , x) = H(Y ) −H(Y | x). (19)

The average information about the random variable Y provided
by the random variable X is defined as follows

I(Y , X) =

−
x

p(x)I(Y , x) = H(Y ) −H(Y | X). (20)

Appendix B. Summary of the contingency detection model

Parameters: The extended version of the model has 15
parameters:
∆t ∈ R. Sampling period in seconds.
π ∈ [0, 1]. Prior probability.
0 ≤ τ s

1 ≤ τ s
2. Delay parameters for self-feedback loop.

τ s
2 < τ a

1 ≤ τ a
2 . Delay parameters for social agents.

(βi,1, βi,2), i = 1, 2, 3. Parameters for Beta Prior distribution.

θ. Threshold for binarizing auditory signal. (21)
τ . Time horizon.

For the simulations presented in this paper, we worked with a
simplified model with 5 parameters: ∆t, τ a

1 , τ a
2 , θ, π . We choose

∆t large enough to make delays in the onset of self-feedback to
be negligible, thus fixing τ s

1, τ
s
2 = 0, but small enough to capture

the behaviors of interest. We found ∆t = 800 ms to be a good
compromise. The values of τ a

1 were set based on a pilot study
described in the main part of this paper: τ a

1 = 1, τ a
2 = 3,

i.e., 800 ms and 2400 ms respectively. In the simplified model,
we treat the agent and background response rates as random
variables with uninformative priors, thus fixing the β parameters
to 1. We chose π = 0.01 thus making the prior probability for
the presence of agents small, requiring large likelihood ratios to
become convinced that an agent is present. The sound threshold
θ was chosen using a k-means maximum entropy procedure
on the statistics of the available sound. We chose the largest
temporal horizon τ = 40 for which we could compute an optimal
controller using traditional dynamic programming approaches.
Later investigation showed that longer time horizons do not
significantly change the optimal policy.
Static random variables:

S ∼ Bernoulli(π). Presence/Absence of Responsive Agent (22)

K1 ∼ Beta(β1,1, β1,2).
Sensor activity rate during self period. (23)

K2 ∼ Beta(β2,1, β2,2).
Sensor activity rate during agent period (24)

K3. Sensor activity Rate during background period (25)
K3 ∼ Beta(β3,1, β3,2), if S = 1 (26)

K3 = K2, if S = 0. (27)

Stochastic processes:
The following processes are defined for t = 1, 2, . . .

Timer: Zt
def
=

0 if Ut−1 = 1
Zt−1 + 1 if Ut−1 = 0 and Zt−1 ≤ τ a

2
Zt else.

Indicator of Self Period: I1,t =


1 if Zt ∈ [τ s

1, τ
s
2]

0 else.

Indicator of Agent Period: I2,t =


1 if Zt ∈ [τ a

1 , τ a
2 ]

0 else.

Indicator of Background Period: I3,t = (1 − I1,t)(1 − I2,t).
Self Driver: D1,t ∼ Poison(K1).

Agent Driver: D2,t ∼ Poison(K2).

Background Driver: D3,t ∼ Poison(K3).

Robot Sensor: Yt = It · Dt .

Robot Controller: C = (C1, . . . , Cτ ).

Robot Actuator: Ut = Ct(Y1:t ,U1:t−1).

Sensor Activity Counters: Pi,t =

t−
s=1

Ii,sYs for i = 1, 2, 3.

Sensor Inactivity Counters: Qi,t =

t−
s=1

Ii,s(1 − Ys)

for i = 1, 2, 3.

Appendix C. Detailed model description

The model presented in this section was inspired by Watson
(1985) formulation of the social contingency detection problem:
background and responsive caregivers are modeled as Poisson
processes. Caregivers respond within a fixed window of time from
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Time

Fig. 7. Graphical representation of the dynamics of the timer and the indicator
variables.

the last response from the baby. Watson focused on the inference
problem, i.e., how to make decisions given the available data. Here
we focus on the control problem, how to schedule behaviors in real
time to optimally gather data.

C.1. Self-feedback processes

We let the robot sensor respond to its own actuators, e.g., the
robot can hear its own vocalizations, and allow for delays and
uncertainty in this self-feedback loop. In particular, we let the
distribution of self-feedback delays be uniform with parameters
τ s
1 ≤ τ s

2 . The indicator variable for self-feedback period is thus
defined as follows:

I1,t =


1 if Zt ∈ [τ s

1, τ
s
2]

0 else. (28)

During Self periods, the activation of the sensor is driven by the
discrete time Poisson process {D1,t} that has rate K1, i.e.,

p(D1,t = 1) = K1. (29)

C.2. Social agent process

The parameters 0 ≤ τ a
1 ≤ τ a

2 bound the reaction times of
social agents i.e., it takes agents anything from τ a

1 to τ a
2 time steps

to respond to an action from the robot. ‘‘Agent periods’’, which are
designated by the indicator process {I2,t} are periods of time for
which responses of agents to previous robot actions are likely if an
agentwere to be present. The indicator variable for an agent period
is as follows (see Fig. 7)

I2,t =


1 if Zt ∈ [τ a

1 , τ a
2 ]

0 else. (30)

During agent periods, the robot’s sensor is driven by the Poisson
process {D2,t} which has rate K2, i.e.,

p(D2,t = 1) = K2. (31)
The distribution of K2 depends on whether or not a responsive
agent is present. If an agent is present, i.e. S = 1, we let K2
be independent of K1 and K3 and endow it with a prior Beta
distribution with parameters β2,1, β2,2 reflecting the variability in
response rates typical of social agents. If an agent is not present,
i.e., S = 0, then the response rate during agent periods is the same
as the response rate during background periods, i.e., K2 = K3.

C.3. Background process

The background ismodeled as a Poisson process {D3,t}with rate
K3, i.e.,
p(D3,t = 1) = K3. (32)
The background drives the sensor’s activity that is not due to
self-feedback and is not due to social agent responses. Note that

Fig. 8. Graphical representation of the model. Arrows represent dependency
relationships between variables. Dotted figures indicate unobservable variables,
continuous figures indicate observable variables. The controller Ct maps all the
observed informationup to time t into the actionUt . The effect of the action depends
on the presence or absence of a responsive agent S and on the timing of the action as
determined by Zt . The goal is to maximize the information return about the actual
value of S.

this can include, among other things, the actions from external
social agents who are not responding to the robot (e.g., two social
agents may be talking to each other thus activating the robot’s
sound sensor). We let the background rate K3 have a prior Beta
distribution with parameters β3,1, β3,2 reflecting the variability of
background activity from situation to situation. If β3,1 = β3,2 = 1
the distribution is uninformative, i.e., all responsiveness rates are
equally possible a priori:
K3 ∼ Beta(β3,1, β3,2). (33)
The background indicator keeps track of periods for which self-
feedback or responsive actions froma social agentmay not happen,
i.e.,
I3,t = (1 − I1,t)(1 − I2,t). (34)

C.4. Sensor model

The activity of the sensor is a switched Poisson process: during
self-feedback periods it is driven by the Poisson process {D1,t},
during agent periods it is driven by {D2,t} and during background
periods it is driven by {D3,t}, i.e.,

Yt = It · Dt =

3−
i=1

Ii,tDi,t . (35)

C.5. Auxiliary processes

Wewill use the processes {Pt ,Qt} to register the sensor activity,
and lack thereof, up to time t during self, agent and background
periods. In particular for t = 1, 2, . . . ,

Pi,t =

t−
s=1

Ii,sYs, for i = 1, 2, 3 (36)

Qi,t =

t−
s=1

Ii,s(1 − Ys) for i = 1, 2, 3. (37)

C.6. Constraints

Fig. 8 displays the Markovian constraints in the joint distribu-
tion of the different variables involved in themodel. An arrow from
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variable X to variable Y indicates that X is a ‘‘parent’’ of Y . The
probability of a random variable is conditionally independent of
all the other variables given the parent variables. Dotted figures in-
dicate unobservable variables, continuous figures indicate observ-
able variables.

C.7. Optimal inference

Let (y1:t , u1:t , pt , qt , zt) be an arbitrary sample from (Y1:t ,
U1:t , Pt ,Qt , Zt). Then

p(y1:t | k, u1:t , s) =

3∏
i=1

(ki)pi,t (1 − ki)qi,t . (38)

Note that the rate variables K1, K2, K3 are independent under the
prior distribution.Moreover, if S = 1, then they affect the sensor at
non-intersecting periods of time. It follows that the rate variables
are also independent under the posterior distribution. In particular,

p(k | y1:t , u1:t , S = 1) =

3∏
i=1

Beta(ki; βi,1 + pi,t , βi,2 + qi,t). (39)

If the null hypothesis is correct, i.e., S = 0, then K2 = K3,
i.e., the probability distribution of sensor activity during the ‘‘agent
periods’’ is the same as during background periods. Moreover, the
set of times for which the sensor’s activity depends on K2, K3 does
not intersect with the set of times for which it depends on K1. Thus
K1 will be independent of K2, K3 under the posterior distribution:

p(k | y1:t , u1:t , S = 0) = Beta(k1; β1,1 + p1,t , β1,2 + q1,t)

Beta(k2; β2,1 + p2,t + p3,t , β2,2 + q2,t + q3,t)δ(k2, k3). (40)

Note for an arbitrary k such that p(k | y:t , u1:t , s) > 0 we have that

p(y1:t | u1:t , s) = p(y1:t | k, u1:t , s)
p(k | u1:t , s)

p(k | y1:t , u1:t , s)

= p(y1:t | k, u1:t , s)
p(k)

p(k | y1:t , u1:t , s)
. (41)

Thus

p(y1:t | u1:t , S = 1)

=

3∏
i=1


(ki)pi,t (1 − ki)qi,t

Beta(ki; βi,1, βi,2)

Beta(ki; βi,1 + p1,t , βi,2 + qi,t)


(42)

=

3∏
i=1

Γ (βi,1 + βi,2)

Γ (βi,1)Γ (βi,2)

Γ (βi,1 + pi,t)Γ (βi,2 + qi,t)
Γ (βi,1 + βi,2 + pi,t + qi,t)

(43)

and

p(y1:t | u1:t , S = 0) =
Beta(k1; β1,1, β1,2)

Beta(k1; β1,1 + p1,t , β1,2 + q1,t)

×
Beta(k3; β3,1, β3,2)

Beta(k3; β3,1 + p2,t + p3,t , β3,2 + q2,t + q3,t)

×

3∏
i=1

(ki)pi,t (1 − ki)qi,t (44)

=
Γ (β1,1 + β1,2)

Γ (β1,1)Γ (β1,2)

Γ (β1,1 + p1,t)Γ (β1,2 + q1,t)
Γ (β1,1 + β1,2 + p1,t + q1,t)

×
Γ (β3,1 + β3,2)

Γ (β3,1)Γ (β3,2)

×
Γ (β3,1 + p2,t + p3,t)Γ (β3,2 + q2,t + q3,t)
Γ (β3,1 + β3,2 + p2,t + p3,t + q2,t + q3,t)

(45)

where we used the fact that k2 = k3 with probability one under
S = 0. Thus the likelihood ratio between the two hypotheses is as

follows:

Lt(pt , qt) =
p(y1:t | u1:t , S = 1)
p(y1:t | u1:t , S = 0)

=
Γ (β2,1 + β2,2)

Γ (β2,1)Γ (β2,2)

Γ (β2,1 + p2,t)Γ (β2,2 + q2,t)
Γ (β2,1 + β2,2 + p2,t + q2,t)

×
Γ (β3,1 + p3,t)Γ (β3,2 + q3,t)
Γ (β3,1 + β3,2 + p3,t + q3,t)

×
Γ (β3,1 + β3,2 + p2,t + p3,t + q2,t + q3,t)
Γ (β3,1 + p2,t + p3,t)Γ (β3,2 + q2,t + q3,t)

. (46)

The posterior odds, which is the product of the prior odds and the
likelihood ratio,

p(S = 1 | y1:t , u1:t)

p(S = 0 | y1:t , u1:t)
= L(pt , qt)

π

1 − π
(47)

contains all the information available to the robot about the
presence of a responsive agent.

C.8. Infomax control

The goal in infomax control is to find controllers that provide as
much information as possible about a random variable of interest
S. Suppose we have a fixed controller c under which we have
observed the history of sensory–motor data ht = (u1:t−1, y1:t). The
information about the random variable S provided by the observed
sequence is as follows:

I(S, ht) = H(S) −H(S | ht). (48)

The prior uncertainty H(S) does not depend on the observations,
and thus it will be the same regardless of the controller c. Thus,
if our goal is to gain information about S, then we can use as
reward function the negative of the entropy of S given the observed
sequence ht , i.e.,

rt
def
= H(S | ht). (49)

The value of a controller is expressed as a weighted sum of the
expected accumulation of future rewards, up to a terminal time τ :

ρ(c) =

τ−
t=1

αtE[Rt | c] =

τ−
t=1

αtH(S | Y1:t ,U1:t−1) (50)

where theαt ≥ 0 are fixednumbers representing the relative value
of information return at different points in time.

The controller ct maps the information history ht = (y1:t−1,
u1:t−1) that is available prior to taking the action into the action
taken at that time, i.e.,

ut = ct(ht). (51)

The information history is Markovian and the reward is a
function of the information history. Therefore, infomax control is a
Markov Decision process with respect to the information history.
Unfortunately, the number of possible observable sequences grows
exponentially as a function of time, making it very difficult to
use standard optimal control algorithms for horizons beyond a
few time steps. In particular each action and each observation is
binary, i.e., for any given time t there are 22t separate state histories
that must be learned. Fortunately the observation history can be
summarized by a statistic At consisting of integers: the number of
time steps since the last vocalization, the number of active and the
number of inactive observations during the periods of agent and
background states, i.e.,

At
def
= (Zt , P2,t , P3,t ,Q2,t ,Q3,t). (52)
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The statistic At has the following properties

1. It is a recursive function

At+1 = ft(At ,Ut , Yt+1). (53)

2. The predictive distribution of Yt+1 is conditionally independent
of Ht given At ,Ut , i.e.,

p(yt+1 | ht , ut) = p(yt+1 | at , ut). (54)

3. The expected reward is conditionally independent of the
observed sequence given the statistic of the sequence,

E[Rt | ht , ut ] = E[Rt | at , ut ]. (55)

Given these properties, infomax control can be expressed as a
Markov decision process where the state is given by the statistic
At . This allows for solving the Bellman equations using standard
dynamic programming and reinforcement learning approaches.

Appendix D. Infomax TD learning

We used the following finite horizon version of value based
TD(0) learning. For each state at of the At statistic, and for each
time t = 1, . . . , τ , we initialize the value estimates Vt(at) to
zero, which is an optimistic value. Each learning trial starts at time
t = 1 and ends at the terminal time τ . At time t = 1 we draw
s, k1, k2, and k3 from their prior distributions, and initialize a1 to
{Z = z1, P2 = Q2 = P3 = Q3 = 0}, where z1 is drawn from the
uniform probability distribution over the range 1 : τ a

2 +1. Then for
t = 2, . . . , τ , we choose with probability (1− ϵ) the action ût that
maximizes the expected value:

ût = argmax
ut

−
yt+1

p(yt+1 | at , ut)Vt+1(at+1) (56)

where

at+1 = ft+1(at , ut , yt+1). (57)

With probability ϵ we choose the other action. After each trial, we
perform backups to the value estimates Vt(at) of each visited state
at , in reverse order, according to the following equation:

Vt(at) = rt +

−
yt+1

p(yt+1 | at , ut)Vt+1(at+1) (58)

where

rt = −H(S | at). (59)

For the terminal time τ we simply let

Vτ (aτ ) = rτ = −H(S | aτ ). (60)

The update equations are repeated for multiple trials. As the
number of trials increases, the estimate of the value function Vt(at)
converges to its true value. At evaluation time, setting ϵ to 0 gives
the optimal policy.
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