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Infomax Control of Eye Movements
Nicholas J. Butko and Javier R. Movellan

Abstract—Recently, infomax methods of optimal control have
begun to reshape how we think about active information gath-
ering. We show how such methods can be used to formulate the
problem of choosing where to look. We show how an optimal eye
movement controller can be learned from subjective experiences
of information gathering, and we explore in simulation properties
of the optimal controller. This controller outperforms other eye
movement strategies proposed in the literature. The learned eye
movement strategies are tailored to the specific visual system
of the learner—we show that agents with different kinds of eyes
should follow different eye movement strategies. Then we use these
insights to build an autonomous computer program that follows
this approach and learns to search for faces in images faster than
current state-of-the-art techniques. The context of these results is
search in static scenes, but the approach extends easily, and gives
further efficiency gains, to dynamic tracking tasks. A limitation
of infomax methods is that they require probabilistic models of
uncertainty of the sensory system, the motor system, and the
external world. In the final section of this paper, we propose future
avenues of research by which autonomous physical agents may
use developmental experience to subjectively characterize the
uncertainties they face.

Index Terms—Eye movement, face detection, infomax control,
object detection, policy gradient, visual search.

I. INTRODUCTION

I N DAILY life, we constantly seek information that makes
us more certain about questions of interest. We might check

Wikipedia to regain certainty about the answer to “Who was
the 17th president?” or we might look at the sky to help predict
whether it will rain soon. But not all information gathering is
conscious. When I play tennis, my eyes move to regions of the
visual scene that answer the question, “How should I swing my
arm to hit ball the way I want?” As you read, your eyes auto-
matically saccade to words and letters that help you answer the
question, “What is this author trying to convey?”

Humans make over 150 000 saccades per waking day,
spending about 1.5–2 h in saccadic flight, during which useful
vision is very poor [1]. Every second of every minute of our
waking lives, we make unconscious decisions about where to
look; we decide which photons to sense in order to help us
get the information we need to make it through our day and
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accomplish our goals. Some of these eye movement decisions
may have life-and-death consequences: if we look the wrong
way when crossing a road, we may be killed.

In this paper, we consider the problem “How should an agent
direct its eyes to best gather information?” from a computa-
tional, or optimality point of view. We make the following
contributions.

1) We present several existing models of eye movements and
relate them to the approach based on optimal information
gathering. We review other domains where optimal infor-
mation gathering techniques have been applied.

2) We analyze the question of where to look as a problem
in stochastic optimal control. This requires that we char-
acterize the uncertainties in our sensors (eyes), actuators
(muscles), and target dynamics. Once we have character-
ized these uncertainties, we can quantify the information
provided by eye movements. We show how the optimal
eye movements change depending on the sensor charac-
teristics. For example, we show that a robot may want to
move its cameras differently from how a human moves her
eyes.

3) We show that information can be used as a reward signal
to learn efficient eye movement behavior.

4) We follow the approach above to build versatile “digital
eye” that efficiently scans images to find objects of interest.

5) We discuss the remaining steps necessary to account for
a fully autonomous developmental model: how do infants
and robots use statistical regularities among sensors and
actuators to characterize uncertainties in unsupervised,
self-contained, and verifiable terms?

A. Different Views of Eye Movement

Many researchers have considered the problem of why hu-
mans move their eyes the way they do. An important class of
models explain eye movements from the point of view of visual
salience. We call these salience models. Salience models typi-
cally attempt to predict eye fixation histograms, i.e., the relative
probability with which people will look at particular regions of
an image. An image region is considered salient in an experi-
mental condition if people tend to saccade to that area with high
frequency in that condition.

Among salience models, a distinction can be made between
descriptive models, structural models, and computational
models (Fig. 1). Descriptive models are agnostic about why
people look at certain places, and just attempt to predict where
they will look. In their purest form these models are just func-
tions whose inputs are images, and whose outputs are pixel
by pixel probabilities that the pixels will be looked at. These
probabilities are learned from examples of images and the
locations where people look at in those images [2]. Structural
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Fig. 1. Taxonomy of eye movement models with example references, which
are not exhaustive. More references and discussion can be found in the text.

models appeal to neural mechanisms [3], or mental mecha-
nisms [4], [5] to explain why some image regions are more
salient than others. Computational models explain observed
behaviors as solutions to some problem or objective [6]. For
example, some recent visual salience algorithms, e.g., [7]–[10]
propose that when people view images they are implicitly
trying to maximize the chance of looking directly at a visual
search target [11]. According to these models, the eyes move
to regions of the image that were most likely rendered by
one such object. Other models propose that people have the
computational objective of moving their eyes to “surprising”
locations, which are defined as locations that contain the most
information about local image statistics [12], [13]. We review
the relationship between surprise based information models of
eye movements and infomax control models of eye movements
shortly (Section I-C).

In this paper, we present a computational analysis of eye mo-
tion from the point of view of the theory of stochastic optimal
control. Before we do so, we wish to clarify some crucial dif-
ferences between the salience models described above, and the
control models of the type we pursue in this paper.

(1) Salience models are designed to predict eye fixation his-
tograms, i.e., the frequency with a typical person fixates regions
of a given image. As such, by definition, salience models do not
provide reasons to look at things that are not currently visible.
In contrast, control models describe optimal policies to move
visual sensors of known characteristics so as to best achieve
given tasks. In control models, it is often valuable to look at
regions that are not currently visible so as to gain more infor-
mation about those regions.

(2) Visual search based computational salience models as-
sume that there is a low resolution (e.g., periphery) and a high
resolution (e.g., fovea) processing system. The low resolution
system chooses the region that most probably contains a target
of interest and triggers a saccade to that region. The foveal
system then proceeds to process the local region that was just
fixated. While this is a reasonable story, it has not been justified
from an optimality point of view. An optimality approach re-
quires evaluation of the expected information gain that the high
resolution system would provide if the eye were to fixate on that
pixel. This evaluation requires a full specification of the high
resolution process, in addition to an integration over the possible
outcomes of the high resolution process to compute an expected
reward.

In fact, salience models give no specification for the prop-
erties of the high resolution process or its reliability of infer-
ring target presence, nor do they integrate over potential conse-
quences of the eye movement. They cannot be evaluated from
an optimality point of view because the benefit to the organism
of the eye movement cannot be computed. Instead, we are led to
believe that optimal eye motion is independent of these param-
eters. We can assert that it is a good idea to try to look directly
where you think a search target is to confirm its presence, but
this assertion is of no consolation to a tiger who does not want
to spook his prey, or to the astronomer trying to see faint stars.

In contrast, in control models the foveal-peripheral charac-
teristics of the visual sensors need to be specified. This allows
evaluation of the expected information gain of an eye movement
prior to making the movement, thus orienting the eyes in an op-
timal manner. As we will see in this paper, the characteristics
of the foveal and peripheral systems do affect the way in which
the eyes should move. In some cases, optimal eye motion entails
looking away from the regions that most probably contain the
target of interest, in direct violation of the stated computational
objective of some visual salience models.

(3) Since salience models are designed to explain fixation his-
tograms, they are agnostic about the sequencing of eye move-
ments and about how the information observed up to time in-
fluences the decisions to move our eyes to other locations. To ex-
plain sequencing effects, like the fact that people are less likely
to look at previously scanned locations, salience models appeal
to notions such as “inhibition of return.” While useful at a de-
scriptive or structural level of analysis, inhibition of return is not
justified from the point of view of salience algorithms’ stated
computational objectives.

Control models on the other hand need to be explicit about
the information collected after each fixation. In control models,
after each eye movement, information is gathered and changes
the opinion and sense of certainty about how the world is. In
turn, these new opinions and sense of certainty combine to
direct the eyes to a new location to help achieve some specific
task. Control models give a computationally grounded justifica-
tion for an effect that looks like inhibition of return: to achieve
most tasks, you do not want to just look in the same place
always [14]. This task can be something physical, e.g., “pick up
and throw away garbage” [15] and “track a moving cursor with
an unreliable joystick” [16], or it could be purely exploratory,
gathering information as quickly as possible, which we call
infomax (Fig. 1) [14]. Purely exploratory eye movements may
have evolved to be intrinsically rewarding because they are
useful in learning strategies to achieve a variety of goals in a
variety of environments [17].

(4) Finally, a common distinction made in the literature
is “top–down” versus “bottom–up” salience. Some papers
make this distinction from a functional perspective. Bottom–up
salience is supposed to be governed only by the characteristics
of the stimulus alone. Top–down salience is supposed to be
modulated by the current goals and tasks of the individual [18].
A fundamental problem with this functional distinction is that
there is no such thing as a taskless condition. When subjects
are asked to freely look at an image they are consciously or un-
consciously performing a task. Some papers avoid this problem
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Fig. 2. We get more information about whether it is safe to cross this one-way
street by looking to the right than by looking to the left.

by applying a mechanistic point of view: bottom–up salience
is supposed to refer to the output of mechanisms (mental or
neural) that transmit information in a unidirectional manner
from peripheral to central processing systems. However, this
notion is also problematic. The brain is fundamentally an inter-
active system: visual information has an effect on the activity
of auditory cortex [19], [20]. Beliefs and expectations modulate
primary visual cortex [21]. Moreover psychological laws that
were supposed to be the signature of feedforward, bottom–up
processing, can be reproduced in interactive processing systems
in which the notion of bottom–up and top–down processing
does not apply. Thus in this paper, we abandon the top–down
versus bottom–up terminology.

B. Notation Standards

We leave implicit the probability space over which random
variables are defined. Capital letters typically represent random
variables and vectors. Lower case letters represent specific
values taken by random variables. For example, indi-
cates that the random variable has taken the specific value ,
technically a set of outcomes. We leave implicit the distinction
between probability mass functions (for discrete random vari-
ables) and probability density functions (for continuous random
variables). When possible we identify probability functions by
their arguments. For example represents the probability
mass (if is discrete) or probability density (if is contin-
uous) of the random variable evaluated at the specific value

. We use colons to represent sequences of random variables.
For example .

C. The Value of Information

Consider the problem of crossing a one-way street like the
one shown in Fig. 2. The faster we manage to cross safely to the
other side of the road the better we have accomplished our goal.
The world can be in one of two states: , indicates that it
is unsafe to cross at the current time , and means that
crossing is safe. represents the his-
tory of actions and observations up to time .
is our belief, based on the history of observations as to
whether or not it is safe to cross. We can take three actions:

means that we look left, means that we look right
(where the cars are coming from), and means that we
cross. Our beliefs about are shaped by the observations pro-
vided by our visual system. For simplicity, assume the system

tells us whether or not a car is present in the field of view:
if no car is visible and if some car is visible.

If we look to the left, we will see the cars that just passed
(because the cars come from the right). This will give us some
information, for example, how busy the street generally is. If
for the last minute we only saw one car, then this is a pretty
safe street to cross, but if we saw fifty, we know it is a heavily
travelled highway that is quite perilous. However, we will not
get any indication about what cars are currently coming, and so
we will always be somewhat uncertain about whether it is safe
to cross. If we look right, we will see the cars that are about
to come, and can be much more certain about when exactly is
a safe time to cross (Fig. 2). Thus given the task at hand, the
information gained by looking right is more valuable than the
information gained by looking left.

The key here is that looking right provides more information
than looking left about a key state of the world. Mathematically,
the information that a specific observation provides about a
variable of interest is the reduction of uncertainty about
due to that observation

(1)

(2)

In infomax control problems, we evaluate potential actions in
terms of the information gain we expect them to provide. Thus
given an action , we need to take expected values across all
possible observations following the action

(3)

(4)

where the Shannon entropy is a measure of uncertainty.
Note that is constant with respect to and
therefore, in order to maximize the expected information
gain, we need to choose action that minimizes the expected
entropy of the posterior probability distribution of . In
our example, will be smaller than

and thus, we choose to look right.
Equation (3) reveals the details that are needed to be able to
quantify information: we need to have both a concrete notion
of how probable each state of the world is, , and also
a model of how everything we’ve done and seen has changed
that probability, .

Some authors in the visual salience literature [13] have pro-
moted the idea of “Bayesian surprise” as a way to evaluate the
salience of a visual region. The Bayesian surprise provided by
an observation is defined as the KL divergence between the
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prior distribution of a state and the posterior distribution of the
state given the observation

(5)
The expected surprise of an observation turns out to be the mu-
tual information that the observation gives about the state pro-
vided by an action

(6)

(7)

(8)

Thus, expected surprise and information gain are equivalent
metrics for evaluating the value of actions.

So what separates a surprise based salience model from an
infomax control model? First, the state of interest in [13] is “pa-
rameters of local image statistics.” With this state space, surprise
is only defined for the image which was already seen, and so
there is no reason to look at something that is not currently ob-
served. Second, surprise models are reactive: They only react to
what has already been seen, as in equation (5). Control models
consider (sometimes implicitly) the consequence of future ac-
tions and observations, as in equation (6), making them proac-
tive. They act in the way that will best help achieve some fu-
ture goal. This highlights two main differences between salience
models and control models.

D. Infomax in Other Domains

Maximization of expected information gain was proposed by
Lindley [22] as a sensible criterion for designing experiments.
Stone [23] and Fedorov [24] applied this idea to the efficient es-
timation of parameters in linear regression and ANOVA models.
Bernardo [25] used a Bayesian framework to show that infor-
mation gain can be used as a utility function in the context of
optimal control. While exact solutions to infomax control were
found for linear problems, they proved difficult for even the sim-
plest nonlinear problem. For this reason, information maximiza-
tion approaches languished for a number of years.

Recent years have seen a flourishing of approximate solu-
tions to stochastic optimal control problems, some of which can
be applied to difficult infomax control problems. Lewi et al.
found a very efficient approach to find approximate infomax so-
lutions to the problem of parameter estimation in generalized
linear models. They used the approach to choose which stimuli
to present to a neuron so as estimate the properties of its recep-
tive field. They showed that the approach could reduce the total
experiment time by an order of magnitude [26].

Infomax approaches have also been used to develop unsu-
pervised learning algorithms. Bell and Sejnowski showed that
when this learning algorithm is applied to artificial neural net-
works exposed to natural images they develop Gabor receptive
fields similar to those found in simple cells in primary visual
cortex [27]. Movellan et al. [28] showed that information max-
imization could be used to model how humans ask questions

in active concept learning tasks. Movellan and Butko [29], [30]
showed that nine-month-old infants schedule vocalizations so
as to optimally detect contingent social interaction. They also
showed that information gain could be used as a reward for re-
inforcement learning algorithms and explain the developmental
trajectories observed in infants.

Cakmak et al. showed that robot learning improved when
robots asked human teachers questions that would give the
robots most information, and also that the teaching interactions
were more motivating to the human teachers [31].

A recent class of approaches uses the submodular property of
information to approximate optimal information gathering. This
property describes mathematically the diminishing information
returns of subsequent probes of nearby areas. These approaches
have been used to optimally deploy sensors to effectively mon-
itor environmental factors in lakes [32], and in active-learning
scenarios to quickly learn how to accurately diagnose health
conditions from medical images [33].

II. PROBLEM STATEMENT

To think systematically about information and information
gathering, it is useful to formulate eye movement problems as
partially observable markov decision processes (POMDPs). To
make this more concrete, consider a control-based model of eye
movement in which our goal is to play “Where’s Waldo?”, a
popular children’s game where the goal is to find a visually dis-
tinct man named Waldo as quickly as possible from among a
wide field of distractors [34]. This game is analogous to a situ-
ation in which an observer moves her eyes in order to search a
2-D image plane of bounded size for a target that is not moving.

A. POMDP Problem Formulation

A POMDP is defined by the following elements [35] (with
their correspondences in the Where’s Waldo? control model).

• is a random variable that represents the state of the world
at time . In this paper, the bounded area in which the target
can appear is covered by a grid of total elements, which
we refer to as the visual array. In the Waldo example,

means that Waldo is at location , at time .
• is random variable that represents the action taken by

the agent at time . In the Waldo example, means
that the agent fixated location at time .

• is a random variable that represents the sensor outputs
(observations) available at time . In the general case, the
sensors are noisy and provide only partial evidence about
the state of the world.

• : Markovian
system dynamics—How the state changes naturally over
time, and also based on the agent’s actions. In Where’s
Waldo?, Waldo does not move so if

, 0 otherwise.
• : Markovian observation

model—How objects appear at different points in the
fovea or periphery. Red and white stripes in your pe-
riphery could possibly be Waldo; a man with a camera,
striped shirt and blue pants in your fovea is definitely
Waldo.
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B. Belief State

A critical concept in POMDPs is the “Belief State”
, where is the probability that the target is at

location at time , given all the actions taken and observations
received up to time

(9)

It is easy to show that the belief state vector at time is a function
of , and . Specifically, given a sequence of actions

and observations , then

(10)

(11)

Waldo never moves, so this becomes

(12)

Thus, the belief state encodes all the relevant history of an
agent’s actions and observations. In the control model of vi-
sual search presented below, the belief state representation is
the same size as a single observation. This speaks against argu-
ments about the “cost” of memory. For example, [14] argues that
subjects forget what they’ve seen because it is simply too costly
to remember many observations. But equation (11) tells us that
there is practically no cost to memory: to remember everything
that is relevant about the entire history of observations you just
need to store your current belief, which in the visual search case
requires exactly real valued numbers. A computational
level explanation is that events are “forgotten” because doing
so improves task performance. If Waldo is likely to move, it is
almost completely irrelevant where he was or was not five min-
utes ago. Since the POMDP belief state only encodes relevant
information, the agent would appear to an outside observer to
have forgotten where Waldo was five minutes ago. This would
lead to an effect that looks like forgetting, even though you still
remember all that is relevant about everything you’ve seen up
to this point.

An aspect of the POMDP approach is that it prescribes a level
of remembering and forgetting that is optimal for the statistics of
movement of relevant search targets. The amount of forgetting
observed in psychophysical experiments such as those gathered
in [14], is in fact an indication about the implicit beliefs im-
plemented by the brain. These implicit beliefs may reflect (be
optimal for) the statistics of the environment in which the brain
operates.

C. Information Reward

Infomax control problems are ones in which we wish to act in
such a way as to optimally gather information about some un-
known thing in the environment. Gathering information about
the unknown answer to a question like “Where’s Waldo?” is
equivalent to minimizing the entropy (uncertainty) of belief
vector about Waldo’s location. In the language of optimal

control, we let the instantaneous reward to be a decreasing
function of the entropy of the state belief

(13)

where is a constant that determines the relative value of
being certain at time . A policy is a function that maps beliefs
into actions, i.e., . The value of a specific belief
state given a specific policy is a weighted sum of expected
rewards up to a terminal time point conditioned on that policy

(14)

The goal of infomax is to find a policy that maximizes the
overall value

(15)

At first sight, the Infomax reward function appears peculiar in
that it is based on our own beliefs. For example, “It doesn’t
matter to me where Waldo is; it just matters that I am sure of
where he is.” This is in fact a typical of POMDP problems,
not just infomax problems. Kaelbling et al. observesthat the
POMDP reward function is strange in that the agent appears to
derive reward from belief rather than the environment. How-
ever, the beliefs in POMDPs are not arbitrary. They are con-
strained by correct Bayesian inference based on observation
from the environment. Thus, is not possible to pursue a strategy
of self-delusion to achieve reward. Rather, the agent’s expec-
tation of reward is the true expectation of reward, and so the
experienced reward will (on average) meet the agent’s expecta-
tion when planning [35].

D. Components of Uncertainty

In order to develop optimality models of visual search, we
must specify both an observation model in the form of a family
of distributions specifying how the world may look
like, and the system’s dynamics model in the form of a family
of distributions specifying how the world may
change in the future. In [15] and [30], these probability distri-
butions were constructed by creating simulated worlds. Since
the researchers constructed the worlds, they knew precisely the
uncertainties in those worlds. In [14], psychophysical stimuli
were carefully created to constrain the observation model to be
a linear filter with Gaussian noise, and the parameters of the
Gaussian noise model for human eyes were fit psychophysically
at different points of retinal eccentricity.

Without specifying these probability models and their asso-
ciated uncertainty, we cannot compute the belief update in (11),
or the information reward in (13). The following are examples
of sources of uncertainty that may be considered in modeling
eye movement (Fig. 3).

• Target Uncertainty: How are objects likely to move on
their own, when my eyes do not move? Can my eye move-
ments affect the motion of external objects?

• Action Uncertainty: How reliably can my eyes move?
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Fig. 3. Different factors introduce uncertainty in visual search targets local-
ization. A few examples of these many factors are: how targets will move, the
reliability of our own muscles, loss of reliability at visual eccentricity, and mo-
tion blur or distortion.

Fig. 4. Left: A wavelet is “hidden” in a pink noise background. Right: Na-
jemnik & Geisler measured subjects’ ability to detect these targets as a function
of how far away they were looking.

• Sensor Uncertainty: How does the appearance of an ob-
ject change based on its distance to my center of gaze?

• Motion Induced Uncertainty: How does the appearance
of an object change while my eye is in motion? For ex-
ample, things may be blurry, distorted, or completely invis-
ible while the eye is in motion, depending on the physical
characteristics of the occulomotor system.

III. A CONTROL MODEL OF VISUAL SEARCH

In this section, we present a psychophysical model of visual
search developed by Najemnik & Geisler (N&G) [14], and re-
formulate it from the point of view of stochastic optimal con-
trol and later extend it so as to overcome two of its limitations:
(1) the fact that the model achieves optimality with respect to
a single fixation rather than a sequence of fixations; (2) the
fact that the model assumes Gaussian sensors and nonmoving
targets.

In N&G’s model, the task is to find a target stimulus (a Gabor
wavelet) in a correlated Gaussian noise background (Fig. 4).
The optimal procedure to infer the target’s location is to filter
the image with a linear filter matched to the target stimulus. In
N&G’s model, the sensitivity of the matched filter decreases
with the eccentricity from the fixation point. This foveal-per-
ihperal sensitivity is measured empirically using psychophys-
ical experiments to determined how likely subjects are to de-
tect such a wavelet at different eccentricities. An example of the
foveal-peripheral operating characteristic (FPOC) curves mea-
sured in this fashion by N&G is shown in Fig. 4.

In terms of the sources of uncertainty described in Fig. 3,
N&G’s model can be summarized as the following.

• Target Uncertainty: None (the search target never
moves).

• Action Uncertainty: None (the eye moves reliably).
• Retinal Uncertainty: Signal plus eccentricity-dependent

Gaussian noise, detailed below.

Fig. 5. I-POMDP model of eye movement: A target is located at a visual lo-
cation previously unknown to the subject. After making several fixations, the
subject comes to know with high confidence the location of the visual target.
See text for further description.

• Motion Uncertainty: None (eye movements are instanta-
neous, so there is no chance for motion blur or shear, etc.)

An illustration of a typical trial of this model is show in Fig. 5.
A noisy observation is sampled at each potential target
location at each timestep . This noisy observation is illus-
trated in the “Signal+Noise” row of Fig. 5. In locations without
a target, the observation is drawn from a baseline Gaussian dis-
tribution, which has zero-mean and standard deviation 1. These
zero-mean locations are shown as darker regions in the “Signal”
row of Fig. 5. Only the single observation directly at the target
location is drawn from the “target” Gaussian distribution. The
standard deviation of the target distribution is always 1. The
mean of the target increases as the target approaches the foveal
region (the brightest location in the “Signal” row) and converges
towards zero as the eccentricity increases. Thus, the equation for
the observation at location , given that the target is at location

and the eye is focused on location , is as follows:

(16)

where is independent and identically distributed (i.i.d.) zero
mean, unit variance Gaussian random noise, if

, zero, otherwise and is the discriminability of a
target at location given that the fovea is centered at location

. We call this the FPOC of location given that the retina
is centered at . In humans, the FPOC decreases with in-
creased distance of location from the current point of fixation

, meaning farther from the point of fixation, it becomes harder
to discriminate an observation caused by target-based activity
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from one caused by noise alone. This is illustrated in the “Target
Signal Strength” row of Fig. 5.

Under the model, the individual observations are condi-
tionally independent given the external scene,1 and so the like-
lihood of an entire vector of observations
given that the target is at location and the eye is focusing on
location is as follows:

(17)

where is identical for all . This gives a likelihood that the
Signal+Noise observation was generated by each possible target
location (“Likelihood” row of Fig. 5). Combining this with (12)
yields the proportional belief update (“Belief” row of Fig. 5)

(18)

Note the simplicity of the belief update. Even though the
model has a large state, observation, and action space, updating
beliefs is computationally efficient. To calculate the relative
probability that an entire observation vector was caused by a
state, we need constant time (only a single element of that ob-
servation vector is considered). Thus, the process of computing
the belief update for all beliefs grows linearly. The belief about
location of the search target could be updated with simple
neural circuitry and strictly local update rules.

IV. LEARNING WHERE TO LOOK

N&G [14] modeled visual search as a control strategy de-
signed to detect the location of a visual target under sensor un-
certainty. The observer plans one saccade at a time. At each sac-
cade, the observer chooses to fixate the location that best im-
proves the chances of being correct after that fixation. In this
Section, we reformulate N&G model from the point of view
of the theory of stochastic optimal control (in particular the
theory of POMDPs). We find optimal infomax policies, show
how these policies change with the FPOC of the observer, and
show that using information as a reward signal leads to a better

1Note this does not require that the observations are independent, only that
the sensors are noisy and the noise in each sensory element were independent.

search strategy than N&G’s ideal observer. Hereafter, we refer
to the infomax POMDP version of N&G’s model as I-POMDP.

First we explore whether a simulated agent could use infor-
mation gain as a training signal to learn efficient eye movement
policies. Our goal is to learn a policy that ap-
proximates the optimal policy defined in (15). Algorithms for
learning exactly optimal policies in POMDPs exist, but are only
feasible with few states, actions, and observations [35]. Point-
based approximation methods can learn approximately optimal
policies for POMDPs with many states and actions, but require a
small observation space [36]. The I-POMDP model has an
observation space, which is very large. Moreover, these algo-
rithms capitalize on the guarantee of traditional POMDPs that
the reward function be linear in the belief vector ; I-POMDPs
allow nonbelief-linear reward functions like (13).

A. Policy Gradient

Due to the limitations of these approaches, here we consider
function approximation methods which find locally optimal
policy functions over a family of functions parameterized by a
vector . Each setting of corresponds to a specific policy. It
is possible to derive the gradient of the value function in (14)
with respect to [37].

An unbiased estimate of this gradient can be obtained by sam-
pling a finite set of belief trajectories and collecting the corre-
sponding rewards. This results in a simple update procedure,
derived in [37].

1) Choose an initial value for .
2) Set ; Get an initial belief state . Set .
3) Run the system for one time step: take an action using the

policy , make an observation, update the belief, from
to and collect the reward corresponding to

that belief.
• If is a final state or , go to 2.
• Set .
• Set .
• Set .
• Set .

4) Go to 3).

where is a learning rate which can anneal over time, and
is a “bias-variance trade-off” parameter. Arguably the most

challenging aspect of policy gradient methods is computing the
quantity, . In Appendix 1 and 2,
we show how this can be done for logistic policies of the type
described below.

B. Policy Gradient With Logistic Policies

We parameterize the policy as a logistic function. Let the pa-
rameter be a matrix with th row . For a given , the prob-
ability of choosing an action given a belief takes the fol-
lowing form

(19)

where is a feature function that takes the belief vector
as input and outputs another vector. Logistic policies can
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Fig. 6. Left: Policy gradient enables learning even when there are 14 641 pa-
rameters. Right: Learning is 20 times faster when we use weight sharing to ex-
ploit invariances, reducing the number of parameters to 61. The original learning
curve is duplicated in blue in “With Weight Sharing” to highlight this timescale
difference.

be thought of as a neural network, with an input layer (the
featurized belief vector) projecting to an output layer in which
each output unit represents the probability of fixating a given
location. In the current work, we used , i.e., the input
was just the current belief vector. The model is parameterized
by , an matrix, where is the size of the visual
array. Logistic policies extend many of the policies assumed
in previous models (e.g., greedy search, random search) while
allowing an intuitive examination of the learned policy. For
example, a reasonable policy might be “look directly where the
probability of the target is largest.” We could verify whether
this policy was optimal by examining the learned parameter
matrix for very large values on the diagonal. This would mean
that high belief that a target is at a given location leads to a high
probability of fixating that location. Meanwhile connections to
nodes at farther distances would taper off.

C. Convolutional Policies

The policy model in (19) can have many parameters. For an
11 11 visual array, there are 14 641 parameters. Fig. 6 shows
that it is indeed possible to learn a good policy in such a situa-
tion, but it takes a long time. The search space can be reduced
to 61 parameters by exploiting the shift- and rotation-invari-
ances of most visual search problems.2 This approach results in
a convolutional policy which is defined by a rotationally sym-
metric, two-dimensional kernel. Under convolutional policies of
this type the value of a belief map is obtained by filtering with
a filter whose impulse response equals the policy’s two-dimen-
sional kernel.

Gradients for a convolutional policy can be learned via
weight-sharing, by tying the parameters of all connections to
locations equidistant from the point of fixation. This involves
computing the full gradient, and then adding the gradients from
each tied parameter to get the gradient for the tied parameter.
Learning converges much faster (Fig. 6). For the remainder of
this paper, we use convolutional logistic policies learned by
policy gradient with weight-sharing. We learn similar control
laws regardless of initial parameters and visual array size, and
so the approach seems robust to local minima in parameter
space.

2For a 7� 7 visual array, the number of free parameters is reduced from 2401
to 28.

D. Eye Movement Learning Experiments

To compute policies, we used a time-horizon that was the
same as the number of states ; the reward went to 0 long before

, approximating undiscounted infinite horizon. The parameter
was 0.75, was 0.02, and gradients were pooled across 150

episodes per epoch. We manipulated the following.
• Size of visual array: The visual array size was 7 7 or 11

11, with and , respectively.
• Reward Function: We compared the Infomax reward

function with that postulated in Saliency literature [18].
• Visual System Properties: In addition to using an FPOC

from psychophysical data [14], we studied what would
happen in systems with different FPOCs.

Our results were analyzed in two ways.
• Performance: Performance was measured as “% Correct

on an N-Alternative Forced Choice task (N-AFC)”. That
is, in an 11 11 visual array, if the location of the target
had higher belief than all 120 other locations, the agent was
right, otherwise it was wrong.

• Control Law: A policy is defined by a convolution kernel.
If the kernel has a high value at eccentricity , the agent
wants to look toward some location when there are high
beliefs at locations units away from . If the kernel has
a negative value at eccentricity , the agent wants to look
away from location if there are high beliefs at locations

units away from .

E. Results: Performance & Policy

We first compared three policies that we expected to perform
well.

1) Learned Infomax: A convolutional policy, learned from
experiences with information as a reinforcing signal, as
described above.

2) Percent-Correct-Greedy: Choose the action that yields
the highest expected-percent-correct after the observation,
i.e., that maximizes (proposed
in [14]). Computing a single action from this policy is

, where is the size of the visual array and is a
very large constant. Because of the difficulty in computing
this policy for each action, we used small 7 7 visual ar-
rays.

3) Fixate Target Greedy: Choose the action that max-
imizes the immediate chance of looking directly at the
target. This policy is implicit in visual salience models like
[3], [11].

We also evaluated the performance of two policies that we ex-
pected to perform poorly.

1) Fixate Random Locations.
2) Fixate Center of Visual Array: The eye remains fixed in

the central location and never moves. This policy discovers
targets in the foveal region quickly, in the parafoveal region
slowly, and in the peripheral region never.

The experimental conditions were simulated search tasks
using the statistical model presented above, of which Fig. 5
is a typical example. On each trial, the target was moved to a
new location, hidden from the searcher. In all, each location
was chosen exactly 100 times. The size of the visual array was
11 11 or 7 7, depending on the experiment. For the latter,
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TABLE I
# FIXATIONS TO REACH 90% CORRECT (49-AFC)

Fig. 7. (a) The Learned Policy performs better than four alternative policies de-
scribed in Section IV-E. Policy “% Correct Greedy”, proposed in [14], outper-
forms the learned policy in only the first four fixations. This reflects the classic
tradeoff between greedy and long-term planning. (b) The “receptive field” of the
learned policy. Top: 1-D kernel function that was learned: The learned strategy
looks next to places of high probability. Bottom: Rotating this kernel radially
gives the radially symmetric 2-D convolution filter that defines the policy. (a)
Comparison of policies; (b) learned policy.

there were 4900 total evaluation trials for each policy, and for
the former there were 12 100.

The learned Infomax optimal controller reached high levels
of accuracy (90% correct on the 49-AFC task) about 1.1 fixa-
tions earlier than the Percent-Correct-Greedy policy and about
3.5 fixations earlier than the Random policy (Table I). The per-
formance of all policies is shown in Fig. 7(a).

The policy that achieves this high performance is visualized
in Fig. 7(b). Interestingly, this policy chooses to foveate next
to, but not at locations where the target is likely to be. This ap-
pears to ensure that the target remains in the foveal region, while
gathering extra information about the periphery. It is improper
to claim that the learned policy avoids looking directly at the
target—the target location is unknown. Rather, plausible target
locations are kept at the edge of the fovea. Especially during the
first eye movements, these are only weak hypotheses, and usu-
ally turn out to be wrong. By keeping weak but plausible target
locations at the edge of the fovea, the agent is able to confirm
them if they turn out to be correct, while simultaneously testing
many alternate hypotheses if the current plausible hypotheses
turn out to be wrong.

F. Results: Comparison to Previous Approaches

The control law that optimizes the infomax reward function
avoids looking directly at plausible target locations, preferring
to look just to the side of them. It is commonly assumed that
ideal searchers should directly fixate locations most likely to
contain the search target. Such a strategy turns out to be sub-
optimal when more than one eye movement is possible. How
much benefit does the ideal controller get by avoiding looking
directly at the target?

When we evaluated the “Fixate Target” strategy previously,
we did so in a greedy way after the fashion of the salience liter-

Fig. 8. Performance loss from directly fixating the target; the visual array is 11
� 11. (a) Learned “receptive fields.” Top: The Infomax policy closely resembles
the policy in Fig. 7(b) which was trained on a smaller visual array. Bottom: A
different policy is learned when the goal is to look directly at the target. (b)
Maximizing information performs noticeably better than trying to look directly
at the target.

ature. In order to be more fair to this strategy, we trained a con-
troller that could maximize its long-term probability of looking
at the target. It was given reward of 1 for looking directly at the
target and 0 otherwise. Since the controller did not have direct
access to the state, it received expected reward based on its be-
lief state after the fashion of POMDPs [35], and so was linear
in the belief state. This reward was the probability that it was
looking at the target, , where .

We trained Infomax and fixate target controllers on an
11 11 visual array I-POMDP. The learned control laws are
visualized in Fig. 8(a). The shape of the Infomax control law is
similar to that of the 7 7 task, preferring to look next to the
target. This indicates that the ideal strategy remains constant
with problem size. The ideal fixate target strategy looks very
similar to an impulse response, and so is very similar to the
greedy fixate target strategy in the previous section. Fig. 8(b)
indicates that this is a reasonable, but suboptimal strategy. Con-
trollers optimized to fixate target require 20 fixations to reach
90% accuracy on a 121-AFC tasks, while those optimizing
information-gain require 18 fixations.

This quantifies the expected performance boost achievable
over previous Saliency approaches in robots [11], which at-
tempted to look at search targets. Instead, our results suggest
that a better strategy is to look near but not at visual targets.
This presents avenues for psychophysical study, to see whether
indeed people prefer to look near but not at visual targets.

G. Dependence on Visual System

So far, we showed that information is a sufficient reinforcing
signal to learn highly effective looking behavior from experi-
ence searching for targets. However, this was done using a single
example model of uncertainty, the FPOC curve shown in Fig. 5.
Is it possible that the resulting looking behavior somehow gen-
eralizes to all eyes? Or is it necessary to take into account the
specific uncertainty characteristics of each system in planning
optimal eye movement strategies?

The I-POMDP framework allows us to investigate how an
ideal oculomotor law may change if the FPOC of the sensory
mechanism changes. This question is relevant to roboticists be-
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Fig. 9. Optimal policies (bottom) given different FPOCs (top). The visual array
is 11� 11. Each policy is the average of the parameters of 10 learned policies.
(a) FPOC based on human data from [11], which was used in this paper’s pre-
vious experiments. (b) Exponential falloff of acuity. In this case, looking next
to the target does not give reliable information about its presence, and so the
learned policy prefers to look directly at the target. (c) A camera can locate ob-
jects reliably in its field of view, but not outside. The learned policy attempts to
keep the object toward the edge of its field of view.

cause robotic cameras do not typically have the same properties
as a human eye. The question is also relevant to developmental
scientists and clinicians that may study the development of vi-
sual search in infants and in adults with clinical eye conditions.

Here we considered two additional FPOCs. One is an expo-
nential function that is sparser than the human FPOC: it has a
sharp initial fall-off of acuity, but then has slightly higher acuity
in the periphery [Fig. 9(b)]. The other is modeled after a stan-
dard camera with uniform acuity throughout its entire visual
sensor and none elsewhere, resulting in a step-function FPOC
[Fig. 9(c)].

The resulting control laws are strikingly different from the
original [Fig. 9(a)], suggesting that the ideal visual search
strategy depends heavily on the specific FPOC of the visual
system. This provides a warning against the usefulness of
models of visual search derived from typical adult humans
when trying to make claims about how infants, robots, or adults
with certain visual disorders should move their eyes.

V. CREATING & CONTROLLING A DIGITAL EYE

Detecting objects quickly and at low computational cost is
important for a wide variety of domains, such as security appli-
cations, traffic analysis, clinical diagnosis, satellite image pro-
cessing, and robotics. While progress in recent years has been
dramatic, there are still two challenging cases: 1) physical scan-
ning of scenes using active cameras; and 2) digital scanning of
very large images. Scanning very large images can be seen as
a special case of scanning world scenes. Thus, it is reasonable
to expect that the approaches that biology has found useful for
scanning the world may also be useful for scanning high reso-
lution images.

However, the results from Section IV-G caution us to be de-
liberate and thoroughly characterize any system that we build
to attempt to follow a biologically inspired path. In this section,
we consider how the lessons we learned from studying visual

Fig. 10. Digital fovea: Several concentric IPs (Top) are arranged around a point
of fixation. The image portions contained within each rectangle are reduced to a
common size (Middle). In a reconstruction from the downsampled images, detail
is preserved around the fixation point, but decreases with eccentricity (Bottom).

search in the context of human vision can be effectively applied
to make a computer program that can learn to become more ef-
ficient at a similar task.

As in the previous case, the main challenge will be to be ex-
plicit about what the informational consequence of each eye
movement is. What does it mean for a computer program to
“look at” a part of an image? We explore this idea by digitally
simulating in software a foveal camera. The sequential place-
ment of the digital fovea is then controlled using a policy de-
signed to maximize the information gathered about the location
of the target of interest.

The proposed approach is plug-and-play: it can be applied
to standard object detectors in a modular manner. The visual
search program that we present eventually learns to search
scenes twice as fast as the object detection algorithms com-
monly used in practice. In this section, we mainly focus on
finding a single face in a static image, but the model extends
easily to searching for and tracking a moving face in a dynamic
video, which we briefly discuss. The source code needed to
reproduce the results in this section are provided online as part
of Nick’s Machine Perception Toolbox [38].

A. A Digital Eye

Key to the proposed approach is the idea of scanning im-
ages using a simulated fovea, which is created by cropping and
scaling the image several times around a central fixation point,
yielding pyramid of Image Patches (IPs) [39] (see Fig. 10).
Each IP is then shrunk to a common reference size that is much
smaller than the original image, typically 1/100th of the size.
These different patches will lose information about the image in
different ways. Large IPs may cover most of the image, but they
will lose resolution when scaled down, so they will only contain
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Fig. 11. Object detector returns candidate locations of the search target. In each
grid cell, we count the candidates up to some maximum (above, empty cells have
an observation of “0”). We model the counts as being generated by independent
draws from many multinomial distributions, with parameters that vary with the
distance to the point of fixation, and also whether the search target is actually
centered at that grid cell.

information about low spatial frequencies. Small IPs will main-
tain resolution and high spatial frequency information, but only
around a small region of the image.

Fig. 10 shows an example of the digital fovea at work. In this
case, we used four IPs per fixation, operating at four scales. To
search for the target object at that fixation point, we can apply
any off-the-shelf object detection algorithm to each of these IPs.
The object detector will search each of the IPs exhaustively for
the target object. As long as the scaled size of the IPs is small,
this exhaustive search will be quick.

For example, if any IP is scaled to 10% of the height and
width of the image, its area is 1% of the original image. Since
all four IPs are shrunk to the same small size, an object detector
with linear complexity will search all four IPs in 4% of the time
it would take to search the whole image. If the search target’s
location can be inferred after scanning IPs at fewer than 25 suc-
cessive fixations, this foveated approach will be faster than ex-
haustively applying object detection to a high resolution image.3

B. The Multinomial I-POMDP Model

In I-POMDP, the wavelet search target could be located in one
of discrete locations, arranged in a grid. This grid formed the
basis for the state space, the action space, and the observation
vector.

To reproduce this behavior in the digital eye, we cover the
image with a grid, and assume that the location of the object’s
center is inside one of those grid locations. A natural tradeoff
arises in choosing how fine to make the grid: A finer grid groups
fewer pixels into each grid cell, improving the ability to lo-
calize the object in the image; but this increases the number of
hypotheses that must be entertained and locations that can be
searched. This discretization can be seen in Fig. 11. Depending
on the size of the image, more or fewer pixels may be grouped
into each grid cell. This allows us to have the same state and
action space as our previous investigations.

3This is a simple illustration and assumes no overhead for inference and plan-
ning. In practice, the break-even point will be slightly lower.

A probabilistic model of observations and how they are gener-
ated is important for deducing the target location with Bayesian
inference, and for quantifying information. A major challenge
for the digital eye is how to turn the output of the object detector
into a suitable observation vector.

We treat object detectors as black-box algorithms that take an
image as input, and output a list of pixels that are likely to be the
centers of the search target. These detectors often fire in clusters
around the object (hits), but also have false alarms, misses, and
correct rejections (Fig. 11).

We generate the observation from the total number of objects
returned by the object detector in each grid cell (up to some
maximum count value, ), after searching all IPs. The ob-
servation vector generated is .

Because information is lost in the digital eye, there is un-
certainty about whether the object detector will find the object
(false negative); given that an object detector finds an object,
it is uncertain whether this is actually the object (false posi-
tive). We represent this uncertainty by modeling the generation
of each grid cell’s contribution to the observation vector as an
independent draw from a different multinomial distribution con-
ditioned on: 1) the presence or absence of an object in that grid
cell; 2) the distance ( -distance and -distance) to the center
of fixation from that grid cell. Practically, this means for an

grid of target locations, each observation is drawn from
one of multinomial distributions with different parame-
ters for each combination of ,

, and object presence/absence.
We refer to the I-POMDP with this modified multinomial ob-
servation model as the multinomial I-POMDP (MI-POMDP).

In images, the target we are searching for does not move,
and the POMDP belief update equation in (12) can be used. In
active cameras or video streams, the target might move between
each fixation. In this case, the dynamics are modeled by

, and the belief update becomes

(20)

C. Fitting the Multinomial Observation Model

In order to estimate the information properties of the digital
eye, we had the eye scan each grid location in a database of
images with known face location, and measured its performance
in terms of hits, misses, correct rejections, and false alarms at
each possible distance from a known face location.

The image dataset contained 3500 images in which faces
were present in equal amounts across all scales. Specifically,
one fifth were 10% of the image major axis, and one fifth each
were 10–20%, 20–30%, 30–40%, and of the image major
axis. The full images varied in size from 104 120 to 972 477
with an average size of 225 243. This data set is freely avail-
able as the size-scale normalized subset (GENKI-SZSL) of the
GENKI dataset [40].

The observation model presented above consists of
multinomial distributions, each with differently
weighted outcomes. To fit the model, we estimated the weights
for each outcome for each distribution, using .
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Fig. 12. Parameters of the multinomial observation model inferred from data: A: Probability of counting 0, 1, � � � faces at the point of fixation if the face is there,
and if it is not there. (In A&C, boundary effects can be seen where all observations of size nine and greater are binned together.) B: Relative likelihood that a face
is located � grid cells from the point of fixation, given that� face boxes were observed there. C: Probability of seeing� face boxes at a location � grid cells
away from fixation, if the face is located there. D: Mean number of face boxes � grid cells away from fixation if the face is located there.

We started with a table filled with ones.
For each image in the dataset, we fixated the digital fovea on
every grid point , and computed , the count of found face
boxes centered in each grid cell up to . On each
fixation, for each of the 440 locations without a face, we
computed and , the absolute - and

-distance from that location to the point of fixation, and in-
cremented the table element .
For the one location with a face, we incremented the table el-
ement .

After this procedure, the estimates

(21)

(22)

correspond to the Bayesian MAP parameter estimates of the
multinomial parameters, starting with a uniform Dirichlet con-
jugate prior [41].

Fig. 12 shows a subset of the parameters that we fit using
our entire image data set. The average number of face boxes
found decreases with the face’s distance to the digital fovea,
showing that the face is harder to find. When there is no face, it
is more likely that the face finder gives zero face counts than if
there is a face. Smaller numbers of face boxes are more likely

than larger numbers regardless of whether there is a face. These
results indicate that MI-POMDP matches our intuition about a
foveated digital eye.

D. Comparison to Other Multiresolution Approaches

The search strategies proposed here relate to recent work on
optimal image search, like efficient subwindow search (ESS)
[42]. Our approach is data driven and detector independent,
where the ESS approach is more analytic. We chose Viola Jones
as a backend algorithm because it is standard, and freely avail-
able to all researchers. However, any object detector can be used.
The cost of this flexibility is that our approach requires a dataset
of labeled images to build a statistical model of the performance
of a given object detector.

Algorithms like ESS are more restrictive on the object
detector that they encapsulate, so they are not plug-and-play.
Specifically, they require an upper bounding function that
must be constructed analytically for each family of object
detectors for the guarantees of the algorithm to hold. Only
some object detectors are amenable to such a construction. The
efficiency of the ESS algorithm depends on the tightness of the
upper bound that computes and the computational overhead
of evaluating .

As in ESS, if it is known that there is more than one face
in the image, our algorithm will find and report the location of
one of them. As in ESS, we can search for subsequent faces by
removing the location of the face we just found from consider-
ation, and repeating the search process.
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E. Implementation Details

The MI-POMDP model is framed in general formalisms that
are agnostic to the object being searched for, or for the de-
tector given. We tested it with the OpenCV 1.0 face detector,
a Viola-Jones style face detector [43], [44]. For this paper, we
chose to tile all images with a 21 21 grid, meaning the face
could be localized to any of 441 locations.4 We used IPs with
diameters of 3, 9, 15, and 21 grid-cells. When the smallest IP
was smaller than 60 45 pixels, it was not used. The down-
sampled image size was always the same number of pixels as
the smallest IP used. The full source code needed to implement
this model is provided online as part of Nick’s Machine Percep-
tion Toolbox [38].

In the previous section, we fit the 8820 parameters of the
multinomial detector output model to our full dataset of im-
ages. In this and following sections, all results were gathered
using seven-fold cross-validation. The images were randomly
assigned to seven groups of 500 images. In each fold, six groups
were used to fit the multinomial parameters, and one group was
used to test performance. All performance results were averaged
by repeating this procedure across all seven folds. All timing
experiments were done on Quad-Core Intel Xeon processors at
2.8 GHz . Absolute (wall clock) time was used, with a precision
of one . Timing of each approach includes all the computation
needed for those approaches. For MI-POMDP, this includes the
time needed for image cropping and downsizing, object detec-
tion, inference, and control.

F. Default Performance

The OpenCV 1.0 Viola–Jones Face Finding implementation
has a performance parameter that controls how it searches across
scales for faces. Using the default scaling parameter of 1.1,
we evaluated the difference in runtime and accuracy for ap-
plying Viola–Jones to a whole image, and for using multinomial
I-POMDP, which calls Viola–Jones as a subroutine.

To plan fixations in a way that gathered information close to
optimally, we used a convolutional logistic policy, as above in
(19). We used a heuristic stopping criterion of the first repeated
fixation. The maximum a-posteriori face location was then re-
turned as the face location.

Even when there is one face image, the Viola–Jones approach
generates many face boxes, both from false alarms, and multiple
detections of the true face. To measure performance, we must
make a single decision about the face location from this profu-
sion of face boxes. One possibility is to take the center of mass
of all boxes, but this may give a result that is close to none of
the proposed locations. The approach we took was to count the
number of face boxes centered in each grid cell, and take the
grid cell with the highest count as the face location.

For both approaches, we measured error as the Euclidean
grid-cell distance from the returned face and its true location.
Fig. 13 shows an example of the algorithm in action. In this
case, the final estimation of the face location is one grid-cell
diagonal from the labeled location, giving a Euclidean distance
error of 1.4.

4Anecdotally, we did not notice variation in performance with somewhat finer
and coarser grids

Fig. 13. Successive fixation choices by the MI-POMDP policy. The face is
found in six fixations. The final estimation of the face location is one grid-
cell diagonal from the labeled location, giving a Euclidean distance error of
1.4 grid-cells.

TABLE II
MI-POMDP DOUBLES THE SPEED OF VIOLA–JONES WITH A SMALL DECREASE

IN ACCURACY

Fig. 14. Time needed to search for faces, as a function of image size. A mode of
the dataset image sizes was 180� 190 (2300/3500 images), explaining apparent
spike at 34 000 pixels. Similar modes explain the other spikes.

The runtime of both algorithms as a function of image size is
shown in Fig. 14. The runtime needed for Viola–Jones is empir-
ically linear in the number of image pixels. On our computers,
it took about 1.25 ms per 1000 pixels to analyze a given image.
MI-POMDP is more variable. Mostly it was linear, taking .57 ms
per 1000 pixels to analyze a given image (a speed-up).
Sometimes it was very quick—much quicker than this. For a few
images it was slower than Viola–Jones. However, on average the
real speedup (including every sub process of our algorithm) was
about two-fold.

This speed increase comes at the price of a small decrease
in accuracy, as shown in the Table II. Both methods on average
placed the face between one and two grid-cells off the true face
location.
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Fig. 15. By changing the Viola–Jones scaling factor, both Viola–Jones and
I-POMDP become faster and less accurate. MI-POMDP is usually closer to
the origin on a time-error curve, showing that it gives a better speed-accuracy
tradeoff than just applying Viola–Jones.

G. Speed-Accuracy Tradeoff

While MI-POMDP sped up the OpenCV Face detector by a
factor of two, it slightly reduced its accuracy. We thus investi-
gated the speed-accuracy tradeoff function in OpenCV and com-
pared it with the tradeoff provided by MI-POMDP. A speed-
accuracy tradeoff function for the OpenCV classifier can be
obtained by varying its scale parameter. This parameter con-
trols the granularity of the search [43]. By default, this param-
eter is 1.1, but we changed it to 1.2, 1.3, , 2.0 and investi-
gated the effect on speed and accuracy performance. Recall that
MI-POMDP calls an object detector as a subroutine, so making
that object detector faster also makes MI-POMDP faster.

Fig. 15 shows that MI-POMDP on top of a Viola–Jones style
object detector gives a lower runtime for a given level of error
than using Viola–Jones alone. Thus the MI-POMDP speed in-
crease does not need to come with an accuracy tradeoff.

H. Discussion

We created a digital eye that leverages a principled model
of visual search to substantially optimize the performance of
generic object detectors. The computational cost added by this
approach is more than compensated by the efficiency of the
search. Speed ups of a factor of two can be expected with very
little loss in accuracy. The approach proposed here lends itself
to some natural extensions.

1) The approach is not at odds with salience-based search
strategies, and in fact can be integrated with such ap-
proaches, like those taken in [45]. By leveraging the
Pyramid of IPs digital fovea, salience can be computed for
the foveal image representation much more quickly than
for the entire image. Combined with recent fast salience
methods like [11], [38], we might expect considerable
gains.

2) Our digital eye is naturally parallelizable: by simulating
several fixations at once, we can gather more information
more quickly. By processing all IPs at once, each fixation
takes less time. A challenge will be developing optimal
parallel search strategies: If you have the computational

resources to search 10 locations simultaneously, which 10
would give you the best long term information gathering?

3) Extension to active cameras in robots: While a parallel
implementation of Viola–Jones could consider all Image
Patches at once, a robot can only aim one camera at one
spatial location at a time, and so it has a rigid informa-
tional bottleneck. The challenges in this extension will be
in maintaining a reliable mapping from image coordinates
to world coordinates, and in evaluating the foveal prop-
erties (fitting a multinomial observation model) for the
robot’s particular vision system.

4) More sophisticated system dynamics can be applied to
search through high resolution video streams. Since the
location of an object changes only a little bit frame to
frame, inferences made in one frame are very informative
for the next. Rather than searching the whole image for
the target, we can apply one digital fixation to a frame
and make inferences about where the target is (and is not)
located. Since only one fixation is needed per frame, the
per-image runtime will be much faster than in the current
approach. While the object will not be correctly localized
in every frame, once it is found, it can be easily tracked.
We have already begun to explore this approach to object
detection in high definition video, although at time of
writing we have not quantified it thoroughly.

VI. ON THE ROLE OF LEARNING AND DEVELOPMENT

The main focus of this paper was the computational anal-
ysis of eye movements. This involved formulating eye motion
as a problem in stochastic optimal control and analyzing the
type of solutions one finds under idealized models of the eyes.
We showed that information gain can be a very powerful re-
ward signal to develop efficient visual search policies. We also
showed how these policies change as a function of some key
characteristics of the visual sensory system. We showed that the
approach could be used to engineer versatile and useful object
search algorithms.

While our work elucidated the computational limitations of
current saliency models of eye movement, namely the fact that
they are not sufficiently specified to be considered valid op-
timality models, our own models are likewise too idealized.
They ignore critical sources of uncertainty. For example, we as-
sumed that the eyes move instantaneously, and with perfect fi-
delity. In real organisms and engineered systems, this is not the
case. For example, for physical robot like the Einstein Robot
(Fig. 16), there are important sources of uncertainty that cannot
be ignored;

1) the relation between servo commands and motion of pixels
across the retina;

2) the time course from execution to completion of an eye
movement;

3) the size of the robot’s instantaneous field of view (visual
angle), relative to its total field of view, from one limit of
its eye movement to the other;

4) the quality of image frames collected during an eye move-
ment;

5) the likelihood that objects in the robot’s environment will
move spontaneously.
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Fig. 16. Einstein robot.

Each of these parameters, and their associated uncertainties,
must be quantified in order to better understand the problems
faced by the brain when scheduling eye movements.

This brings an even more important issue. The computational
models we investigated here assumed that we have characterized
sensorimotor interaction, body morphology, and the statistical
regularities and information structure they induce, as in [14] and
[46]. In our case, in order to develop an optimal policy we first
had to develop quantitative models of the properties of the sen-
sory motor system. Only after we knew, for example, the prob-
ability distribution of the observations given actions and states,
could we formulate an information based reward signal. This
makes sense when the goal is to understand the visual search
policies observed in organisms. A computational analysis of the
type performed in this paper helps us get a better sense of why
humans move their eyes the way they do and why we may want
robots that move their eyes differently. However the analysis
also raises important developmental questions: How do organ-
isms acquire the knowledge of their own sensory motor systems
that would be needed to develop optimal policies?

Organisms cannot construct their world and bodies to have
desirable mathematical characteristics. Most importantly they
do not have access to objective truth with which to characterize
the uncertainties in their world and bodies. All their knowledge
is “subjective” in the sense that it is mediated by their own sen-
sors and inference mechanisms. How can humans, computer
programs, and robots characterize uncertainties subjectively?
One place to start is Sutton’s verification principle [47]:

“An AI system can create and maintain knowledge only
to the extent that it can verify that knowledge itself.”

An important area of future development for infomax models
will be using simple statistical relations among sensors and ac-
tuators, and their evolution over time, to infer the above quan-
tities. For example, simple low level cues like optical flow can
be used to characterize both external motion distributions (how
objects in the world are likely to move) and internal motion dis-
tributions (the time course of pixels moving across the retina
after issuing a servo command).

Following optical flow approaches, a robot can compute
frame-differences in pixel position across a trajectory of frames
collected after an eye movement command is issued. In on-
going work, the Einstein robot was able to use this technique

to determine that his servos do not start to move until about
200 ms after a motor command is requested, that there is rapid
movement from about 200–300 ms, and small jitter and position
refinements until about 500 ms.

Understanding the problems faced by organisms is key to ul-
timately understanding the solutions biology has chosen, and
also for engineering intelligent systems such as robots. An ex-
ample of understanding the choices of biology is why we have
many different types of eye movements (smooth pursuit, sac-
cades, vestibular stabilization, optokinetic stabilization). Char-
acterizing the uncertainties inherent in eye movement may help
us understand each type of eye movement in terms of its infor-
mation costs and benefits. If Einstein takes 500 ms to complete
a saccade, what is the information tradeoff between keeping his
eyes stationary and receiving diminishing information returns
on the things he already sees versus moving his eyes and sacri-
ficing information now for new information later? Can he quan-
tify the information cost-and-benefit of a saccade?

In infomax approaches, information is a fundamental cur-
rency that can be used to analyze tradeoffs faced in biological
systems like the decision to saccade or use smooth pursuit. In-
fomax approaches make the role of each eye movement explicit
in terms of its ability to decrease our uncertainty about relevant
questions in the world. Finally, they give us a framework for
building intelligent artificial systems that explore as quickly as
possible, leading to faster machine perception.

APPENDIX

1) General Policy Gradients: Ultimately, in all policy gra-
dient methods, the quantity we care about is

where

Note that the belief update is deterministic, and so
always 1 or 0. Let be the set of

observations that cause a state transition to from state
under action . Then

Thus, the policy gradient update rule can be written as

The only extra information beyond the POMDP model that is
required to make policy gradient updates is the gradient of the
action probabilities with respect to the parameters.

If we assume that each new belief state can be reached by
exactly one observation (this is often not true), which is the ob-
servation we’ve just made, then the set is empty for all
other than the observation we actually just made, obviating the
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inner sum over the possibly large number of observations. Then
we have

where simply indicates whether it would be pos-
sible for the same belief update to occur if observation were
made under a different action than the one we just saw. Even
without the above assumption, this gradient should be on av-
erage correct, because each observation is made with the correct
probability, and so over time the correct weighting will be given
to each observation. However, computing the full sum gives a
better, less variable estimate of the true gradient.

2) Gradients in Logistic Policies: In this section, we con-
sider policies that are logistic mappings from continuous belief
states to discrete action multinomial probabilities. Specifically,
we have

(23)

(24)

where is constant with respect to , and is constant with
respect to both , which is useful for computing derivatives.
For this logistic formulation, the derivative with respect to the
weights leading to the chosen action , i.e., the element
of the parameter matrix , can be written as

(25)

By a very similar argument, for the rows of the parameter
matrix that are not associated with action , i.e. , the
derivative can be written as

(26)
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