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Abstract

Recent years have seen the development of fast and ac-
curate algorithms for detecting objects in images. However,
as the size of the scene grows, so do the running-times of
these algorithms. If a 128× 102 pixel image requires 20ms
to process, searching for objects in a 1280 × 1024 image
will take 2s. This is unsuitable under real-time operating
constraints: by the time a frame has been processed, the ob-
ject may have moved. An analogous problem occurs when
controlling robot camera that need to scan scenes in search
of target objects. In this paper, we consider a method for
improving the run-time of general-purpose object-detection
algorithms. Our method is based on a model of visual
search in humans, which schedules eye fixations to maxi-
mize the long-term information accrued about the location
of the target of interest. The approach can be used to drive
robot cameras that physically scan scenes or to improve
the scanning speed for very large high resolution images.
We consider the latter application in this work by simulat-
ing a “digital fovea” and sequentially placing it in vari-
ous regions of an image in a way that maximizes the ex-
pected information gain. We evaluate the approach using
the OpenCV version of the Viola-Jones face detector. Af-
ter accounting for all computational overhead introduced
by the fixation controller, the approach doubles the speed of
the standard Viola-Jones detector at little cost in accuracy.

1. Introduction
Detecting objects quickly and at low computational cost

is important for a wide variety of domains, such as security
applications, traffic analysis, clinical diagnosis, satellite im-
age processing, and robotics. While progress in recent years
has been dramatic, there are still two challenging cases: (1)
Physical scanning of scenes using active cameras, and (2)
Digital scanning of very large images. For scanning scenes
using active visual sensors, biology has chosen a solution
based on the use of foveal sensors whose resolution dimin-

ishes as a function of eccentricity. Scanning very large im-
ages can be seen as a special case of scanning world scenes.
Thus it is reasonable to expect that the approaches that bi-
ology has found useful for scanning the world may also be
useful for scanning high resolution images. In this paper
we explore this idea by digitally simulating in software a
“foveal camera”. The sequential placement of the digital
fovea is then controlled using a policy designed to maxi-
mize the information gathered about the location of the tar-
get of interest. The proposed approach is “plug-and-play”:
it can be applied to standard object detectors in a modular
manner. In this, our first implementation, we double the
computational efficiency of current object detectors. I.e.,
the computational overhead required to implement the dig-
ital fovea and control policy is more than compensated by
the improvements in scanning efficiency. The source code
needed to reproduce the results in this paper is provided on-
line as part of Nick’s Machine Perception Toolbox [3].

1.1. Digital Fovea

Key to the proposed approach is the idea of scanning im-
ages using a simulated fovea. Given a fixation point of the
virtual camera, the simulated fovea yields a collection of
Image Patches (IP) of different sizes, all of them centered
on the fixation point (see Figure 1). Each of the IPs is then
shrunk to a common reference size that is much smaller than
the original image. These different patches will lose infor-
mation about the image in different ways: IPs larger than
the reference size may cover most of the image, but they
will lose resolution when scaled down to the smaller refer-
ence size. IPs smaller than the reference size will maintain
resolution but only around a small region of the image. Due
to the fact that all the patches are centered at a fixation point,
the consequence is that resolution is preserved around the
fixation point, but falls off in the periphery, thus the name
“digital fovea.”

Figure 1 shows an example of the digital fovea at work.
In this case we used 4 IPs per fixation, thus operating at 4
scales. To search for the target object at that fixation point,
we can apply any off-the-shelf object detection algorithm
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to each of these IPs. The object detector will search each
of the IPs exhaustively for the target object. E.g. a Viola
Jones style detector will search each downsampled IP at all
locations and scales. As long as the scaled size of the Image
Patches is small, this exhaustive search will be quick.

For example: If any IP is scaled to 10% of the height
and width of the image, its area is 1% of the original image.
Since all 4 IPs are shrunk to the same small size, an object
detector with linear complexity will search all 4 IPs in 4%
of the time it would take to search the whole image. If the
search target’s location can be inferred after scanning IPs at
fewer than 25 successive fixations, this foveated approach
will be faster than exhaustively applying object detection to
a high resolution image.

Two particular challenges are: (1) sequentially picking
the fixation locations; (2) integrating the information ac-

Figure 1. A digital fovea: Several concentric Image Patches (IPs)
(Top) are arranged around a point of fixation. The image por-
tions contained within each rectangle are reduced to a common
size (Middle). In a reconstruction from the downsampled images,
detail is preserved around the fixation point, but decreases with
eccentricity (Bottom).

quired during each successive fixation. The problem of
optimal information gathering and integration is a standard
(but basically unsolved) problem in stochastic optimal con-
trol. The nature of this problem is similar to that faced by
humans when moving their eyes, so we turn to the literature
on human eye-movements to guide our approach.

1.2. Related Work

Our work relates to the growing literature on computa-
tional approaches to eye movements and visual saliency.
Models of visual saliency [13, 8, 18] have been shown to
provide a useful way to improve the search efficiency of
specific object detectors, i.e., most regions without objects
tend to have low visual saliency [5]. Unfortunately visual
saliency filters are computationally expensive [17] and need
to be applied to entire images, making them less attractive
for scanning very high resolution images.

Our work also relates to recent work on optimal image
search, like the Efficient Subwindow Search [10]. Our ap-
proach is data driven and detector independent, where the
ESS approach is more analytic. Our approach requires a
dataset of labeled images to build a statistical model of
the performance of a given object detector. The ESS ap-
proach requires a function f̂ that must be constructed ana-
lytically for each specific object detector for the guarantees
of the algorithm to hold, but only some object detectors are
amenable to such a construction. The efficiency of the al-
gorithm depends on the tightness of the upper bound that f̂
computes and the computational overhead of evaulating f̂ .

2. I-POMDP: A Model of Eye-Movement

Najemnik & Geisler developed an information maxi-
mization (Infomax) model of eye-movements and applied
it to explain visual search of simple objects in pink noise
image backgrounds [12]. The model uses a greedy search
approach: saccades are planned one at a time with the next
saccade made to the location in the image plane that is ex-
pected to yield the highest chance of correctly guessing the
target location. The Najemnik & Geisler model success-
fully captured some aspects of human saccades but it has
two important limitations: (1) Its fixation policy is greedy,
i.e., it maximizes the instantaneous information gain rather
than the long term gathering of information. (2) It is appli-
cable only to artificially constructed images.

Butko & Movellan [4] proposed the I-POMDP frame-
work for modeling visual search. The framework ex-
tends the Najemnik & Geisler model by applying long-term
POMPDP planning methods. They showed that long-term
information maximization reduces search time. Moreover
the optimal search strategy varies in principled ways with
the characteristics of the optical device (e.g. eye vs. cam-
era) that is used for searching [4]. While this addressed the



first limitation of the Najemik & Geisler model, the sec-
ond limitation remained unaddressed, i.e, the model was
only suitable for a limited class of psychophysical stimuli,
namely images that can be described as containing point
objects in a field of Gaussian noise. In this document, we
present a first attempt to extend the I-POMDP model to be
useful for computer vision applications.

I-POMDP frames visual search as a Partially Observ-
able Markov Decision Process (POMDP) [9]. A POMDP
can be described as a tuple 〈S,A,O, R, PT , PO〉. The sets
S, A, and O describe the possible States, Actions, and Ob-
servations of the POMDP. R is a reward function that de-
scribes the goal. PT and PO are probability distributions
that describe the State-Transition dynamics, and the State-
Observation probabilities respectively. The State is not di-
rectly observable, but can be inferred from sequential Ac-
tions and Observations.

In the I-POMDP framework a visual target is located at
one of N discrete locations, arranged on a grid. The State
S ∈ S = [1, 2, ..., N ] describes the current grid location
of the target. The Action A ∈ A = [1, 2, ..., N ] describes
which grid location the subject is currently fixating. The
observation vector ~Ot ∈ O = RN consists of some noisy,
real-valued information from each grid point about whether
the target is present or absent there collected during the fix-
ation at time t. An element Oi

t of the vector corresponds to
grid-point i.

Each observation vector ~O is drawn from the conditional
probability distribution PO( ~O|S,A) that follows a “Signal
Plus Noise” paradigm. In the original version of I-POMDP
each pixel response is modeled as the combination of two
processes: an i.i.d. Gaussian noise process, and, if the pixel
renders the target, a signal process. The strength of the sig-
nal depends on the eccentricity of the pixels with respect to
the current fixation point. The relationship between eccen-
tricity and signal determines the Fovea-Periphery Operating
Characteristic function, F (||S,A||).1 The observation gen-
eration model, depicted graphically in Figure 2, gives

PO( ~Ot = ~ot |St = i, At = k) =

=N(oi
t;µ = F (||i, k||), σ2 = 1)∏

j 6=i

N(oj
t ;µ = 0, σ2 = 1) (1)

where N(oj
t ;µ, σ2) is the Gaussian likelihood of the spe-

cific value of oj
t given the parameters µ and σ2, and ||i, k||

is the euclidean distance between grid points i and k.
Each fixation provides new information which is used to

update the system’s beliefs about the location of the target,
i.e., the posterior distribution of the target given the history

1Najemnik & Geisler estimated this curve psychophysically in their
subjects. [12]
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Figure 2. The I-POMDP model of Eye-Movement: A target is lo-
cated at a visual location previously unknown to the subject. When
the subject observes the world, unit-Gaussian sensor noise cor-
rupts the observation. When the subject is looking close to the
target, the target gives off a strong signal, while when the subject
looks far away, the signal is weak. By making several fixations
and integrating observations across fixations, the subject eventu-
ally becomes confident in the location of the visual target.

of observations. This is done using standard Bayesian in-
ference. The subject’s belief Bi

t about how likely it is that
the search target is located at grid-position i can be written
as follows

Bi
t ∝ p( ~Ot|St = i, At = k)Bi

t−1 (2)

=

 N∏
j=1

p(oj
t |St = i, At = k)

Bi
t−1 (3)

∝ p(oi
t|St = i, At = k)

p(oi
t|St 6= i, At = k)

Bi
t−1 (4)

where (3) follows from (2) by the independence in sen-
sor noise, and (4) follows by noticing that the probability
that the entire observation vector was generated only by the
noise process is a constant, i.e.

∏
j p(o

j
t |St 6= j, At = k) =

Ck. The goal in I-POMDP is to develop a policy that maps
the current belief state (the posterior distribution of the tar-
get location) into actions (next fixation). This policy is de-
signed to maximize the long-term gathering of information
about the target location. This is equivalent to minimizing
the entropy of the belief distribution ~Bt [11]. Thus the re-
ward function at time t is the negative entropy of the poste-



rior distribution at that time:

R( ~Bt) =
N∑

i=1

Bi
t logBi

t (5)

The measure of how well a given policy is gathering in-
formation is the reward accrued across a potentially infinite
number of fixations:

∑∞
t=0 γ

tR( ~Bt), where 0 < γ < 1 is
the discount factor. While this appears to be a very com-
plex control problem, it has strong constraints, e.g., shift
invariance, that make possible the efficient use of stochastic
optimization methods, like Policy Gradient [1].

As presented here the I-POMDP model assumes that
there is exactly one target in the image plane. It is straight-
forward to extend the I-POMDP model to the case where
there is at most one search target by adding a special state,
St = 0 indicating that no target is present. The belief update
for this state isB0

t ∝ 1 given the update rule in (4). Extend-
ing the algorithm to multiple targets in a principled manner
is tricky. In practice if there are multiple targets, either the
algorithm will only discover one of them, or it will assign
approximately equal probability to the two target locations.

2.1. The Multinomial I-POMDP Model

While I-POMDP provided a principle approach to im-
age search, it was limited to a very restricted class of im-
ages thus rendering it not useful for realistic computer vi-
sion applications. Here we present a variant of the original
I-POMDP framework, named Multinomial I-POMDP (MI-
POMDP), that can be easily applied to off-the-shelf object
detectors, like the Viola-Jones face detector [16, 15].

State: In I-POMDP, the state St = i ∈ S = [1, 2, ..., N ]
indicates that the search target is located at the grid location
i. This abstract state representation needs to be made con-
crete for object detection in images. Concretely, we cover
the image with a discrete grid, and assume that the location
of the object’s center is inside one of those grid locations.
A natural tradeoff arises in choosing how fine to make the
grid: A finer grid groups fewer pixels into each grid cell,
improving the ability to localize the object in the image; but
this increases the number of hypotheses that must be enter-
tained and locations that can be searched. For this paper
we chose to tile the image with a 21 × 21 grid, meaning
the search target could be located at any of 441 locations.
This discretization can be seen in Figure 3. Depending on
the size of the image, more or fewer pixels may be grouped
into each grid cell.

Action: In I-POMDP, action At = i ∈ A = [1, 2, ..., N ]
indicates the current center of fixation; the effect of fixa-
tion was encoded in the F (||i, k||), which describes how
the search target signal dropped as a function of distance
from fixation. For digital foveas, a similar effect is achieved
by effectively decreasing the resolution with increasing dis-

Figure 3. A 21 × 21 grid was laid over each image, forming the
basis of the hypotheses that are entertained about the possible loca-
tion of a face in the image. A pyramid of concentric Image Patches
(IPs) surround the current point of fixation, which in this example
is the central grid-cell.

tance from fixation. In practice this is achieved by the mech-
anism of a pyramid of IPs [7].

Any grid-point can be the center of fixation, marking the
center of the IP pyramid. IPs of several scales are placed
concentrically around the fixation point. We used a pyra-
mid of 4 IPs with diameters of 3, 9, 15, and 21 grid-cells.
An example of fixating the center of the image is shown in
Figure 3. If an IP could not be placed concentrically around
the fixation-point without being partially off the image, it
was stopped at the image border and so was effectively off-
center from the fixation. This way, each IP was completely
filled with part of the image. An example of an off-center
IP is in Figure 1 where the third-smallest scale is stopped
by the right edge of the image. Its center is to the left of the
point of fixation.

Observation & Observation Model: A probabilistic
model of Observations and how they are generated is im-
portant for deducing the target location with Bayesian in-
ference. A major challenge is to turn the output of the ob-
ject detector into a suitable observation vector. We treat
object detectors as black-box algorithms that take an image
as input, and output a list of pixels that are likely to be the
centers of the search target. These detectors often fire in
clusters around the object (hits), but also have false alarms,
misses, and correct rejections (Figure 4). In MI-POMDP,
the observation is the total number of objects returned by
the object detector in each grid cell (up to some maximum
count value, Cmax), after searching all IPs. The observation
vector generated is ~Ot ∈ {0, 1, ..., Cmax}N .

Because information is lost in the digital fovea, there is
uncertainty about whether the object detector will find the
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Figure 4. An object detector returns candidate locations of the
search target. In each grid cell, we count the candidates up to some
maximum (above, empty cells have an observation of “0”). We
model the counts as being generated by independent draws from
many multinomial distributions, with parameters that vary with the
distance to the point of fixation, and also whether the search target
is actually centered at that grid cell.

object (false negative); given that an object detector finds
an object, it is uncertain whether this is actually the object
(false positive). We represent this uncertainty by model-
ing the generation of each grid cell’s contribution to the ob-
servation vector as an independent draw from a different
Multinomial distribution conditioned on: 1) the presence or
absence of an object in that grid cell; 2) The distance (x-
distance and y-distance) to the center of fixation from that
grid cell. Practically, this means for an L ×M grid of tar-
get locations, each observation is drawn from one of 2LM
multinomial distributions with different parameters for each
combination of x-distance ∈ [0, 1, ...,M − 1], y-distance
∈ [0, 1, ..., L− 1], and object presence / absence.

System Dynamics: In images, the target we are search-
ing for does not move, and the POMDP belief update equa-
tion in Equation (4) can be used. In active cameras or video
streams, the target might move between each fixation. In
this case, the dynamics are modeled by p(St = i|St−1 =
h), and the belief update becomes

Bi
t ∝ p(oi

t|St = i, At = j)
p(oi

t|St 6= i, At = j)
N∑

h=1

p(St = i|St−1 = h)Bh
t−1 (6)

For further discussion, see Section 5.

3. Implementation

The MI-POMDP model is framed in general formalisms
that are agnostic to the object being searched for, or for the
detector given. We tested it with the OpenCV 1.0 face de-
tector, a Viola-Jones style face detector [15, 16]. For this
paper we chose to tile all images with a 21×21 grid, mean-
ing the face could be localized to any of 441 locations. We
used IPs with diameters of 3, 9, 15, and 21 grid-cells. When
the smallest IP was smaller than 60 × 45 pixels, it was not
used. The downsampled image size was always the same
number of pixels as the smallest IP used. The full source
code needed to implement this model is provided online as
part of Nick’s Machine Perception Toolbox [3].

3.1. Image Dataset

We evaluated our algorithm using images from the
GENKI2005 dataset of over 50,000 images of faces [6].
In GENKI2005, most faces were a significant fraction of
the image plane, making them quite easy to search for (by
searching large image scales first). To increase the diffi-
culty, we selected a subset of 3,500 images randomly such
that faces were present in equal amounts across all scales.
Specifically, 1

5 th were < 10% of the image major axis,
and 1

5 th each were 10-20%, 20-30%, 30-40% and 40%+ of
the image major axis. The full images varied in size from
104× 120 to 972× 477 with an average size of 225× 243.
This new data set is freely available as the size-scale nor-
malized subset (GENKI-SZSL) of the GENKI dataset [14].

3.2. Fitting the Multinomial Observation Model

The observation model presented above consists of 2LM
multinomial distributions, each with Cmax + 1 differ-
ently weighted outcomes. To fit the model, we estimated
the weights for each outcome for each distribution, using
Cmax = 9.

We started with a 2 × 21 × 21 × 10 table T filled with
ones. For each image in the dataset, we fixated the digital
fovea on every grid point k, and computed C, the count of
found face boxes centered in each grid cell up toCmax = 9.
On each fixation, for each of the 440 locations j without
a face, we computed XDist(j, k) and Y Dist(j, k) from
that location to the point of fixation, and incremented the
table element T [0, XDist(j, k), Y Dist(j, k), C]. For the
one location iwith a face, we incremented the table element
T [1, XDist(i, k), Y Dist(i, k), C].

After this procedure, the estimates

P (Oj = C|S 6= j, A = k) =

=
T [0, |XDist(j, k)|, |Y Dist(j, k)|, C]∑Cmax

C′=0 T [0, |XDist(j, k)|, |Y Dist(j, k)|, C ′]
(7)
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Figure 5. Parameters of the Multinomial Observation Model Inferred from Data: A: Probability of counting 0, 1, ... faces at the point of
fixation if the face is there, and if it’s not there. B: Relative likelihood that a face is located N grid cells from the point of fixation, given
that M face boxes were observed there. C: Probability of seeing M face boxes at a location N grid cells away from fixation, if the face is
located there. D: Expected number of face boxes N grid cells away from fixation if the face is located there.

P (Oi = C|S = i, A = k) =

=
T [1, |XDist(i, k)|, |Y Dist(i, k)|, C]∑Cmax

C′=0 T [0, |XDist(i, k)|, |Y Dist(i, k)|, C ′]
(8)

correspond to the Bayesian MAP parameter estimates of the
multinomial parameters, starting with a uniform Dirichlet
conjugate prior [2].

Figure 5 shows a subset of the parameters that we fit us-
ing our entire image data set. The average number of face
boxes found decreases with the face’s distance to the digital
fovea, showing that the face is harder to find. When there
is no face, it is more likely that the face finder gives 0 face
counts than if there is a face. Smaller numbers of face boxes
are more likely than larger numbers regardless of whether
there is a face. These results indicate that MI-POMDP is a
reasonable model for object detector behavior when using a
digital fovea.

4. Performance Evaluation

In the previous section, we fit the 8,820 parameters of
the Multinomial detector output model to our full dataset
of images. In this and following sections, all results were
gathered using 7-Fold cross-validation. The images were
randomly assigned to 7 groups of 500 images. In each Fold,
6 groups were used to fit the multinomial parameters, and
1 group was used to test performance. All performance re-
sults were averaged by repeating this procedure across all 7
folds. All timing experiments were done on Quad-Core In-
tel Xeon processors at 2.8GHz. Absolute (wall clock) time
was used, with a precision of 1µs. Timing of each approach
includes all the computation needed for those approaches.
For MI-POMDP this includes the time needed for image
cropping and downsizing, object detection, inference, and
control.

4.1. Default Performance

The OpenCV 1.0 Viola-Jones Face Finding implemen-
tation has a performance parameter that controls how it
searches across scales for faces. Using the default scaling
parameter of 1.1, we evaluated the difference in runtime and
accuracy for applying Viola Jones to a whole image, and for
using Multinomial I-POMDP, which calls Viola Jones as a
subroutine.

To plan fixations in a way that gathered information close
to optimally, we used a policy that was shown to exhibit
near-optimal fixation performance for human eyes by Butko
& Movellan [4]. This policy biases fixations toward regions
of the image where the face is likely to be, and once the lo-
cation of the face is known with high confidence, the face
is always fixated. We used a heuristic stopping criterion of
the first repeated fixation. The maximum a-posteriori face
location was then returned as the face location. For Viola-
Jones, the grid-cell with the highest number of found face
boxes was used as the face location. We measured error as
the euclidean grid-cell distance from the returned face and
its true location. Figure 6 shows an example of the algo-
rithm in action. In this case, the final estimation of the face
location is one grid-cell diagonal from the labeled location,
giving a euclidean distance error of 1.4.

The runtime of both algorithms as a function of image
size is shown in Figure 7. The runtime needed for Viola
Jones is empirically linear in the number of image pixels.
On our computers, it took about 1.25 ms per 1000 pixels
to analyze a given image. MI-POMDP is more variable.
Mostly it was linear, taking .57 ms per 1000 pixels to an-
alyze a given image (a 2.18x speed-up). Sometimes it was
very quick – much quicker than this. For a few images it
was slower than Viola Jones. However, on average the real
speedup (including every sub process of our algorithm) was
about two-fold.

This speed increase comes at the price of a small de-



Fixation 1 Fixation 2 Fixation 3

Fixation 4 Fixation 5 Fixation 6

Figure 6. Successive fixation choices by the MI-POMDP policy.
The face is found in six fixations. The final estimation of the face
location is one grid-cell diagonal from the labeled location, giving
a euclidean distance error of 1.4 grid-cells.

crease in accuracy, as shown in the Table below. Both meth-
ods on average placed the face between one and two grid-
cells off the true face location.

Measure MI-POMDP Viola Jones
Mean Runtime (ms) 37.9 73.4
Scaling (ms/1000px) 0.57 1.25
Error (grid-cells) 1.59 1.26

Table 1. MI-POMDP doubles the speed of Viola-Jones with a
small decrease in accuracy.
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Figure 7. Time needed to search for faces, as a function of im-
age size. A mode of the dataset image sizes was 180 × 190
(2300/3500 images), explaining apparent spike at 34,000 pixels.
Similar modes explain the other spikes.
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Figure 8. By changing the Viola Jones scaling factor, both Viola
Jones and I-POMDP become faster and less accurate. MI-POMDP
is usually closer to the origin on a time-error curve, showing that
it gives a better speed-accuracy tradeoff than just applying Viola
Jones.

4.2. Speed-Accuracy Tradeoff

While MI-POMDP sped up the OpenCV Face detector
by a factor of two, it slightly reduced its accuracy. We
thus investigated the speed-accuracy tradeoff function in
OpenCV and compared it with the tradeoff provided by
MI-POMDP. A speed-accuracy tradeoff function for the
OpenCV classifier can be obtained by varying its scale pa-
rameter. This parameter controls the granularity of the
search [15]. By default, this parameter is 1.1, but we
changed it to 1.2, 1.3, ..., 2.0 and investigated the effect on
speed and accuracy performance. Recall that MI-POMDP
calls an object detector as a subroutine, so making that ob-
ject detector faster also makes MI-POMDP faster.

Figure 8 shows that MI-POMDP on top of a Viola-Jones
style object detector gives a lower runtime for a given level
of error than using Viola Jones alone. Thus the MI-POMDP
speed increase does not need to come with an accuracy
tradeoff.

5. Conclusions and Future Work
We presented a principled model of visual search that can

be used to substantially optimize the performance of generic
object detectors. The approach simulates a digital fovea and
scans the image so as to maximize the expected amount of
information obtained about the location of the target. This
is done using standard techniques from the stochastic opti-
mal control literature. The computational cost added by this
approach is more than compensated by the efficiency of the
search. Speed ups of a factor of two can be expected with
very little loss in accuracy. The approach proposed here



lends itself to some natural extensions:
1) We can directly optimize the policy that we use for

searching, rather than relying on a policy that was shown to
be near optimal for another detector. It is unknown at this
point in time how much this will improve performance.

2) The approach can be integrated with saliency based
search approaches, like those taken in [17]. By leveraging
the Pyramid of IPs digital fovea, saliency can be computed
for the foveal image representation much more quickly than
for the entire image. Combined with recent fast saliency
methods like [5, 3], we might expect considerable gains.

3) Digital retinas are naturally parallelizable: by simulat-
ing several fixations at once, we can gather more informa-
tion more quickly. By processing all IPs at once, each fix-
ation takes less time. A challenge will be developing opti-
mal parallel search strategies: If you have the computational
resources to search 10 locations simultaneously, which 10
would give you the best long term information gathering?

4) Extension to active cameras in robots: While a paral-
lel implementation of Viola Jones could consider all Image
Patches at once, a robot can only aim one camera at one
spatial location at a time, and so it has a rigid informational
bottleneck. The challenges in this extension will be in main-
taining a reliable mapping from image coordinates to world
coordinates, and in evaluating the foveal properties (fitting
a multinomial observation model) for the robot’s particular
vision system.

5) More sophisticated system dynamics can be applied
to search through high resolution video streams. Since the
location of an object changes only a little bit frame to frame,
inferences made in one frame are very informative for the
next. Rather than searching the whole image for the tar-
get, we can apply one digital fixation to a frame and make
inferences about where the target is (and is not) located.
Since only one fixation is needed per frame, the per-image
runtime will be much faster than in the current approach.
While the object will not be correctly localized in every
frame, once it is found, it can be easily tracked. We have
already begun to explore this approach to object detection
in high definition video, although at time of writing we have
not quantified it thoroughly.
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