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Charles Darwin (1872/1998) was the first to fully recognize that facial expression is one 
of the most powerful and immediate means for human beings to communicate their emotions, 
intentions, and opinions to each other. In addition to providing information about affective state, 
facial expressions also provide information about cognitive state, such as interest, boredom, 
confusion, and stress, and conversational signals with information about speech emphasis and 
syntax. Facial expressions also contain information about whether an expression of emotion is 
posed or felt (Ekman, 2001; Frank, Ekman, & Friesen, 1993). In order to objectively measure the 
richness and complexity of facial expressions, behavioral scientists have found it necessary to 
develop objective coding standards. The Facial Action Coding System (FACS) from Ekman and 
Friesen (1978) is arguably the most comprehensive and influential of such standards.  FACS is 
based on the anatomy of the human face, and codes expressions in terms of component 
movements, called “action units”  (AUs).  Ekman and Friesen defined 46 AUs to describe each 
independent movement of the face.  FACS measures all visible facial muscle movements, 
including head and eye movements, and not just those presumed to be related to emotion.   When 
learning FACS, a coder is trained to identify the characteristic pattern of bulges, wrinkles, and 
movements for each facial AU.  The AUs approximate individual facial muscle movements but 
there is not always a 1:1 correspondence.    

FACS has been used to verify the physiological presence of emotion in a number of 
studies, with high (over 75%) agreement  (e.g., Ekman, Friesen, & Ancoli, 1980; Ekman, 
Levenson, & Friesen, 1983; Ekman, Davidson, & Friesen, 1990; Levenson, Ekman, & Friesen, 
1990; Ekman, Friesen, & O’Sullivan, 1988).  Because it is comprehensive, FACS also allows for 
the discovery of new patterns related to emotional or situational states. For example, using FACS 
Ekman et al (1990) and Davidson et al (1990) found that smiles which featured both orbicularis 
oculi (AU6), as well as zygomatic major action (AU12), were correlated with self-reports of 
enjoyment, as well as different patterns of brain activity, whereas smiles that featured only 
zygomatic major (AU12) were not.  Subsequent research demonstrated that the presence of smiles 
that involve the orbicularis oculi (hereafter “enjoyment smiles”) on the part of a person who has 



survived the death of their romantic partner predicts successful coping with that traumatic loss 
(Bonnano & Keltner, 1997).  Other work has shown a similar pattern.  For example, infants show 
enjoyment smiles to the presence of their mothers, but not to strangers (Fox & Davidson, 1988).  
Mothers do not show as many enjoyment smiles to their difficult children compared to their non-
difficult children (Bugental, 1986). Research based upon FACS has also shown that facial 
expressions can predict the onset and remission of depression, schizophrenia, and other 
psychopathology (Ekman & Rosenberg, 1997), can discriminate suicidally from non-suicidally 
depressed patients (Heller & Haynal, 1994), and can predict transient myocardial ischemia in 
coronary patients (Rosenberg et al., 2001). FACS has also been able to identify patterns of facial 
activity involved in alcohol intoxication that observers not trained in FACS failed to note 
(Sayette, Smith, Breiner, & Wilson, 1992).   

Although FACS is an ideal system for the behavioral analysis of facial action patterns, 
the process of  applying FACS to videotaped behavior is currently done by hand and  has been 
identified as one of the main obstacles to doing research on emotion (Frank, 2002, Ekman et al, 
1993).  FACS coding is currently performed by trained experts who make perceptual judgments 
of video sequences, often frame by frame. It requires approximately 100 hours to train a person to 
make these judgments reliably and pass a standardized test for reliability. It then typically takes 
over two hours to code comprehensively one minute of video. Furthermore, although humans can 
be trained to code reliably the morphology of facial expressions (which muscles are active) it is 
very difficult for them to code the dynamics of the expression (the activation and movement 
patterns of the muscles as a function of time). There is good evidence suggesting that such 
expression dynamics, not just morphology, may provide important information (Ekman & 
Friesen, 1982). For example, spontaneous expressions have a fast and smooth onset, with distinct 
facial actions peaking simultaneously, whereas posed expressions tend to have slow and jerky 
onsets, and the actions typically do not peak simultaneously (Frank, Ekman, & Friesen, 1993).    

 

 
 
Figure 1: The Facial Action Coding System decomposes facial expressions into component 
actions. The three individual brow region actions and selected combinations are illustrated. When 
subjects pose fear they often perform 1+2 (top right), whereas spontaneous fear reliably elicits 
1+2+4 (bottom right) (Ekman, 2001).    
 



 
Within the past decade, significant advances in computer vision open up the possibility of 

automatic coding of facial expressions at the level of detail required for such behavioral studies. 
Automated systems would have a tremendous impact on basic research by making facial 
expression measurement more accessible as a behavioral measure, and by providing data on the 
dynamics of facial behavior at a resolution that was previously unavailable. Such systems would 
also lay the foundations for computers that can understand this critical aspect of human 
communication. Computer systems with this capability have a wide range of applications in basic 
and applied research areas, including man-machine communication, security, law enforcement, 
psychiatry, education, and telecommunications.   

A number of ground breaking systems have appeared in the computer vision literature for 
facial expression recognition which use a wide variety of approaches, including optic flow (Mase, 
1991;Yacoob & Davis, 1996; Rosenblum, Yacoob, & Davis, 1996; Essa & Pentland, 1997), 
tracking of high-level features (Tian, Kanade, & Cohn, 2001; Lien, Kanade, Cohn, & Li, 2000) 
methods that match images to physical models of the facial skin and musculature (Mase 1991; 
Terzopoulus & Waters, 1993; Li, Riovainen, & Forscheimer, 1993; Essa & Pentland, 1997), 
methods based on statistical learning of images (Cottrell & Metcalfe, 1991; Padgett & Cottrell, 
1997; Lanitis, Taylor, & Cootes, 1997; Bartlett et al., 2000) and methods based on biologically 
inspired models of human vision (Zhang, Lyons, Schuster, & Akamatsu, 1998; Bartlett, 2001, 
Bartlett, Movellan, & Sejnowski, 2002).    See Pantic (2000b) for a review.  

Much of the early work on computer vision applied to facial expressions focused on 
recognizing a few prototypical expressions of emotion produced on command (e.g., “smile”). 
More recently there has been an emergence of groups that analyze facial expressions into 
elementary components. For example Essa and Pentland (1997) and Yacoob and Davis (1996) 
proposed  methods to analyze expressions using an animation-style  coding system inspired by 
FACS.    Eric Petajan’s group has also worked for many years on methods for automatic coding 
of facial expressions in the style of MPEG4 which codes movement of a set of facial feature 
points (Doenges, Lavagetto, Osterman, Pandzic and Petajan, 1997). While coding standards like  
MPEG4  are useful for animating facial avatars, behavioral research may require more 
comprehensive information. For example, MPEG4 does not encode some behaviorally relevant 
movements such as the contraction of the orbicularis oculi, which differentiates spontaneous from 
posed smiles (Ekman, 2001). It also does not measure changes in surface texture such as 
wrinkles, bulges, and shape changes that are critical for the definition of action units in the FACS 
system.  For example, the vertical wrinkles and bulges between the brows are important for 
distinguishing AU 1 alone from AU 1+4 (see Figure 1b), both of which entail upward movement 
of the brows, but which can have different behavioral implications.  

We present here an approach for developing a fully automatic FACS coding system. The 
approach uses state of the art  machine learning techniques  that can be applied to recognition of 
any facial action.  The techniques were tested on a small sample of facial actions, but can be 
readily applied to recognition of other facial actions given a sample of images on which to train 
the system. We are presently collaborating with Mark Frank to collect more training data (see 
Afterword.) In this paper we show preliminary results for I. Recognition of posed facial actions in 



controlled conditions, and II. Recognition of spontaneous facial actions in freely behaving 
subjects.   

Two other groups have focused on automatic FACS recognition as a tool for behavioral 
research. One team, lead by Jeff Cohn and Takeo Kanade,  present an approach based on 
traditional computer vision techniques such as using edge detection to extract contour-based 
image features and motion tracking of those features using optic flow. A comparative analysis of 
our approaches is available in (Bartlett et al, 2001; Cohn et al., 2001). Pantic & Rothcrantz 
(2000a) use robust facial feature detection followed by an expert system to infer facial actions 
from the geometry of the facial features. The approach presented here measures changes in facial 
texture that include not only changes in position of feature points, but also higher resolution 
changes in image texture such as those created by wrinkles, bulges, and changes in feature 
shapes. We explore methods that merge machine learning and biologically inspired models of 
human vision. Our approach differs from other groups in that instead of designing special purpose 
image features for each facial action, we explore general purpose learning mechanisms that can 
be applied to recognition of any facial action.   

 
 
 Study I: Automatic FACS coding of posed facial actions, controlled conditions 
 

A database of directed facial actions was collected by Paul Ekman and Joe Hager at the 
University of California, San Francisco. The full database consists of 1100 image sequences 
containing over 150 distinct actions and action combinations, and 24 subjects. These images were 
collected in a constrained environment. Subjects deliberately faced the camera and held their 
heads as still as possible. Each sequence contained 7 frames, beginning with a neutral expression 
and ending with the action unit peak.  For this investigation, we used 111 sequences from 20 
subjects and attempted to classify 12 actions: 6 upper face actions (Aus 1, 2, 4, 5, 6, and 7)  and 6 
lower face actions (Aus 9, 10, 16, 17, 18, 20).  Upper and lower-face actions were analyzed 
separately. A sample of facial actions from this database is shown in Figure 1b.  

We developed and compared techniques for automatically recognizing these facial 
actions by computer (Bartlett et al., 1996; Bartlett, Hager, Ekman, & Sejnowski, 1999; Donato, 
Bartlett, Hager, Ekman, & Sejnowski, 1999; Bartlett, Donato, Hager, Ekman, & Sejnowski, 
2000). Our work focused on comparing the effectiveness of different image representations, or 
feature extraction methods, for facial action recognition. We compared image filters derived from 
supervised and unsupervised machine learning techniques. These data-driven filters were 
compared to Gabor filter banks, which closely model the response transfer function of simple 
cells in primary visual cortex. In addition, we also examined motion representations based on 
optic flow, and an explicit feature-extraction technique that measured facial wrinkles in specified 
locations (Bartlett et. al. 1999; Donato et al. 1999). These techniques are briefly reviewed here. 
More information is available in the journal papers cited above, and in Bartlett (2001).  
 
 



Adaptive methods 
 
In contrast to more traditional approaches to image analysis in which the relevant structure is 
decided by the human user and measured using hand-crafted techniques, adaptive methods learn 
about the image structure directly from the image ensemble. We draw upon principles of machine 
learning and information theory to adapt processing to the immediate task environment. Adaptive 
methods have proven highly successful for tasks such as recognizing facial identity (e.g. Brunelli 
& Poggio, 1993; Turk & Pentland, 1991; Penev & Atick, 1996; Belhumeur et al., 1997; Bartlett, 
Movellan, & Sejnowski, 2002; see Bartlett, 2001 for a review), and can be applied to recognizing 
any expression dimension given a set of training images.  

We compared four techniques for developing image filters adapted to the statistical 
structure of face images. (See Figure 2.) The techniques were Principal Component Analysis 
(PCA), often termed Eigenfaces (Turk & Pentland 1991), Local Feature Analysis (LFA) (Penev 
& Atick, 1996), Fisher’s linear discriminants  (FLD), and Independent Component Analysis 
(ICA). Except for FLD, all of these techniques are unsupervised; image representations are 
developed without knowledge of the underlying action unit categories. Principal component 
analysis, Local Feature Analysis and Fisher discriminant analysis are a function of the pixel by 
pixel covariance matrix and thus insensitive to higher-order statistical structure.  Independent 
component analysis is a generalization of PCA that learns the high-order relations between image 
pixels, not just pair-wise linear dependencies. We employed a learning algorithm for ICA 
developed in Terry Sejnowski's laboratory based on the principle of optimal information transfer 
between neurons (Bell & Sejnowski, 1995;  Bartlett, Movellan, & Sejnowski, 2002).    
 

a.   b.   c.   d.      
 
Figure 2. Sample image filters for the upper face. a.  Eigenface (PCA). b. Independent component 
analysis  (ICA) c. Gabor. d. Local Feature Analysis (LFA).     
 

Predefined image features 
 

Gabor wavelets 
 

An alternative to the adaptive methods described above are wavelet decompositions based on 
predefined families of image kernels. We employed Gabor kernels, which are 2-D sine waves 
modulated by a Gaussian. Gabor kernels model the response functions of cells in the primate 
visual cortex (Daugman, 1988), and have proven successful as a basis for recognizing facial 
identity in images (Lades et al., 1993). 
 



Explicit Feature Measures 
 
A more traditional approach to computer vision is to apply hand-crafted image features explicitly 
designed to measure components of the image that the engineer has decided are relevant. We 
applied a method developed by Jan Larson (Bartlett et. al., 1996) for measuring changes in facial 
wrinkling and eye opening. Facial wrinkling was measured by the sum of the squared derivatives 
of the image pixels along line segments in 4 facial regions predicted to contain wrinkles due to 
the facial actions in question. Eye opening was measured as the area of visible sclera. Changes in 
wrinkling or eye opening were measured by subtracting baseline measured for the neutral image. 
See Bartlett et al. (1999) for more information on this technique.  
 
 

Optic Flow 
 
The majority of the work on automatic facial expression recognition has focused on facial motion 
analysis through optic flow estimation. Here, optic flow fields were calculated by employing a 
correlation-based technique developed by Singh (1992). Optic flow fields were classified by 
template matching. (See Donato et al., 1999, for more information).  

 
 
Classification Procedure 
 
The face was located in the first frame in each sequence using the centers of the eyes and 

mouth. These coordinates were obtained manually by a mouse click.   The coordinates from 
Frame 1 were used to register the subsequent frames in the sequence. The aspect ratios of the 
faces were warped so that the eye and mouth centers coincided across all images.  The three 
coordinates were then used to rotate the eyes to horizontal, scale, and finally crop a window of 60 
x 90 pixels containing the upper or lower face.  To control for variations in lighting, logistic 
thresholding and luminance scaling was performed (Movellan, 1995). Difference images were 
obtained by subtracting the neutral expression in the first image of each sequence from the 
subsequent images in the sequence. Individual frames of each action unit sequence were  
otherwise analyzed separately, with the exception of optic flow which analyzed three consecutive 
frames.  

Each image analysis algorithm produced a feature vector f. We employed a simple 
nearest neighbor classifier in which the similarity of a training feature vector f t and a novel 
feature vector fn was measured as the cosine of the angle between them. The test vector was 
assigned the class label of the training vector for which the cosine was highest. We also explored 
template matching, where the templates were the mean feature vectors for each class. 
Generalization to novel faces was evaluated using leave-one-out cross-validation.  
 

 



Human Subject Comparisons 
 

The performance of human subjects provided benchmarks for the performances of the automated 
systems. Naïve subjects benchmarked the difficulty of the visual classification task. The 
agreement rates of FACS experts benchmarked how close we were to the goal of replacing expert 
human coders with an automated system. Naïve subjects were 10 adult volunteers with no prior 
knowledge of facial expression measurement. Upper and lower facial actions were tested 
separately. Subjects were provided with a guide sheet which gave an example of each of the 6 
lower or upper facial actions along with written descriptions from Ekman & Friesen (1978). Each 
subject was given a training session in which the facial actions were described and demonstrated, 
and visual cues were pointed out in the example images.  The subject kept the guide sheet as a 
reference during the task. Face images were preprocessed identically to how they had been for the 
automated systems, and then printed using a high resolution laser printer.  Face images were 
presented in pairs, with the neutral image and the test image presented side by side. Subjects 
made a 6-alternative forced choice on 93 pairs of upper face and 93 pairs of lower face actions. 
Expert subjects were 4 certified FACS coders. Expert subjects were not given additional training 
or a guide sheet.  
 
 

Overall Findings 
 
 Image decomposition with gray-level image filters outperformed explicit extraction of facial 
wrinkles or motion flow fields.  Best performance was obtained with the Gabor wavelet 
decomposition and independent component analysis, each of which gave 96% accuracy for 
classifying the 12 facial actions (see Table 1). This performance equaled the agreement rates of 
expert human subjects on this set of images. The Gabor and ICA representations were both 
sensitive to high-order dependencies among the pixels (Field, 1994; Simoncelli, 1997), and have 
relationships to visual cortical neurons (Daugman, 1988; Bell & Sejnowski, 1997). See (Bartlett, 
2001) for a more detailed discussion.   We also obtained evidence that high spatial 
frequencies are important for classifying facial actions.  Classification with the three highest 
frequencies of the Gabor representation (15,18,21 cycles/face) was 93% compared to 84% with 
the three lowest frequencies (9,12,15 cycles/face). 
   
Computational 
Analysis   
 
  

Eigenfaces 79.3  +4 
Local Feature Analysis 81.1  +4 
Independent Component Analysis 95.5  +2 
Fisher’s Linear Discriminant 75.7  +4 
Gabor Wavelet Decomposition 95.5  +2 
Optic Flow 85.6  +3 
Explicit Features (wrinkles) 57.1  +6  

Human 
Subjects  

Naïve 77.9  +3 
Expert 94.1  +2  



Table 1: Summary of results for recognition of directed facial actions.  Performance is for novel 
subjects on frame 5. Values are percent agreement with FACS labels in the database. 
 

We also investigated combining multiple sources of information in a single classifier. 
Combining the wrinkle measurements with PCA in a three layer perceptron resulted in a 0.3 
percentage point improvement in performance over PCA alone (Bartlett et al., 1999).   

In addition, we trained a dedicated system to distinguish felt from unfelt smiles 
(Littlewort-Ford, Bartlett, & Movellan, 2001) based on the findings of Ekman, Friesen, and 
O’Sullivan (1988) that felt smiles include the contraction of the orbicularis oculi. This system 
was trained on two FACS-coded databases of images, the DFAT-504 and the Ekman-Hager 
databases. There were 157 examples of smiles scored as containing both AU 12 (zygomatic 
major) and AU 6  (orbicularis oculi) and 72 examples of smiles scored as containing 12 but not 
AU 6. This system obtained 87% correct discrimination of felt from unfelt smiles. This is 
encouraging given that non-expert humans detected AU 6 about 50% of the time and false 
alarmed about 25% of the time on a 6-alternative forced choice (Bartlett et al., 1999). 
 
 
Study II: Automatic FACS coding of spontaneous facial expressions1 
 
Prior to 2000, work in automatic facial expression recognition was based on datasets of posed 
expressions collected under controlled conditions with subjects deliberately facing the camera at 
all times. In 2000-2001 our group at UCSD, along with the Cohn/Kanade group at CMU, 
undertook the first attempt that we know of to automate FACS coding of spontaneous facial 
expressions in freely behaving individuals (Bartlett et. al, 2001; Cohn et al. 2001).  Extending 
these systems to spontaneous facial behavior was a critical step forward towards development of 
tools with practical applications in behavioral research.   

Spontaneous facial expressions differ substantially from posed expressions, similar to 
how continuous, spontaneous speech differs from isolated words produced on command. 
Spontaneous facial expressions are mediated by a distinct neural pathway from posed 
expressions.  The pyramidal motor system, originating in the cortical motor strip, drives voluntary 
facial actions, whereas involuntary, emotional facial expressions originate subcortically  and 
involve the basal ganglia, limbic system, and the cingulate motor area (e.g. Rinn, 1984).  
Psychophysical work has shown that spontaneous facial expressions differ from posed 
expressions in a number of ways (Ekman, 2001).  Subjects often contract different facial muscles 
when asked to pose an emotion such as fear versus when they are actually experiencing fear. (See 
Figure 1.) In addition, the dynamics are different. Spontaneous expressions have a fast and 
smooth onset, with apex coordination, in which muscle contractions in different parts of the face 
peak at the same time.  In posed expressions, the onset tends to be slow and jerky, and the muscle 
contractions typically do not peak simultaneously.  

The goal of this study was to classify facial actions in twenty subjects who participated in 
a high stakes mock crime experiment previously conducted by Mark Frank and Paul Ekman 
(Frank and Ekman, under review). The results were evaluated by a team of computer vision 
experts (Yaser Yacoob, Pietro Perona) and behavioral experts (Paul Ekman, Mark Frank). These 



experts produced a report identifying the feasibility of this technology and the steps necessary for 
future progress.   

 
 

Factorizing rigid head motion from nonrigid facial deformations 
 
The most difficult technical challenge that came with spontaneous behavior was the presence of 
out-of-plane rotations due to the fact that people often nod or turn their head as they communicate 
with others.  Our approach to expression recognition is based on statistical methods applied 
directly to filter bank image representations. While in principle such methods may be able to 
learn the invariances underlying out-of-plane rotations, the amount of data needed to learn such 
invariances was not available to us. Instead, we addressed this issue by means of deformable 3D 
face models. We fit 3D face models to the image plane, texture those models using the original 
image frame, then rotate the model to frontal views, warp it to a canonical face geometry, and 
then render the model back into the image plane. (See Figures 3-5.) This allowed us to factor out 
image variation due to rigid head rotations from variations due to nonrigid face deformations. The 
rigid transformations were encoded by the rotation and translation parameters of the 3D model. 
These parameters are retained for analysis of the relation of rigid head dynamics to emotional and 
cognitive state.  

Since our goal was to explore the use of 3D models to handle out-of-plane rotations for 
expression recognition, we first tested the system using hand-labeling to give the position of 8 
facial landmarks. The average deviation between human coders was 1/5 of an iris. We are  
currently obtaining similar precision using automatic feature detectors (See Afterword).  
 

a.     b.  
 
Figure 3: Head pose estimation. a. First camera parameters and face geometry are jointly 
estimated using an iterative least squares technique  b. Next head pose is estimated in each frame 
using stochastic particle filtering. Each particle is a head model at a particular orientation and 
scale.   
 



When landmark positions in the image plane are known, the problem of 3D pose 
estimation is relatively easy to solve. We begin with a canonical wire-mesh face model and adapt 
it to the face of a particular individual by using 30 image frames in which 8 facial features have 
been labeled by hand. Using an iterative least squares triangulation technique, we jointly estimate 
camera parameters and the 3D coordinates of these 8 features. A scattered data interpolation 
technique is then used to modify the canonical 3D face model so that it fits the 8 feature positions 
(Pighin et al., 1998). Once camera parameters and 3D face geometry are known, we used a 
stochastic particle filtering approach (Kitagawa, 1996) to estimate the most likely rotation and 
translation parameters of the 3D face model in each video frame. (See Braathen, Bartlett, 
Littlewort, & Movellan, 2001).    
 
 
  Action unit recognition 
 

Database of spontaneous facial expressions 
 
We employed a dataset of spontaneous facial expressions from freely behaving individuals. The 
dataset  consisted of 300 Gigabytes of 640 x 480 color images, 8 bits per  pixels, 60 fields per 
second, 2:1 interlaced.  The video sequences  contained out of plane head rotation up to 75 
degrees. There were 17  subjects: 3 Asian, 3 African American, and 11 Caucasians. Three  
subjects wore glasses. The facial behaviors in one minute of video  per subject were scored frame 
by frame by 2 teams experts on the FACS  system, one lead by Mark Frank at Rutgers, and 
another lead by  Jeffrey Cohn at U. Pittsburgh.  
While the database we used was rather large for current digital video storage standards, in 
practice the number of spontaneous examples of each action unit in the database was relatively 
small.  Hence, we prototyped the system on the three actions which had the most examples: 
Blinks (AU 45 in the FACS system) for which we used 168 examples provided by 10 subjects, 
Brow raises (AU 1+2) for which we had 48 total examples provided by 12 subjects, and Brow 
lower (AU 4) for which we had 14 total examples provided by 12 subjects. Negative examples for 
each category consisted of randomly selected sequences matched by subject and sequence length.  
These three facial actions have relevance to applications such as monitoring of alertness, anxiety, 
and confusion (Holland 1972, Karson, 1988; Orden, Jung & McKeig, 2000; Ekman, 2001). 

The system presented here employs general purpose learning mechanisms that can be 
applied to recognition of any facial action once sufficient training data is available.  There is no 
need to develop special purpose feature measures to recognize additional facial actions.  
 

Recognition system 
 

An overview of the recognition system is illustrated in Figures 4 and 5. Head pose was estimated 
in the video sequences using a particle filter with 100 particles.  Face images were then warped 
onto a face model with canonical face geometry, rotated to frontal, and then projected back into 
the image plane. This alignment was used to define and crop a subregion of the face image 
containing the eyes and brows. The vertical position of the eyes was 0.67 of the window height. 



There were 105 pixels between the eyes and 120 pixels from eyes to mouth. Pixel brightnesses 
were linearly rescaled to [0,255]. Soft histogram equalization was then performed on the image 
gray-levels by applying a logistic filter with parameters chosen to match the mean and variance of 
the gray-levels in the neutral frame (Movellan, 1995).  

The resulting images were then convolved with a bank of Gabor kernels at 5 spatial 
frequencies and 8 orientations. Output magnitudes were normalized to unit length and then 
downsampled by a factor of 4. The Gabor representations were then channeled to a bank of 
support vector machines (SVM's).  Nonlinear SVM's were trained to recognize facial actions in 
individual video frames. The training samples for the SVM's were the action peaks as identified 
by the FACS experts, and negative examples were randomly selected frames matched by subject. 
Generalization to novel subjects was tested using leave-one-out cross-validation. The SVM 
output was the margin (distance along the normal to the class partition).  Trajectories of SVM 
outputs for the full video sequence of test subjects were then channeled to hidden Markov models 
(HMM's).  HMMs are probabilistic dynamical models that learn probability distributions of 
sequences. They are the dominant approach in current speech recognition systems, where the task 
is to recognize sequences of sounds. HMMs were trained to learn the sequences of SVM outputs 
typically produced for each AU. One HMM was trained on a single AU unit and thus that HMM 
can be considered as an expert for that AU. A similar approach is used in speech recognition 
where each HMM becomes an expert on a given phoneme.  At test time a new sequence was 
presented and fed to each HMM to get an estimate of the likelihood of each sequence given each 
possible AU under consideration. The AU corresponding to the HMM that provided maximum 
likelihood was chosen. Note the approach classifies  facial actions without using information 
about which frame contained the action peak. Generalization to novel subjects was again tested 
using leave-one-out cross-validation.  
 

  
 
Figure 4: Flow diagram of recognition system. First, head pose is estimated, and images are 
warped to frontal views and canonical face geometry. The warped images are then passed through 



a bank of Gabor filters. SVM's are then trained to classify facial actions from the Gabor 
representation in individual video frames. The output trajectories of the SVM's for full video 
sequences are then channeled to hidden Markov models.   
 

 

 
 
Figure 5: User interface for the FACS recognition system. Bottom right: Frame from the dataset. 
Middle right: Estimate of head pose. Center: Warped to frontal view and conical geometry. Top 
right: The curve shows the output of the blink detector for the video sequence. This frame is in 
the relaxation phase of a blink.   
 
 

Results 
 

Classifying individual frames with SVM's 
 
SVM's were first trained to discriminate images containing the peak of blink sequences from 
randomly selected images containing no blinks. A nonlinear SVM applied to the Gabor 
representations obtained 95.9% correct for discriminating blinks from non-blinks for the peak 
frames. The nonlinear kernel was of the form 1/(k+d)2 where d is Euclidean distance, and k is a 
constant. Here k=4.   
 



Recovering FACS dynamics 
 
Figure 6a shows the  time course of SVM outputs for complete sequences of blinks.  Although the 
SVM was only trained to discriminate open from closed eyes, its output produced a continuous 
trajectory that correlated well with the amount of eye opening at each video frame. The SVM 
outputs provide information about FACS dynamics that was previously unavailable by human 
coding due to time constraints. Current coding methods provide only the beginning and end of the 
action, along with the location and magnitude of the action unit peak. This information about 
dynamics may be useful for future behavioral studies.    
 

a.       b.  

c.  
 
Figure 6: a. Blink trajectories of SVM outputs for four different subjects. Star indicates the 
location of the AU peak as coded by the human FACS expert. b. SVM output trajectory for a 
blink with multiple peaks (flutter). c. Brow raise trajectories of SVM outputs for one subject. 
Letters A-D indicate the intensity of the AU as coded by the human FACS expert, and are placed 
at the peak frame.  
 
One approach to detecting action units in continuous video would be to simply choose a threshold 
and decide that an action unit is present if the output of an SVM reaches that threshold. However, 
even when the output does not reach threshold, there may be information in the output trajectory 
to indicate an action unit. Figure 6c illustrates a case in point. Choosing a threshold of 0 would 



miss the actions labeled intensity B.  However, the action can be detected by examining the 
pattern of rise and fall of the sub-threshold output. To capture these dynamics we used the HMM 
approach previously described.  Two hidden Markov models, one for Blinks and one for random 
sequences matched by subject and length, were trained and tested using leave-one-out cross-
validation. The number of states was varied from 1-10 and the number of Gaussian mixtures per 
state vas varied from 1-7. Best performance of 98.2% correct was obtained using 6 hidden states 
and 7 Gaussians per state. .  

 
Brow movement discrimination 

 
The goal was to discriminate three action units localized around the eyebrows.  Since this is a 3-
category task and SVMs are originally designed for binary classification tasks, we trained a 
different SVM on each possible binary decision task: Brow Raise (AU 1+2) versus matched 
random sequences, Brow Lower (AU 4) versus another set of matched random sequences, and 
Brow Raise versus Brow Lower.  The output of these three SVM's was then fed to an HMM for 
classification. The input to the HMM consisted of three values which were the outputs of each of 
the three 2-category SVM's. As for the blinks, the HMM's were trained on the ``test'' outputs of 
the SVM's.  The HMM's achieved 78.2% accuracy using 10 states, 7 Gaussians per state and 
including the first derivatives of the observation sequence in the input. Separate HMM's were also 
trained to perform each of the 2-category brow movement discriminations in image sequences. 
These results are summarized in Table 2.  

Figure 6c shows example output trajectories for the SVM trained to discriminate Brow 
Raise from Random matched sequences.  As with the blinks, we see that despite not being trained 
to indicate AU intensity, an emergent property of the SVM output was the magnitude of the brow 
raise.  Maximum SVM output for each sequence was positively correlated with action unit 
intensity, as scored by the human FACS expert (r = .43, t(42) = 3.1, p = 0.0017).   
 
 

Action Percent Correct 
(HMM) 

N 

 Blink vs. Matched Random Seq. 98.2 168 
Brow Raise vs. Matched Random Seq. 90.6 48 
Brow Lower vs. Matched Random Seq. 75.0 14 
Brow Raise vs. Brow Lower 93.5 31 
Brow Raise vs. Lower vs. Random 78.2 62 

 
Table 2:  Summary of results. All performances are for generalization to novel subjects. Random: 
Random sequences matched by subject and length. N: Total number of positive (and also 
negative) examples.    
 

The contribution of Gabor filtering of the image was examined by comparing linear and 
nonlinear SVM's applied directly to the difference images versus to Gabor outputs.  Consistent 
with our previous findings (Littlewort, Bartlett & Movellan, 2001), Gabor filters made the space 



more linearly separable than the raw difference images. For blink detection, a linear SVM on the 
Gabors performed significantly better (93.5%) than a linear SVM applied directly to difference 
images (78.3%).  Using a nonlinear SVM with difference images improved performance 
substantially to 95.9%, whereas the nonlinear SVM on Gabors gave only a small increment in 
performance, also to 95.9%. A similar pattern was obtained for the brow movements, except that 
nonlinear SVMs applied directly to difference images did not perform as well as nonlinear SVM's 
applied to Gabors. The details of this analysis, and also an analysis of the contribution of SVM's 
to system performance, are available in Bartlett et al., (2001).  
 
 
Conclusions 
 
The results of Study I provided guidance as to which image representations, or feature extraction 
methods,  are most effective for facial action recognition. We found that Gabor wavelets and 
Independent Component Analysis gave best performance.  These methods rely on precise 
alignment of the face image. Out-of-plane head rotations present a major challenge. 

Study II explored an approach for handling out-of-plane head rotations in automatic 
recognition of spontaneous facial expressions from freely behaving individuals. The approach fits 
a 3D model of the face and rotates it back to a canonical pose (e.g., frontal view).  We found that 
machine learning techniques applied directly to the warped images is a promising approach for 
automatic coding of spontaneous facial expressions.   

This approach employed general purpose machine learning techniques that can be applied 
to the recognition of any facial action. The approach is parsimonious and does not require 
defining a different set of feature parameters or image operations for each facial action.  While 
the database we used was rather large for current digital video storage standards, in practice the 
number of spontaneous examples of each action unit in the database was relatively small. We 
therefore prototyped the system on the three actions which had the most examples. Inspection of 
the performance of our system shows that 14 examples was sufficient to successfully learn an 
action, an order of 50 examples was sufficient to achieve performance over 90%, and an order of 
150 examples was sufficient to achieve over 98% accuracy and learn smooth trajectories.  Based 
on these results, we estimate that a database of 250 minutes of coded, spontaneous behavior 
would be sufficient to train the system on the vast majority of facial actions.  

One exciting finding is the observation that important measurements emerged out of 
filters derived from the statistics of the images. For example, the output of the SVM filter 
matched to the blink detector could be potentially used to measure the dynamics of eyelid closure, 
even though the system was not designed to explicitly detect the contours of the eyelid and 
measure the closure. (See Figure 6.)  

The results presented here employed hand-labeled feature points for the head pose 
tracking step. We are presently developing a fully automated head pose tracker (see Afterword).   

 
All of the pieces are in place for the development of automated systems that recognize 

spontaneous facial actions at the level of detail required by FACS. Collection of a much larger, 
realistic database to be shared by the research community is a critical next step.   
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The research presented in the previous chapter demonstrated proof that automatic 

recognition of facial actions in indoor environments is achievable with current technology. The 
system we explored used  general purpose machine learning techniques that can be applied to 
recognition of any facial action provided enough data is available. One of the most useful aspects 
of the experiment was to help us identify the challenges that need to be met for automatic facial 
expression measurement systems to become a useful a tool for behavioral scientists: 

  
• Availability of training data. The primary limitation in the number of action units 

recognized in the previous studies is the availability of training data. The computer 
system requires labeled training images of many subjects performing the facial actions 
we wish to recognize.  

 
• Automatic face detection and alignment.  

 
• Handling out-of-plane head rotations.  Current approaches to facial expression 

recognition deteriorate with out-of-plane head rotations beyond about 10 degrees.  
 

• Robustness to lighting conditions. Even in controlled experimental settings, lighting 
changes as the subject moves his or her head.  

 



• Recognizing action unit combinations. Over 7000 distinct action unit combinations have 
been reported in the literature. It is impractical to train on all possible combinations. An 
approach to this issue is described in Smith et al. (2001).  

 
• Temporal segmentation of facial actions. How does a system determine when the action 

begins, ends, and peaks?  
 

• Handling missing image data. During out-of-plane head rotations, a portion of the face 
image is missing. One approach to this problem is multiple camera recording.  
 

 
Three of these issues are discussed in more detail below: (1) Collection of a database of 

spontaneous facial expressions, (2) fully automatic face detection and tracking, and (3) fully 
automatic 3D head pose estimation.  

 
 

Image databases 
 

An important lesson learned from the speech recognition community is the need for large, shared 
image databases for training, testing, and evaluation. If an effort is made to develop and share 
such databases, automatic FACS recognition systems that work in real time in unconstrained 
environments will emerge, as occurred in speech recognition in the last decade. Development of 
these databases is a priority that will require joint effort from the computer vision, machine 
learning, and psychology communities. Because of differences between posed and spontaneous 
facial expressions, it is important that some of the databases contain spontaneous expressions. 
This makes collaboration with the behavioral science community all the more essential, as the 
computer vision community has little experience eliciting spontaneous expressions. 

Mark Frank at Rutgers University, in collaboration with our laboratory and Paul Ekman, 
is collecting a new state of the art database of spontaneous facial expressions to serve as training 
data for computer vision systems. The database will be FACS coded by two certified FACS 
coders. The database will consist of a terabyte of uncompressed digital video from three cameras. 
The database will contain 100 subjects videotaped for 2.5 minutes each while they participate in a 
false opinion paradigm.  This paradigm was selected for the variety of expressions it tends to 
elicit, including basic emotions and language related symbolic expressions. This database will 
provide the basis for training the computer to recognize a much larger set of spontaneous facial 
actions, and for examination of facial action dynamics. More databases such as this one will 
enable advancement of automated FACS recognition.  

 
 

Fully automatic face detection and expression recognition 
 
We have recently paired automatic facial expression measurement with fully automatic face 
detection and tracking. The combined system works in real-time, at about 15 frames per second 



with no manual intervention. One version of the system was trained and tested on two publicly 
available datasets of FACS-coded expressions of basic emotions: Pictures of Facial Affect, 
(Ekman and Friesen, 1976), and DFAT-504 (Kanade  Cohn & Tian, 2000).  Below, we present 
results for coding expressions in terms of 7 dimensions: Joy, sadness, surprise, anger, disgust, 
fear, and neutral. The mechanism is the same as for recognizing facial actions. The only 
difference is the training data and how they are labeled. When large datasets of spontaneous facial 
actions become available such as the one described above, this system can be trained to code 
expressions in terms of facial actions. The system is reviewed here. More information is available 
in Bartlett et al. (2003) and Littlewort et al. (in press).  
 
 

   
 
Figure 1. The face detector results for two complex background and illumination conditions. The 
system works in real time at 30 frames per second on a fast PC.   
 
 

Face detection 
 
The face detector works in real time, and is based on a state-of-the-art face detection system 
developed by Viola & Jones (2001). We have developed methods in our lab to make the system 
significantly faster and more robust to difficult illumination and background conditions (see 
Figure 1). The full system, including enhancements to the Viola & Jones approach, is described in  
Bartlett et al., (2003) and Littlewort et al. (in press). We made source code for the face detector 
freely available at http://kolmogorov.sourceforge.net.  Performance on standard test sets are equal 
to the state-of-the-art in the computer vision literature (e.g.  90% detection and 1 in a million false 
alarms on the CMU face detection test set). The CMU test set has unconstrained lighting and 
background. When lighting and background can be controlled, such as in behavioral experiments, 
accuracy is much higher.  We are also using the same  technology to detect facial features within 
the face (Fortenberry et al., submitted). The precision of the current systems is in the order of 1/4 
of an iris, similar to the precision obtained by human labelers in our previous study.  
 



 
Facial expression recognition 

 
The output of the face detector is scaled to 90x90 and fed directly to the facial expression analysis 
system (see Figure 2). The system is essentially the one described in the previous chapter. First 
the face image is passed through a bank of Gabor filters at 8 orientations and 9 scales (2-32 
pixels/cycle at 0.5 octave steps). The filterbank representations are then channeled to a classifier 
to code the image in terms of a set of expression dimensions. We have found support vector 
machines to be very effective for classifying facial expressions (Littlewort et al., in press, Bartlett 
et al., 2003). Recent research at our lab has demonstrated that both speed and accuracy are 
enhanced by performing feature selection on the Gabor filters prior to classification (e.g. Bartlett 
et al., 2003). This approach employs Adaboost (Freund & Shapire, 1996) a state of the art 
technique for feature selection that sequentially selects the  feature that gives the most 
information about classification given the features that have been already selected.  
 
 

a   

b  
 

Figure 2. a. Facial expression recognition system.  b. Outputs of the SVMs trained for neutral and 
sadness for a full image sequence of a test subject performing sadness. 
 

Performance 
 



The facial expression recognition system can be trained to recognize any target expression 
dimension. Here we present results for recognizing 7 basic emotions (joy, sadness, surprise, fear, 
disgust, anger, neutral). The system was trained and tested on Cohn and Kanade's DFAT-504 
dataset (Kanade, Cohn, & Tian, 2000). This dataset consists of video sequences of university 
students posing facial expressions. An experimenter described and modeled each desired facial 
display for each subject. For our study, we selected the 313 sequences from the dataset that were 
labeled as one of the 6 basic emotions.  The sequences came from 90 subjects, with 1 to 6 
emotions per subject. Subjects ranged in age from 18 to 30 years.  65% were female, 15% were 
African-American, and 3% were Asian or Latino. 

All faces in this dataset were successfully detected. The expression recognition system 
was trained on the last frame of each sequence, which contained the highest magnitude of the 
target expression (peak frames). Neutral expression samples consisted of the first frame of each 
sequence. Seven support vector machines, one for each expression, were trained using one-
versus-all partitioning (e.g. joy vs. everything else). A nonlinear radial basis function kernel was 
employed. The emotion category decision was then implemented by choosing the classifier with 
the maximum output for the test example.   

Performance on novel subjects was tested using leave-one-out cross-validation (Tukey, 
1951). The system obtained 93% agreement with the emotion category labels assigned in the 
database.  We were encouraged by these results, since the best published results on this database 
by other systems is 81%-83% accuracy.  

Performance of the system was also evaluated on a second publicly available dataset, 
“Pictures of Facial Affect” , collected by Paul Ekman and Wallace Friesen (1976). This dataset 
contains images of 20 Caucasian adults, male and female, posing 6 expressions of basic emotion, 
plus neutral. Subjects were directed to move specific facial muscles posited by Ekman and 
Friesen to comprise the universal expressions of emotion, and variations thereof. The automatic 
facial expression recognition system obtained 97% accuracy for generalization to novel subjects, 
trained by leave-one-subject-out cross-validation. This is about 10 percentage points higher than 
the best previously reported results on this dataset. A demo of the system is available on our 
webpage: http://mplab.ucsd.edu. Users can upload an image and run the face detector and 
expression classifier on their own image. 

Figure 2b illustrates system outputs for a full sequence of a facial expression. An 
emergent property was that the outputs of the classifier change smoothly as a function of time, 
providing a potentially valuable representation to code facial expression dynamics in a fully 
automatic and unobtrusive manner. This would provide information about expression dynamics at 
a temporal resolution previously intractable by human coding.  The time courses of the system 
outputs will be analyzed with dynamical models in the next phase of development. 
While the system gives the best performance we know of for recognition of basic emotions on 
standard datasets, we have found that in unconstrained environments  the system is still sensitive 
to changes in illumination. (Performance is about 80% correct on unconstrained images from the 
web.) The next phase of development will work on making this system more robust, particularly 
to variations in lighting conditions. 
 



a  b  
Figure 3. a. Facial expression is measured during interaction with the Robovie robot from the 
continuous output of four video cameras. b. Mean human ratings compared to automated system 
outputs for 'joy' (one subject). 
 
 

Pilot study: measuring spontaneous expressions in unconstrained environments 
 
We conducted a pilot study at the Intelligent Robotics and Communication laboratories at ATR, 
Japan,  to evaluate the expression recognition system in unconstrained environments. Subjects 
interacted in an unconstrained manner with RoboVie, a communication robot developed at ATR 
and the University of Osaka (Ishiguro, 2001). 

To improve performance of the system we simultaneously recorded video from 4 video 
cameras. 14 paid participants recruited from the university of Osaka were invited to interact with 
RoboVie for a 5 minute period.  Faces were automatically detected and facial expressions 
classified independently on the four cameras. This resulted in a 28 dimensional vector per video 
frame (7 emotion scores  x 4 cameras), The output of the 4 cameras was then combined using a 
standard probabilistic fusion model. To assess the validity of the system, four naive human 
observers were presented with the videos of each subject at 1/3 speed. The observers indicated the 
amount of happiness shown by the subject in each video frame by turning a dial, a technique 
commonly used in marketing research. Figure 3 compares human judgments with the automated 
system. The frame-by frame correlation of the human judges averaged across subjects and judge 
pairs was 0.54, The average correlation between the 4 judges and the automated system was 0.56, 
which does not differ significantly from the human/human agreement (t(13) =  0.15, p<0.875). 
Figure 3b shows frame by frame the average scores given by the 4 human judges for a particular 
subject, and the scores predicted by the automatic system.  We are presently evaluating the 4 
camera version of  the system as a potential new tool for research in behavioral and clinical 
studies. 
 
 



Tracking Out-of-Plane Head Motion     
 
The previous chapter showed that 3D alignment and rotation to frontal views is a viable approach 
to recognizing facial actions in the presence of out-of-plane head rotations. 3D alignment may 
give more precise facial expression measurements than the 4-camera approach described above. 
At the time of the study in the previous chapter, head pose estimates were obtained from a set of 
eight hand-marked feature points. Since then we developed a system for fully automatic head 
pose estimation without hand-marking (Marks, Hershey, Roddey, & Movellan, 2003).  See Figure 
4. The system, which we call Gflow,  dynamically adjusts the relative contributions of optic flow 
and template based tracking information in a generative model, making it quite robust to noise. 
Recent developments in the computer vision field (e.g. Brand, 2001) enable this kind of nonlinear 
filtering operation to be performed in real time. Optic flow estimation during nonrigid 
deformations due to speech and changes in facial expression is enabled using a set of morph bases 
Brand (2001). We are presently collecting training data so that the system can be applied to 
arbitrary subjects. The system will be demonstrated at NIPS 2003, and is scheduled to be 
available in the spring of 2004.  This is another example of the tools that will be ready to apply to 
recognition of spontaneous facial actions when the datasets become available.  
 
 

   
 
Figure 4: A demonstration of  3D head pose tracking on a subject from Frank & Ekman (1997).   
The dots are not painted on the face. The dots indicate the computer’s estimate of the location of 
points on the face in each frame.  Given these points, head pose can be estimated and the face 
image mapped to a frontal view. 
 
 
Applications 
 
 Clinical Applications 
 
We are beginning to explore applications of automatic facial expression measurement for clinical 
assessment and basic research on mental disorders. Forty-five percent of all diagnoses listed in 
the official diagnostic manual of the American Psychiatric Association involve abnormal, 
distorted, or squelched emotional responses (Thoits, 1985).  Facial expression measurement 
(coded by hand) has already proven useful for diagnosis, predicting improvement, and measuring 



response to treatment (Ekman, Matsumoto, & Friesen, 1997; Berenbaum & Oltmanns, 1992; 
Katsikitis & Pilowsky, 1991;Steiner, 1986).   In addition to aiding in diagnosis and treatment, 
facial expression measurement has helped provide insight into the clinical nature of 
psychopathologies including suicidal depression (Heller & Haynal, 1994), neurological disorders 
including blunted affect in schizophrenia (Barenbaum & Oltmanns, 1992, Kring & Neale, 1996), 
and parkinsonism (Ellgring, 1997), social disorders including aggressive adolescence (Keltner, 
Moffit, & Strouthamer-Loeber, 1995), and cardiac pathology (Rosenberg, Ekman, & 
Blumenthal, 1998; Rosenberg et al, 2001). For example, facial expression measurement 
supported a qualitatively difference between suicidal and major depression, involving contempt 
(Heller & Haynal, 1994). Facial expression measurement during marriage counseling both 
predicted the outcome and provided clinical insights into marital failure. The expression of 
disgust or contempt, but not anger, predicted divorce (Gottman, 1994). Thus Facial expression 
measurement can aid in the diagnosis and treatment of psychopathology and social disorders, and 
also contribute to the understanding of the underlying condition.   

The work described above required 100 hours of training, and two hours to manually 
score each minute of video tape. The time required for hand-coding of videotaped behavior has 
been identified as one of the main obstacles to doing research on emotion (Frank, 2002; Ekman 
et al., 1993). Computer vision systems will unlock this demonstrably important area in the 
diagnosis and treatment of psychopathology and social disorders. The computer vision tools 
developed here also have the potential to measure facial expression dynamics at a temporal 
resolution previously intractable by hand-coding. Hence we may be able to expand the analysis 
of these clinical groups to include dynamic qualities of their expression, rather than just the 
morphology of their expression. For example, with hand coding of facial expressions, it has been 
found that schizophrenic patients have a more disorganized facial muscle movement pattern 
(Krause, et al, 1989).  It may be thus possible for computer vision systems  to make 
differentiations such as between schizophrenic patients and psychotic depressed patients from 
their facial dynamics. 
 
 

Connecting Perception and Action 
 
Researchers have begun to explore and develop digital creatures that have the ability to express 
emotions, recognize emotions, and whose behavior is modulated by synthetic emotional 
dynamics. This area of research is known in the computer science literature as ``affective 
computing'' (Picard, 1997).  See Pantic & Rothcrantz (2003) for a recent survey of affect sensitive 
human-computer interaction. Intelligent digital devices that are personal, emotional and engaging 
may revolutionize the way we interact with and think of computers. For example, we are applying 
affective computing technology to develop a new generation of automatic tutors, in collaboration 
with Ron Cole at U.C. Colorado. These tutors will interact with the students via computer 
animated agents which will adapt to the cognitive and emotional state of the students, the way 
good teachers do.  

Affective computing technology will also have a significant impact on the digital 
entertainment industry. We are taking the first steps to realize the idea of personal robots that are 



aware of their human companions, understand their emotional expressions, and that develop 
personable, engaging interactions with humans.  (See Figure 5). 
 
 
 

a  
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Figure 5. Connecting perception and action a. The animated character mirrors the facial 
expression of the user. b. Facial expression measurement is being deployed in automatic tutoring 
systems. c. Face detection and tracking software was ported to the Robovie robot, developed by 
M. Ishiguro at ATR.   
 

Emotion Mirror 
 
The emotion mirror is a prototype system that recognizes the emotion of the user and responds in 
an engaging way. It involves real time interaction between machine perception and animation 
software.  The larger objective is to incorporate this system into robotic and computer animation 
applications in which it is important to engage the user at an emotional level and/or have the 
computer recognize and adapt to the emotions of the user. In the emotion mirror, the face-finder 
captures a face image which is sent to the emotion classifier.  The outputs of the 7-emotion 
classifier is a seven-dimensional vector that encodes the expression of the user at the current 
video frame. This code is sent to CU Animate, a computer animation tool developed at CU 
Boulder, to render a computer animated character in real time. The character then mimics the 
facial expression of the user.  Figure 5a shows the prototype system. 
 



Deployment in real-time robotic environments 
 
We implemented this system on an active camera with 5 degrees of freedom (roll, pitch, and yaw, 
plus one degree of freedom each on two directional cameras). The system contains a third 
omnidirectional camera as well. The robot head tracks faces in mobile subjects as they move 
about the room.  See Figure 5c. Facial expressions are automatically classified from the video 
stream. This system used to collect data for evaluating system performance in a real-time 
environment.    
 
 
Summary and Conclusions 

 
The automatic analysis of the face and facial expressions is rapidly evolving into a 

mature scientific discipline. The next ten years are likely to see the development of a new 
generation of systems capable of recognizing the human face and facial expressions at levels of 
accuracy similar to that of human experts. This technology will provide wonderful new tools to 
behavioral scientists that will help make dramatic progress in our understanding of the human 
mind. These tools are likely to produce paradigmatic changes in the cognitive and behavioral 
sciences. We will also see the progressive development of machines that interact with us in ways 
we cannot currently conceive, including robots and computer animated characters that are aware 
of our presence and make inferences about our mental states the way other humans do. These 
socially aware systems may provide highly effective treatments (e.g. speech therapy) to 
populations that cannot currently afford them or who do not have daily access to therapists. They 
may liberate teachers from the more automatic parts of the educational experience to let them 
concentrate on the more creative aspects of it. They may also help us measure and track the effect 
of new drugs to address mental and affective disorders. The scientific community, as well as 
society at large, needs to begin to address the ethical and political challenges that this technology 
will bring about.  Difficult decisions will need to be made about the pros and cons of these 
technologies and decide when it should and should not be used. The challenges are great and the 
potential impact both on science and on our daily life are enormous.  
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