
1
S
w
t
o
r
v
o
c
H
t
t
v
l
b
l
a
t
d
n
s
m
o
i
s
f

Bosworth et al. Vol. 23, No. 9 /September 2006 /J. Opt. Soc. Am. A 2085
Image statistics of American Sign Language:
comparison with faces and natural scenes
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Several lines of evidence suggest that the image statistics of the environment shape visual abilities. To date,
the image statistics of natural scenes and faces have been well characterized using Fourier analysis. We em-
ployed Fourier analysis to characterize images of signs in American Sign Language (ASL). These images are
highly relevant to signers who rely on ASL for communication, and thus the image statistics of ASL might
influence signers’ visual abilities. Fourier analysis was conducted on 105 static images of signs, and these im-
ages were compared with analyses of 100 natural scene images and 100 face images. We obtained two metrics
from our Fourier analysis: mean amplitude and entropy of the amplitude across the image set (which is a mea-
sure from information theory) as a function of spatial frequency and orientation. The results of our analyses
revealed interesting differences in image statistics across the three different image sets, setting up the possi-
bility that ASL experience may alter visual perception in predictable ways. In addition, for all image sets, the
mean amplitude results were markedly different from the entropy results, which raises the interesting ques-
tion of which aspect of an image set (mean amplitude or entropy of the amplitude) is better able to account for
known visual abilities. © 2006 Optical Society of America

OCIS codes: 070.2590, 100.2960.
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. INTRODUCTION
everal lines of evidence suggest that visual experience
ith the environment plays a role in shaping visual abili-

ies. One of the best known examples is in the domain of
rientation processing. Early studies have shown that
aising animals in environments with only horizontal or
ertical contours results in enhanced sensitivities to those
rientations.1–3 (Similar results have been reported in
hildren who grew up with uncorrected astigmatism.4,5)
umans raised under normal (and unrestricted) condi-

ions also show anisotropies for orientations, which are
hought to arise from a natural orientation bias in the en-
ironment. Specifically, human subjects exhibit an ob-
ique effect in which acuity and contrast sensitivity are
etter for cardinal (vertical and horizontal), than for ob-
ique, orientations6–8 (and see Refs. 9–11 for evidence of
n oblique effect in infants). It had long been speculated
hat the oblique effect is driven by a preponderance of car-
inal orientations in the environment. In support of this
otion, the results from Fourier analyses of natural
cenes have shown that cardinal orientations contain
ore contrast (Fourier amplitude) than do oblique

rientations.12–16 As might be expected, the cardinal bias
n the environment measured with Fourier analysis is
tronger for scenes that contain man-made structures, re-
erred to as carpentered environments, than for those
1084-7529/06/092085-12/$15.00 © 2
hat do not.14,17,18 This difference between carpentered
ersus noncarpentered environments can be used to ex-
lain why people who live in less carpentered environ-
ents, such as the Cree Indians, exhibit a smaller oblique

ffect than do people who live in highly carpentered
nvironments.19 In sum, the results from a variety of
tudies investigating orientation processing suggest that
isual sensitivity to different orientations is influenced by
he prevalence of different orientations in the environ-
ent.
In addition to orientation, spatial frequency content of

atural scenes has been statistically described using Fou-
ier analysis (i.e., amplitude of contrast across spatial fre-
uencies). A robust regularity that has been consistently
bserved across many studies is that amplitude declines
ith spatial frequency, where the amplitude at a given

patial frequency f is, approximately 1/ f.20–24 (Note that
any studies report power, which is the square of the am-

litude, and the falloff is 1/ f2.) Recent studies have shown
hat visual psychophysical performance in humans is well
atched to the 1/ f function typically encountered in natu-

al scenes. For example, object discrimination sensitivity
s best for stimuli that have natural power spectra slopes
ompared with those that have slopes that deviate from
/ f.25–28 Also, response properties of neurons in the
etina, lateral geniculate nucleus, and visual cortex have
006 Optical Society of America
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een suggested to be optimally organized to process
timuli with natural image statistics12,16,21,22,29–33 (and
ee Simoncelli and Olshausen34 for a review).

Statistics of other image properties such as contours
nd color content in natural scenes have also been shown
o have a close link to perception. For example, Geisler et
l.35 showed that human performance for contour detec-
ion matched very closely to predicted ideal observer per-
ormance based on the co-occurrence of contours in natu-
al images. Regan et al.36 found that the optimal
lacement of M and L cones in the retina corresponds well
o the observed wavelength distribution in the environ-
ent of New World monkeys (see also Refs. 37–39 for

imilar findings). Similar links between the environmen-
al statistics of color and the cone spectral sensitivities in
umans have also been reported, as well as relationships
etween environmental statistics and measures of color
ppearance, identification, and labeling.40–44

Another way researchers have investigated the role of
he environment in shaping visual perception has been to
sk which spatial frequencies or orientations in a set of
mages are most critical for discriminating one image in
hat set from another. Typically, such studies focus on a
onfined set of images for which people have ample expe-
ience. A good example of such an image set is printed let-
ers. Several psychophysical studies have measured dis-
rimination of letters filtered or masked along a band of
patial frequencies. The general consensus from these
tudies is that the most important band for letter identi-
cation peaks at an object spatial frequency of 3 cycles
er letter (cyc/letter).45–48 In recent Fourier analyses of
etters, it has been shown that the highest amplitudes are
lso found near 3 cyc/ letter.49 Thus, these findings indi-
ate that the task of letter discrimination relies most
eavily on spatial frequencies that are most prevalent in

etters, and it is reasonable to assume that this link arises
s a result of experience with reading. Presumably, this
uning would be specific for the task of letter discrimina-
ion; for other image sets (such as faces), the spatial fre-
uencies that contain the highest amplitudes are likely to
iffer from that of letters, and, accordingly, these spatial
requencies might be most important for discrimination of
hat set.

In the current study, we focused on images of signers
roducing American Sign Language (ASL), and we com-
ared these images with those from established data-
ases of natural scenes and faces. Our interest in ASL is
ased on the fact that many deaf people have lifelong ex-
erience with ASL, relying on it for communication (and
here also exist many hearing people who converse flu-
ntly or nonfluently in ASL). Several studies have shown
hat native signers exposed to ASL since birth, by virtue
f being raised by signing parents, do show altered or en-
anced perceptual abilities.50–56 Like the case for images
f written letters (described above), it is possible that, for
SL images, the spatial frequencies (or orientations) that
ontain the highest amplitudes are also those most impor-
ant in discriminating one sign from another. To address
his possibility, the image statistics of ASL must first be
escribed. To this end, we conducted Fourier analyses on
set of images containing a representative sample of the

ifferent hand–arm positions and spatial configurations
een in ASL. The Fourier analyses of static sign images in
he current study focus only on the position and spatial
onfiguration of hands and arms. Motion of the hands is
he other integral piece of information that has been stud-
ed by linguists,57–59 and we address motion statistics of
SL in a separate forthcoming paper.
From our Fourier analysis of static images (signs,

aces, and natural scenes), we obtained two metrics. First,
e quantified the mean amplitude of the Fourier compo-
ent as a function of spatial frequency and orientation,
hich is the typically reported output from Fourier analy-

is. Second, we quantified the entropy of the amplitude as
function of spatial frequency and orientation, a metric

hat has yet to be described for natural image sets. En-
ropy describes the spread of a distribution and is related
o, although not identical to, the variance of this distribu-
ion (see Cover and Thomas60 or Atick61 for a review).
ere we looked at the distribution of amplitudes across

he image set for a given spatial frequency or orientation.
he entropy metric comes from information theory, with

he notion that a spatial frequency (or orientation) whose
mplitude distribution is broadly spread across the image
et contains more information for discriminating one im-
ge from another than a spatial frequency (or orientation)
hat almost always has the same amplitude across im-
ges. It is important to point out that entropy refers to in-
ormation in the image set and is not to be confused with
sychophysical measurements of information that test
through filtering and masking) which spatial frequencies
or orientations) are most important to the visual system
or discriminating one image in a set from another.

hether the two are related (information in the image set
nd critical information used by the visual system) is one
f the questions of the current study.

The results of our Fourier analyses revealed two main
ndings. First, substantial differences were observed be-
ween signs and the two other image sets, faces and natu-
al scenes. In particular, sign images contained more am-
litude for vertical, than for horizontal, contours, whereas
aces and natural scenes showed an opposite pattern.
iven the above-mentioned relationship between the
revalence of different orientations in the environment
nd visual sensitivity, these results suggest that different
nisotropies in orientation may exist for signers versus
onsigners. In addition, for sign images only, entropy ver-
us spatial frequency curves were clearly bandpass, with
peak around 0.75 cyc/cm [which is roughly 0.19 cyc/deg

t a viewing distance of 5 ft �1 ft=0.3048 m�]. Interest-
ngly, this peak in entropy maps on roughly to the spatial
requency that has been shown to be important for iden-
ifying signs in ASL (based on psychophysical studies by
iedl and Sperling,62 discussed further, below), which
uggests a potential link between entropy and visual dis-
rimination.

Second, for all image sets (signs, natural scenes, and
aces), the shape of the curve relating mean amplitude
ersus spatial frequency (and orientation) was markedly
ifferent from that relating entropy versus spatial fre-
uency (and orientation). These differences raise an inter-
sting question: which aspect of an image set (mean am-
litude or entropy of the amplitude) is better able to
ccount for known perceptual abilities? In particular, in
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ur orientation analyses of natural scenes, mean ampli-
udes were largest for cardinal orientations, in line with
esults from previous Fourier analyses and in line with
he psychophysical oblique effect (see above). By contrast,
ntropy was found to be lowest for cardinal orientations,
articularly for horizontal contours. Interestingly, these
esults are in line with recent psychophysical data show-
ng that the oblique effect (i.e., poorest contrast sensitiv-
ty for oblique contours) that is known to exist for stimuli
f a single spatial frequency turns into a horizontal effect
i.e., poorest contrast sensitivity for horizontal contours)
or stimuli of broadband spatial frequencies that are more
aturalistic.17,63 Together, these current Fourier analyses
nd previous psychophysical results suggest a potential
ink between entropy and visual sensitivity.

. METHODS
. Photographs of American Sign Language
o obtain a database of ASL images, we took photographs
f two female signers (RB and DH) producing signs from
SL. The photographs were taken with a Canon Rebel,
5 mm single-lens reflex camera, with a 200 speed setting
nd with a flash, at a distance of 63.5 in. The signers were
sked to produce 40 different signs, which were selected
ith the goal of photographing a range of hand shapes
nd arm positions commonly seen in ASL (�15 different
and shapes). Note that it was not our goal to have each

mage associable with a word but rather to capture posi-
ional information that makes up the structure of signs.
or this reason, we refer to our ASL database as sign im-
ges. In addition to providing a representative sample of
he different hand–arm positions in ASL, the 40 signs
ere also selected such that the proportion of signs that
ere one handed versus two handed (30% versus 70%, re-

pectively) and the proportion of two-handed signs that
ere symmetric versus asymmetric (50%) roughly
atched that which has been observed in ASL.64

To make our sign images as naturalistic as possible,
igners were asked to sign a given word but to momen-
arily freeze at a certain point so that the photograph of
he prototypical hand–arm position for that sign could be
aken. For example, in the sign CANADA [see Fig. 1(a)] a
hotograph was taken with the signer’s fist on her chest.
or signs that involved uniform, continuous circular mo-
ion (e.g., BICYCLE, ENJOY, GESTURE, WASH), we asked sign-
rs to freeze halfway through the motion cycle. These sign
mages are segments of whole words and can be thought
f as making up constituents within ASL, much the way
poken language has a finite set of vowels and consonants
hat are combined sequentially to create spoken syllables
nd words. In total, our ASL database consisted of 59 and
6 photographs of sign images taken of signers DH and
B, respectively. In addition to obtaining photographs of
ign images, for comparison purposes, we obtained a pho-
ograph of each signer with her arms resting, which we
efer to as neutral pose [see Fig. 1(b)].

. Sign Image Preparation
ach photograph was scanned using an Epson scanner
et at 600 dots per inch, gamma 1.8, and with a window
ize 1800�2400 pixels. Mean interocular distance across
ll images was 138 pixels. For each image, we removed
he face, the torso, and the background, leaving only the
rms, from shoulders to fingers, as shown in Figs. 1(c)
sign image from the sign CANADA) and 1(d) (neutral pose).
he purpose in doing so was to restrict our analyses to the
igners’ arms and hands because the arms and hands pro-
ide the lexical and grammatical information in ASL.
aving the same face in each ASL image would add re-
undancy to the analysis. This is not to say that the face
specifically, facial expression) does not contribute to ASL
omprehension; however, the lexical identity of any sign
an be comprehended without the face. (Note that we con-
ucted a separate analysis on a set of faces obtained from
published database, where each face in the database is
different identity; see below.) Finally, eliminating all but

he arms in these photographs also served to eliminate
oise from irrelevant portions of the image, for example,
rinkles in the clothing. (Partial results for full images
re reported in Bosworth et al.65 and are very similar.)
xamples of several sign images used in our analyses are
rovided in Fig. 2.

ig. 1. Photography of ASL signs and image preparation. (a) An
xample of an original photograph image of DH signing CANADA
nd (b) original photograph image of DH in a neutral pose (arms
t side). (c) and (d) The face, torso, and background in these two
mages have been removed, leaving only the arms, from shoul-
ers to fingers. Fourier and entropy analyses were conducted on
he arms-only images [(c) and (d)].
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. Images of Faces and Natural Scenes
or comparison with sign images, we performed the same
nalyses on images of faces and natural scenes. The AR
ace database was collected by Martinez and Benavente66

ig. 2. Example sign images. Several examples are shown of sig
igns DOCTOR and ENJOY made by RB and DH. For some signs th
e.g., ARREST), two consecutive images were obtained, and these a

ig. 3. (a) Example face image from the AR face database.66 (b)
xample of a natural scene image from the van Hateren and van
er Schaaf database.67
sing a Sony 3 CDD camera with a Matrox Meteor red-
reen-blue frame grabber. Face images consisted of neu-
ral expression images of 100 individuals of various races
nd genders from the AR face database [see example in
ig. 3(a)].66 These images were 768�576 pixels with a
ean interocular distance of 106 pixels. Natural scenes
ere taken from the Groningen natural image database67

nd were 1536�1024 pixels [see example in Fig. 3(b)].
he natural images were obtained from a Kodak DCS420
igital camera and were linearized in intensity, as de-
cribed by van Hateren and van der Schaaf.67 How the
ifferent image sets (signs, faces, and natural scenes)
ere aligned in scale is discussed further below. This da-

abase contains 4000 images of outdoor scenes, including
uildings as well as natural landscapes and close-up foli-
ge texture. We selected 100 images from the first 400 im-
ges of the database that contained no visible man-made
tructures. For all image sets (signs, faces, and natural
cenes), images were normalized in luminance by setting
he brightest and darkest gray values of each image to
55 and 0, respectively, and linearly rescaling the gray
alues in between.

. Scale Alignment
he Fourier analysis (described below) outputs spatial

requency in terms of cycles per image. However, the
hree image databases contained images of different size.
he images were not rescaled to contain the same number
f pixels. Instead, cycles per degree was estimated for
ach image database, as well as cycles per centimeter in
he world where applicable. (We chose this because down-

ges included in our ASL sample. The top row has images for the
lve critical changes in position (e.g., ENJOY, LIFE) or hand shape
wn in the middle and last rows (only for DH).
n ima
at invo
re sho
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caling causes high-frequency information to be lost while
pscaling does not add high-frequency information and
ecause cycles per image are not as relevant as cycles per
egree or cyles per centimeter in the world.) For the ASL
nd face images, cycles per image was converted first into
ycles per centimeter in the real world using the ratio of
ace width in pixels to actual face width in centimeters.
ycles per degree was then estimated by assuming a
iewing distance of 5 ft (i.e., 2.54 cm=1 deg). We chose
his distance because it is typical for conversing signers.
e also assumed that this distance would be typical for

iewing faces during conversation between nonsigners.
or the natural scenes database, cycles per centimeter in
he world could not be calculated, since the images con-
ain a range of scales in the foreground and background.
nstead, cycles per image was converted directly into
ycles per degree using the published angular resolution
f the pictures, which is approximately 1 arc min per
ixel, making a viewing angle of 17 by 25.5 deg.67

. Fourier Analysis
ourier analysis was conducted on each image by using a
iscrete fast Fourier transform function in MATLAB (by
ath Works), using wraparound with no padding. Al-

hough wraparound can cause artificial edge responses,
e chose this because the edge responses are generally
uch smaller than those caused by zero padding. Analy-

es were performed on the amplitude output (defined as
he square root of the power, or energy). For each image,
he Fourier transform can be displayed as a three-
imensional (3D) polar plot �r ,� ,a�, where the radial dis-
ance from the origin �r� is spatial frequency, the angle ���
s orientation, and the brightness at each point in the plot
s the amplitude �a� at a given spatial frequency and ori-
ntation. Examples of these Fourier transform plots are
rovided in Fig. 4 for two images: an image from the sign
EART [Fig. 4(a)] and an image of a natural scene [Fig.
(b)]. For all analyses, the corners of the Fourier trans-
orm were excluded, since they contain high frequencies
t oblique orientations that are beyond the resolution

ig. 4. Example Fourier plots for (a) sign image obtained from
he sign HEART and (b) the natural scene shown in Fig. 3. For
ach image, the Fourier transform is displayed as a 3D polar
lot, where log amplitude, a, is plotted as a function of both spa-
ial frequency (distance from the origin, r) and orientation (angle,
). Note that horizontal objects in an image have vertical Fourier
nergy, since orientation refers to the orientation of individual
ine waves. The natural scenes plot shows high energy in the ver-
ical orientation, which has been related to horizontal layering in
istant natural scenes.18 (In the results and figures, we refer to
rientation as orientation in the image, which is 90 deg shifted

rom the Fourier orientation.)
imit at the cardinal orientations. Comers were defined as
adial distances that exceed the maximum radial distance
or any one direction [r�min��max�r��� where r� is the ra-
ial distance in direction � and min� denotes the mini-
um over all orientations �]. In other words, the analysis
as performed only for those radial distances r for which
ata were available at all orientations. Also, note that
orizontal contours in an image have vertical Fourier en-
rgy, since orientation refers to the orientation of indi-
idual sine waves. In the results presented from here for-
ard, orientation refers to the orientation in the image,
hich is 90 deg shifted from the Fourier orientation.
For all image sets, Fourier data were analyzed at spa-

ial frequencies ranging from 0.06 to 23.0 cyc/deg (0.02 to
.0 cyc/cm). Fourier data for orientation were analyzed
rom 0 to 180 deg (with 0 and 90 deg denoting horizontal
nd vertical contours, respectively). From the Fourier
nalyses, we computed two metrics as a function of spa-
ial frequency and orientation, mean amplitude and en-
ropy of the amplitude, described in detail, below.

. Mean Amplitude Analyses
or each image set, mean amplitudes were calculated
cross spatial frequency and across orientation. Two-
imensional (2D) plots of amplitude versus spatial fre-
uency were obtained by averaging across orientation
ithin each image and then averaging across images in a
iven image set. The data were then plotted in log–log co-
rdinates, which is the conventional method of analyzing
mplitude by spatial frequency data, thus allowing us to
ompare our data with those of previous studies. For the
D plots of amplitude versus orientation, we first logged
base 10) the values before collapsing across spatial fre-
uency because spatial frequency data are known to be
ighly nonlinear, whereas they are linear on a log10 scale.
he 2D data were then averaged across the set of images.

. Entropy of the Amplitude
spatial frequency (or orientation) with high mean am-

litude may nevertheless provide little information for
ifferentiating images if it tends to frequently take the
ame high value, compared with a spatial frequency (or
rientation) with high variability in amplitude across im-
ges. Therefore, in addition to measuring mean ampli-
ude, we also measured the entropy of the amplitude dis-
ribution, In brief, entropy measures the spread of the
robability distribution and is highest for broad distribu-
ions and lowest for narrow distributions. For Gaussian
istributions, entropy is equivalent to variance. However,
t is well known that many natural signals have distribu-
ions that are highly non-Gaussian, including measures of
ontrast in natural scenes.68–72

Entropy is a metric from information theory, which de-
cribes the amount of information in a signal for differen-
iating exemplars. (See Cover and Thomas60 for an intro-
uctory text on information theory.) Information theory
efines the amount of information �I� in an outcome x as
ollows:

I�x� = − log2�p�x��, �1�

here p�x� is the probability that the measure takes the
alue x across the set of images. [Note that the log in Eq.
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1) is base 2, since the definition of information comes
rom bits.60] In the current study, x is an amplitude value
at a given spatial frequency or orientation). Entropy �H�
s the expected value of the information across the full
istribution of values x, as follows:

H = E�− log2�p�x���, �2�

here E is the expected value. For each image database,
ntropy was calculated across images for each spatial fre-
uency and orientation. Entropy was calculated using Eq.
2), where x=log�af��, which is the set of log amplitudes at
requency f and orientation � across all images in the da-
abase. Probability distributions were estimated by histo-
ramming x into 20 equally spaced bins. Identical bins
ere employed at all spatial frequencies and orientations.
he bin range for each image database was defined by
in�x� and max�x� over all spatial frequencies, orienta-

ions, and images. The entropy analysis produced a single
D entropy plot �frequency�orientation�entropy� for
ach image database. Like the amplitude data (described
bove), the 3D surface was then reduced to two dimen-
ions by collapsing across spatial frequency and orienta-
ion separately, producing plots of entropy versus spatial
requency and entropy versus orientation. For our analy-
is, we compare the entropy peaks and shape of entropy
unctions for each image database rather than compare
he absolute entropy values across databases.

. RESULTS
. Spatial Frequency: Mean Amplitude Analysis
ean amplitudes are plotted as a function of spatial fre-

uency in Fig. 5 on a log–log scale. Data obtained for sign
mages (thick black curves) are presented separately for
he two signers, RB (top) and DH (bottom). For compari-
on, data are also presented for a neutral pose (with arms
t rest) for each signer (gray curves). Also, for comparison,
ata are shown for the set of faces taken from the AR da-
abase (dotted curves) and natural scenes taken from the
roningen database (thin curves). Note that the faces and
atural scenes data are plotted redundantly in the top
nd bottom figures, to allow comparison with each sign-
r’s data.

For all image sets, amplitudes were found to be largest
t low spatial frequencies, declining approximately ac-
ording to 1/ f, where f is spatial frequency, and were ap-
roximately linear on a log–log scale. This 1/ f pattern has
een widely reported for natural scenes.20–24 More pre-
isely, the amplitude spectrum of natural scenes has been
ound to take the form 1/ fexp, with the exponent being
quivalent to the slope of log amplitude against log fre-
uency. In log–log coordinates, the slopes are found to be
ear −1, ranging from −0.7 to −1.6 across studies.21,22,24

Note that some studies report results for the power
pectrum,23 which is the square of the amplitude spec-
rum, and hence the exponents and slopes from these
tudies will be double those for the amplitude spectrum.)
n the current study, where we measure the amplitude
pectrum in log–log coordinates, we find a slope value for
atural scenes of −1.17, which is within the previously re-
orted range. For the face database, the slope was −2.06.
or sign images, the slope value was approximately
1.66, which was nearly identical for the two signers
RB=−1.68, DH=−1.64). The slope value for the neutral
ose was similar to that of the sign images (RB=−1.64,
H=−1.61), with a trend to be slightly shallower. In sum,
ll image sets conformed to a 1/ fexp pattern, with the
teepest slopes found for faces, followed by sign images
nd then natural scenes. However, the fact that signing
rms and the neutral pose yielded quite similar curves
uggests that signing arms are unlikely to contain spatial
requency information much different from that of non-
igning arms, an issue we return to in Section 4.

. Spatial Frequency: Entropy Analysis
ntropy of the amplitude distribution is plotted as a func-

ion of spatial frequency in Fig. 6, separately for sign im-
ges of signer RB (thick black curve), and signer DH (gray
urve), faces (dotted curve), and natural scenes (thin
urve). Note that entropy cannot be calculated for the
eutral pose condition, since entropy was calculated
cross images and the neutral pose was a single image.
or sign images from both signers, the entropy curves ap-
eared bandpass, with a peak in entropy at 2.0 and
.8 cyc/deg for RB and DH, respectively (0.8 and
.7 cyc/cm, respectively). These peaks in entropy occur at

ig. 5. Amplitude versus spatial frequency. Mean log amplitude
s plotted as a function of log spatial frequency (data collapsed
cross orientation) for signers (top) RB (n=46 images) and (bot-
om) DH (n=59 images). Data are shown for sign images (black
urves) and the neutral pose (gray curves). For comparison, data
re shown for a set of 100 faces taken from the AR database (dot-
ed curves) and a set of 100 natural scene images taken from the
an Hateren and van der Schaaf database (thin curves). Note
hat the faces and natural scenes data are plotted redundantly in
oth figures, to allow comparison with each signer’s data.
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oughly the same spatial frequencies that have been
hown to be important for identifying signs in ASL based
n psychophysical studies,62 an issue we return to in Sec-
ion 4. There was also a trend for a bandpass shape in the
ace images, with a peak at 7.0 cyc/deg �2.8 cyc/cm�. For
atural scenes, entropy was roughly constant up to
cyc/deg, increased markedly between 1 and 3 cyc/deg,
nd then remained roughly constant as spatial frequency
as increased further. Note that the shapes of the en-

ropy versus spatial frequency curves for all image sets
ere very different from the shapes of the mean ampli-

ude versus spatial frequency curves of Fig. 5: For all im-
ge sets, mean amplitude decreased with increasing spa-
ial frequency in a 1/ f fashion, whereas entropy curves for
patial frequency were largely bandpass or flat in nature.

. Orientation: Mean Amplitude Analysis
ean amplitudes are plotted as a function of orientation

n Fig. 7 (0 deg denotes horizontal and 90 deg denotes ver-
ical contours in the image). Data obtained for sign im-
ges (black curves) and the neutral pose (gray curves) are
resented separately for the two signers, RB (top) and DH
bottom). For both sign images and the neutral pose,
here was a clear peak in amplitude at 90 deg. This verti-
al bias (which was stronger for the neutral pose), is due,
f course, to the fact that arms (specifically arms at rest,
s in the neutral pose) are oriented vertically. The fact
hat signing arms and the neutral pose yielded quite simi-
ar curves suggests that signing arms are unlikely to con-
ain orientation information much different from that of
onsigning arms, an issue we return to in Section 4.
For comparison, data are shown for the set of faces

dotted curves) and natural scenes (thin curves). Note
hat the faces and natural scenes data are plotted redun-
antly in the top and bottom figures, to allow comparison
ith each signer’s data. For natural scenes, peaks in am-
litude were observed at the cardinal orientations (0 and
0 deg), which is in agreement with previously reported
esults for amplitude analyses of natural
cenes.12,15,16,18,20 Similarly, for faces, peaks in amplitude
ere observed at the cardinal orientations; however, the
eak was much stronger at 0 deg (horizontal).

. Orientation: Entropy Analysis
ntropy of the amplitude distribution is plotted as a func-

ion of orientation in Fig. 8, separately for sign images of
igner RB (thick black curve) and signer DH (gray curve),
he set of faces (dotted curve), and natural scenes (thin
urve). As was the case for the spatial frequency analyses,
or the orientation analyses, the entropy curves and mean
mplitude curves were quite different in shape. This is re-
ealed in several interesting ways. First, for natural
cenes, the clear cardinal bias seen in the mean ampli-
ude data (i.e., peaks in mean amplitude near 0 and
0 deg; see Fig. 7) actually reversed in terms of entropy.
hat is, for entropy there was a clear nadir at 0 deg (and
smaller nadir at 90 deg). Second, for faces, the clear

eak at 0 deg in the mean amplitude data was absent in
he entropy data. Third, for sign images, the clear peak at
0 deg in the amplitude data (seen for both signers) was
argely attenuated in the entropy data. In addition, the
ntropy data for signer RB showed a peak at 0 deg, which
ig. 6. Entropy versus spatial frequency. Entropy is plotted as a
unction of log spatial frequency (data collapsed across orienta-
ion) for signers RB (thick black curve) and DH (gray curve),
aces (dotted curve), and natural scenes (thin curve). Entropy
ould not be calculated for the neutral pose, which is a single im-
ge, since in this study entropy was calculated for a distribution
ig. 7. Amplitude versus orientation. Mean log amplitude is
lotted as a function of orientation (data collapsed across spatial
requency) for signers (top) RB (n=46 images) and (bottom) DH
n=59 images). Data are shown for sign images (black curves)
nd the neutral pose (gray curves). For comparison, data are
hown for the set of 100 faces taken from the AR database (dotted
urves) and the set of 100 natural scene images taken from the
an Hateren and der Schaaf database (thin curves). Note that
he faces and natural scenes data are plotted redundantly in
oth figures, to allow comparison with each signer’s data. Also
ote that the X axis is centered at 0 deg (horizontal) to empha-
ize the sharpest peak in the data.
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as not observed in the amplitude data. We return to the
elevance of these differences in Section 4.

. DISCUSSION
he current study employed Fourier analysis to measure
ean amplitude and entropy of the amplitude as a func-

ion of spatial frequency and orientation in three different
ets of images: faces and natural scenes (from published
atabases) and ASL signs (from our own database). The
nalysis here addressed only the amplitude spectrum and
ot the phase. The amplitude spectrum contains informa-
ion about the second-order statistics of the images,
hereas the higher-order relationships are captured in

he phase (e.g., see Bell and Sejnowski73). The natural im-
ge literature has focused primarily on amplitude as it is
ess clear how to characterize the phase structure of im-
ges. Progress on this front has been made by Thomson,74

ho showed that there are statistical consistencies in the
hase spectra of natural scenes using the phase-only sec-
nd spectrum, a fourth-order statistic that quantifies har-
onic beat interactions in the data.
To our knowledge, this is the first study to quantify the

mage statistics of ASL. The novelty of this research is
hat it characterizes the low-level visual content of a vi-
ual language in the same way classic phonetics research
haracterizes the low-level auditory content of spoken
anguages. In addition, the current study introduces the
oncept of entropy across a set of images with the notion
hat, in addition to mean amplitude, this type of informa-
ion in an image set may play a role in shaping visual per-
eption.

Several studies have looked at entropy within
mages,68,69,75,76 whereas the present study measured en-
ropy across images. Kersten75 showed that a given pixel
alue was 65% predictable by knowledge of the rest of the
mage. Ruderman76 measured the mutual information be-
ween pairs of pixels as a function of separation distance
nd showed that the mutual information decreased non-
inearly with distance according to a power law.
augman,69 as well as Thomson,74 compared the entropy

ig. 8. Entropy versus orientation. Entropy is plotted as a func-
ion of orientation (data collapsed across spatial frequency) for
igners RB (black curve) and DH (gray curve), faces (dotted
urve), and natural scenes (thin curve). Entropy could not be cal-
ulated for the neutral pose, which is a single image, since in this
tudy entropy was calculated for a distribution of many images.
ote that the X axis is centered at 0 deg (horizontal) to empha-

ize the sharpest trough in the data.
f the original pixel values with the entropy of a wavelet
istribution and showed that a wavelet representation re-
uced the entropy for natural images, i.e., created a
parse code. Brady and Field68 showed that divisive nor-
alization on a wavelet representation of natural images

ncreases the entropy of the representation. These studies
ddressed the redundancy within images by measuring
he joint entropy of pairs of image measures (or by mea-
uring mutual information that is negatively related to
ntropy). The entropy across images measured in this
tudy asked a different question, namely, which dimen-
ions carry the most information for distinguishing im-
ges.
In this section, we discuss the results of the current

and previous) Fourier analyses conducted on different
atabases, with the goal of relating the findings to known
or predicted) visual psychophysical results. Before pro-
eeding with the discussion, it is worthwhile pointing out
hat there are two main types of psychophysical tests that
ave been used to establish links between image statis-
ics and visual perception. First, simple sensitivities (e.g.,
ontrast sensitivity or acuity) are determined along a
iven stimulus dimension (like spatial frequency or orien-
ation). Typically, the goal has been to link these psycho-
hysical sensitivity data to biases in the environment as
easured with the mean amplitude metric of the Fourier

nalysis (for example, as in the oblique effect). Second,
ith a set of real-world images (within a confined set,

uch as printed letters or faces), different spatial fre-
uency or orientation bands are filtered or masked to de-
ermine which bands are most critical to the visual sys-
em for discriminating one image in that set from
nother. Here, the goal has been to ask whether the most
ritical band for visual discrimination is tied to that
hich contains the greatest mean amplitude (as has been

uggested for printed letters; see Section 1). The novel
ontribution of the current paper, to our knowledge, is the
uggestion that contrast sensitivity and/or visual dis-
rimination may be tied to entropy of the amplitude in an
mage set rather than (or in addition to) the mean ampli-
ude. Below, we begin with a discussion of natural scenes,
ollowed by faces and then ASL signs.

. Natural Scenes
ith regard to spatial frequency, the results of our ampli-

ude analyses revealed a 1/ f function, which is in line
ith previous findings for natural scenes.20–24 The slope

f −1.17 for amplitude versus spatial frequency on a log
cale is similar to slopes reported previously in the litera-
ure (e.g., Tolhurst et al.24 reported a mean slope of −1.2).
ee Ruderman77 and Balboa et al.78 for discussions of the
rigins of 1/ f scaling in natural scenes, and see Atick and
edlich29 for a theory of how the 1/ f scaling relates to con-

rast sensitivity in the retina.
The results of our entropy analyses of natural scenes

ooked quite different from the mean amplitude analyses.
patial frequencies over �2 cyc/deg had more entropy
ompared with spatial frequencies under �2 cyc/deg;
owever, above and below this spatial frequency, entropy
as relatively constant. The difference between the am-
litude and the entropy results raises the interesting
uestion of which measure (if either) is more influential
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n shaping perception. If entropy plays a role, psycho-
hysical studies that employ bandpass filtering or mask-
ng of natural scenes might show that middle and high
patial frequencies are more critical than low spatial fre-
uencies for discriminating one natural scene from an-
ther.

In the orientation domain, the lowest amplitudes in
atural scenes were observed for oblique orientations,
hich is in agreement with findings from previous studies
f natural scenes.12–16 For many years it has been be-
ieved that this orientation bias in the environment is
hat drives the perceptual oblique effect; acuity and con-

rast sensitivity are worse at oblique orientations as com-
ared with cardinal orientations6–8 (see Section 1). How-
ver, the results of our entropy analysis were essentially
pposite to the results of our amplitude analysis (compare
hin curves in Fig. 7 versus Fig. 8). More specifically, we
bserved the lowest amount of entropy for horizontal con-
ours (i.e., troughs in entropy at 0 deg).

At first glance, the fact that our mean amplitude re-
ults, but not our entropy results, mirror the perceptual
blique effect would seem to suggest that mean amplitude
cross an image set is more influential in shaping percep-
ion than is the entropy in that image set. However, re-
ent psychophysical studies present a challenging point of
iew.17,63 In these studies it was shown that the oblique
ffect (i.e., poorest contrast sensitivity for oblique con-
ours) that is known to exist for stimuli of a single spatial
requency turns into a horizontal effect (i.e., poorest con-
rast sensitivity for horizontal contours) for stimuli of
roadband spatial frequencies that are more naturalistic.
lso, the horizontal effect was found to be strongest when

he slope of the 1/ f spatial frequency distribution in the
roadband stimulus was between 0.75 and 1 (in log–log
oordinates), which matches the statistics of natural
cenes. The similarity between these psychophysical find-
ngs of a horizontal effect and the sharp decrease in en-
ropy seen at horizontal contours in the current study
uggests that entropy might, in fact, play a role in shap-
ng perceptual sensitivity. One way in which this could oc-
ur is if the visual system allocates less dynamic range to
rientations with lesser entropy in the environment.

Another explanation for the horizontal effect, sug-
ested by Hansen and Essock,17 is that the effect is due to
ontrast normalization in the visual cortex. Interestingly,
hese two hypotheses, contrast normalization (Hansen
nd Essock’s study) and entropy in the environment (cur-
ent study), are not incompatible. Both accounts involve
elying on orientations with the least redundancy, either
ithin images as in the contrast normalization model or
cross images as in the current entropy analysis. Brady
nd Field68 showed that divisive contrast normalization
ncreases the entropy of neural responses to natural
cenes. Brady and Field’s study was primarily a within-
mage analysis, whereas the present study looks at en-
ropy across images, but it shows that the computational
rocess involved in divisive normalization is related to
nformation-carrying capacity, a finding that is supported
y Simoncelli and Schwartz.79 In any event, one way to
est whether entropy plays a role in shaping visual per-
eption would be to use the filtering or masking technique
o determine psychophysically whether horizontal con-
ours are least critical for discriminating one natural
cene from another.

. Faces
ith regard to spatial frequency, the results of our ampli-

ude analyses revealed a 1/ f function, which is in line
ith previous findings for faces (e.g., Torralba and
liva18). Interestingly, however, the slope in log–log coor-
inates was steeper than for natural scenes (see Fig. 5).
n our entropy analysis, we observed a small peak at
.8 cyc/cm (which converts into 7 cyc/deg, assuming a
iewing distance of 5 ft). These entropy data for faces can
e compared with the results of psychophysical studies
sing filtering or masking to determine which spatial, fre-
uencies human observers rely on most for discriminating
aces. Although there is some differences across studies,
he general consensus is that 10 to 15 cyc/ face contain
ost information used by human observers,80–83 with one

tudy84 being slightly higher at 20 cyc/ face width. The
ycles per centimeter of the current study can be con-
erted into cycles per face by multiplying by the mean
ace width of our two signers �15.7 cm�. This shows the
eak in the entropy data to be 43.2 cyc/ face, which is
uch higher than the peak cycles per face determined

sychophysically. However, note that, although entropy
eaks at �43.2 cyc/ face in our analyses, there is a broad
ange in this peak, which includes the range of important
requencies nr reported in the psychophysical literature
10–15 cyc/ face�. Still, our entropy data seem to overesti-
ate the contribution of high spatial frequencies.
The orientation results for faces revealed a cardinal

ias in mean amplitude of faces (as was observed for
atural scenes), although the effect was stronger for hori-
ontal than vertical contours. This cardinal bias seen in
he amplitude for faces, which was also reported by Tor-
alba and Oliva,18 was largely attenuated in the entropy
ata of faces (compare dotted curves Fig. 7 versus Fig. 8).

. Signs in American Sign Language
he statistics of sign images were found to differ from

hose observed for natural scenes and faces in the follow-
ng ways. First, although mean amplitude analyses of all
mage sets revealed a 1/ f function, the slope for sign im-
ges was steeper than for natural scenes but shallower
han for faces. Because the slope of the sign images falls
idway between that of two other image sets for which

igners should also have ample experience (faces and
atural scenes), it is not entirely obvious whether spatial
requency sensitivity would be expected to differ between
igners and nonsigners. To date, a single study has com-
ared contrast sensitivity to different spatial frequencies
n signers versus nonsigners.85 For the three spatial fre-
uencies tested in that study (0.5, 2, and 9 cyc/deg), no
ignificant differences were found between groups, nor
ere any interactions between subject group and spatial

requency found. Such findings suggest that exposure to
he spatial frequency distribution of sign images has no
ffect on contrast sensitivity, although the relatively
mall number of spatial frequencies tested in this study
ay not have been sufficient for revealing subject group

ifferences.
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Second, although all image sets revealed higher mean
mplitudes for cardinal, than for oblique, orientations,
ign images contained more amplitude for vertical, than
or horizontal, contours, while faces and natural scenes
howed an opposite pattern. This difference may not be
urprising, since signing arms are often oriented verti-
ally. (This is especially true for one-handed signs, where
he nondominant arm is usually in a vertical position.) If
here is a relationship between the prevalence of different
rientations in the environment and visual sensitivity
see Section 1), these mean amplitude analyses for orien-
ation suggest that anisotropies in orientation perception
ay differ between ASL signers and nonsigners. Future

sychophysical studies will be required to test this hy-
othesis.
A third way in which the statistics of ASL images were

ound to differ from those observed for natural scenes and
aces was in the entropy analyses for spatial frequency
see Fig. 6). Here, sign images revealed a clear bandpass
attern with a peak in entropy at approximately
.75 cyc/cm (which converts into 1.9 cyc/deg, assuming a
ypical viewing distance of 5 ft). This result suggests that
patial frequencies near this peak contain the greatest
mount of information for distinguishing one sign image
rom another. To investigate whether this entropy signal
n the image set is actually used by human observers, one
an ask whether the spatial frequencies that contain the
ighest entropy in an image set are those most critical for
sychophysical discrimination of sign images. Psycho-
hysical data from Riedl and Sperling62 allow us to ad-
ress this possibility. In their study, they presented
patial-frequency-filtered signs to determine which spa-
ial frequencies are most critical for signers to be able to
iscriminate one sign from another. They used four spa-
ial frequency filters with peaks of 0.05, 0.20, 0.35, and
.75 cyc/cm and found that 0.75 cyc/cm was most impor-
ant. Note that the investigators were actually attempt-
ng to make it so that the four different spatial frequency
ands yielded equal performance (which they attempted
o do by keeping the peak frequency constant but varying
he bandwidth of the filters), yet they still found that the
ubjects’ most accurate performance was seen at approxi-
ately 0.75 cyc/cm.
Although Riedl and Sperling62 did not test high enough

patial frequency bands to determine whether the
.75 cyc/cm band was the peak (since it was the highest
and tested), their results are, at the very least, in line
ith those of the current study, which showed that the

mage statistics of signs contain the highest entropy (i.e.,
he greatest amount of information) at around
.75 cyc/cm. This consistency between the entropy statis-
ics of signs here and psychophysical discrimination of
igns reported by Riedl and Sperling suggests that the
echanisms involved in comprehension of sign language
ight become tuned to rely on spatial frequencies in signs

hat contain the greatest entropy.

. Are Signing Arms and Hands Unique?
n a final note, it is important to point out that if percep-

ual differences are found to exist between signers and
onsigners and if these differences appear to relate to the

mage statistics of the arms and hands in ASL, we suggest
hat it is more likely due to signers’ reliance on ASL
ather than to their mere exposure. This is because the
ase could easiy be made that both signers and nonsign-
rs alike receive ample (and roughly equal) experience
iewing arms and hands, whether those arms are signing
experienced by signers only), gesturing, or at rest (the
atter two being experienced by signers and nonsigners).
nd in fact, the results of our mean amplitude analyses
evealed only minor differences between sign images and
he neutral pose (in terms of the shapes of the spatial fre-
uency and orientation curves). Thus, differences be-
ween signers and nonsigners would most likely be attrib-
table to the fact that signers pay much more attention to
he hands and arms because this part of the body is cru-
ial for ASL communication.

Finally, the current Fourier analysis focuses on the
tatic information carried in ASL, i.e., in the hand–arm
osition that carries lexical information. However, the
otion of the hands and arms also carries critical infor-
ation in ASL, and we address the statistics of the mo-

ion in ASL in a forthcoming paper on the motion statis-
ics of ASL. In any event, it is reasonable to suggest that
isual perception may differ between signers and non-
igners in predictable ways based on the (static or mov-
ng) image statistics of signs. Many studies have indeed
eported differential spatial or motion processing between
igners and nonsigners, which is thought to be due to ASL
xperience.50–56 However, because the spatial frequency–
rientation makeup of the stimuli in these previous stud-
es was not controlled, we cannot yet determine whether
ifferences between signers and nonsigners in these stud-
es might be linked to exposure to the visual statistics of
igning arms and hands. Future experiments in our labo-
atory are currently underway to investigate these possi-
ilities.
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