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Abstract 

This pape.r shows that contrastive Hebbian, 
the algorithm used in mean field learning, can 
be applied to any continuous Hopfield model. 
This implies that non-logistic activation func­
tions as well as self connections are allowed. 
Contrary to previous approaches, the learn­
ing algorithm is derived without consider­
ing it a mean field approximation to Boltz­
mann machine learning. The paper includes 
a discussion of the conditions under which 
the function that contrastive Hebbian mini~ 
mizes can be considered a proper error func­
tion, and an analysis of five different train­
ing regimes. An appendix provides complete 
demonstrations and specific instructions on 
how to implement contrastive Hebbian learn­
ing in interactive activation and competition 
models (a convenient version of the continu­
ous Hopfield model). 

1 INTRODUCTION 

In this paper we refer to interactive activation net­
works as the class of neural network models which have 
differentiable, bounded, strictly increasing activation 
functions, symmetric recurrent connections, and for 
which we are interested in the equilibrium activation 
states rather than the trajectories to achieve them. 
This type of network is also known as the continuous 
Hopfield model [6J. Some of the benefits of interactive 
activation networks as opposed to feed-forward net­
works are their completion properties, flexibility in the 
treatment of units as inputs or outputs, appropriate­
ness for solving soft-·constraint satisfaction problems, 
suitability for modeling cognitive processes [9], and the 
fact that they have an associated energy function that 
may be applied in pattern recognition problems [13]. 
Contrastive Hebbian Learning[7J (CHL), which is a 
generalization of the Hebbian rule, updates the weights 
prop<2!'~ionally to the difference in the crossproducts 
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of activations in a clamped and a free running phase. 
This modification of the Hebbian learning, first ap­
plied by Hopfield to improve the storage capacity of 
discrete content addressable memories without hidden 
units (5], appears in the Boltzmann learning algorithm 
(1] and its mean field approximation [11][3]. This pa~ 
per shows that Hinton's observation that CHL depends 
on a pe1,'formance measure [3] can be generalized to 
any case of the continuous Hopfieid model. Contrary 
to previous approaches, the derivations do not pre-­
sume the existence of Boltzmann machines approxi­
mated with mean field networks. The paper includes 
a discussion of the conditions under which the function 
that CRL minimizes can be considered a proper error 
function, an analysis of undesirable effects that may 
occur in CRL learning, and a classification of training 
regimes that minimize these effects. 

The paper is divided in two sections and one appendix. 
Section 1 describes the dynamics of the activations in 
interactive networks. Section 2 shows how to modify 
the weights for the stable states of the network to re­
produce desired patterns of activations. The original 
contribution in this paper are: 

• To show that CBL works with any continuous 
Bopfield network and thus that self-connections 
as well as non-logistic activation functions are al­
lowed. 

• To show that the p1,'inciples involved in the mean 
field learning algorithm can be derived indepen­
dently of the Boltzmann Machine. 

• To show that except for the case where there are 
no hidden units, the function that CRt minimizes 
is not a proper error function but that in practice 
there are training regimes that make it work as 
such. 

For completeness we present some of the classical 
proofs provided in Hopfield [6]. The appendix con­
tains mathematical details and specific comments on 
how to implement Contrastive Hebbian Learning in 
interactive networks. 
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2 STABILITY OF ACTIVATIONS 

Since interactive networks have recurrent paths, it is in 
principle possible that their activations never stabilize. 
Fortunately, if some simple conditions investigated by 
Hopfield [6] are met, we can guarantee that the activa­
tions will settle, and that at equilibrium they will be 
at a minimum of an Energy function. 

Let the activation vector aT :::: [a1, •.. an}, be regulated 
by bounded, monotonically increasing, differentiable 
activation functions li(.). Let W:::: ~I' ••• wn ] be the 
matrix of connections, where the Wi :::: [WI,i, ••. Wn,i] 
are bounded, fan-in weight row vectors. Let dO/dt be 
derivatives with respect to time, net; :::: a1 Wi, and 
rest :::: 1(0). Define a continuous Hopfield Energy 
function [6] 

F::::E+S (1) 
where 

lIn n 
E:::: -- atW a:::: -- "" "" a'w"a' 2 2 L...J L...J t t) ) 

i=lJ:::I 

(2) 

and 

(3) 

It can be shown that E, which reflects the constraints 
imposed by the weights in the network, tends to drive 
activations to extreme values 1. On the other hand, S 
is a penalty function that tends to drive the activations 
to a central value (the resting point). In principle we 
are interested in activation states that minimize E for 
they are maximally harmonious with the information 
encoded in the weights. As we will study later, varying 
the relative importance of E vs. S as the activations 
settle may help achieve maximally harmonious (mini­
mum E) states. In the appendix it is shown that if the 
activation functions are the standard (0-1) logistic, F 
becomes the Helmholtz free energy function as defined 
in [3]. 

Ropfield [6] showed that if the network is governed by 
the set of differential equations 

d fi~:(ai) = ~ (_ fi-l(a.) + netd; i:::: L.n (4) 

and the weights are symmetric, the activations stabi­
lize in a minimum of F. For completeness, I present 

1 If self connections are allowed, minima in E may also 
occur for intermedia.te activation values. 

in the appendix a version of lIopfield 's proof and show 
that stability in a global minimum can also be achieved 
with the following equation, typically used in interac­
tive activation networks [8][9] [10] 

da· 
-d • = ~ «-ai + I. (net.)) (5) 

t " 
Notice that if we apply either equation 4 or 5, on equi~ 
librium (When the derivatives are zero), 

1i:1(a;) :::: net. (6) 
where ( V) represents equilibrium. These properties 
will be used to derive the learning algorithm in the 
next section. 

3 CONTRASTIVE LEARNING 

Learning is viewed as the modification of connections 
between units so that the stable states of the network 
reproduce desired patterns of activations. We will see 
that CRL minimizes a contrastive function J 2 and 
then we will discuss the conditions under which mini­
mization of J guarantees learning. 

Define a pattern p as the pair p = {al ( +), aO( +)}, 
where I stands for input set, 0 for output set, and (+) 
indicates that the activation of these units are fixed 
by the pattern. In connectionist terms aO(+) is the 
teacher vector. We will say that r has been learned if 
clamping the input units to a l (+ then 

aO(-) = aO(+) (7) 

where aO( -) denotes the activation of the output set 
when inputs are clamped and outputs are free. Note 
that in this form of supervised learning we are only 
interested in the outputs obtained after equilibrium is 
achieved and not in the trajectories followed to equi­
librium. 

Define the contrastive function J as 

J = p(+) - F(-) (8) 

where FC +) and FC -) respectively are the va.lues of the 
energy functions at equilibrium when the inputs and 
outputs are clamped (+), and when the inputs are 
clamped and outputs are free (-). Notice that F(-) 

has the same free parameters that F( + ), the activa­
tions of the hidden units, plus some additional free 
para.meters, the activations of the output units. As­
sume that, over the working region of activation states, 
F has a unique minimum.3 • Thus, since the mini­
mum is unique F(+) ~ p(-), and if J ::= 0, then 

on different arguments, Rinton [3] showed that 
CRL minimizes the equivalent of J when the activation is 
logistic. 

3This MSumption, which is shared with Boltzmann 
learning, Mean Field Learning, and the Almeida-Pineda 
algorithm is discussed in section 4. 
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aO( -) ;:: aO( +). This makes J a potential candidate 
for learning by gradient descent on weight space. In 
particular, following the derivations detailed in the ap­
pendix, we have 

oE 
OWij 

oE 
OWij 

i=/=i (9) 

i = i (10) 

(11) 

And following equation 6 it is easy to see that 

making 

of 
OWij 

of 
OWij 

(12) 

(13) 

(14) 

oj v(-h(-) v(+)v(+) (15) - oc a. u· - a· a· 
OWii I J I J 

which shows that the contrastive Hebbian learning rule 

AWiJ' oc a~+)a<+) - (1(-)(1<-) (16) 
I J I J 

descends in the J function. 

4 DISCUSSION 

We have seen that CHL minimizes the contrastive 
function 

J;:: F(+) - F(-) (17) 

so that after each learning step, the difference in en­
ergy at equilibrium between the clamped and free 
states becomes smaller. At this point we will study the 
conditions under which J can be considered a proper 
error function. 

An important property of error functions is that they 
decrease as the difference between the obtained and 
the desired states decreases. CHL guarantees that the 
difference between energies in the clamped and free 
phases will become smaller but as we will see this 
does not always guarantee that the difference between 
the clamped and free state activations will decrease. 
If both F( +) and F(-) have a unique minimum (e.g. 
when there are no hidden units) and since in the (­
) phase there are more free parameters to minimize 
F than in the (+) phase it follows that J cannot be 

smaller than zero and that when J ;:: 0 the activa­
tions in the free and clamped phase are equal. In this 
case, J is a proper error function. In the appendix it 
is shown that if there are no hidden units CHL is in 
fact equivalent to backpropagation learning. 
However, if there are multiple minima in F, we can 
no longer guarantee that a local minima in the free 
phase will have lower energy than a local minima in 
the clamped phase. One way to avoid this problem 
is to use training regimes that maximize the prob­
ability that the activations in both the free-running 
and the clamped phase equilibrate in the same region 
of attraction of F( -) space. A way to visualize how 
CHL works is to imagine the energy surface over ac­
tivation space as a membrane with several minima. 
CHL pushes down the minimum corresponding to the 
clamped case and pulls up the stable states for the 
free phases. If both stable states are in the same at­
tractor, after several learning trials, both minima con­
verge. What follows is a brief analysis of five different 
training regimes: 

• Case 1: Activations are reset to random numbers 
after each learning phase. In this case, the start­
ing points for the clamped and free phase are dif­
ferent and, very likely the stable states will also be 
apart. Under this condition, CHL learning does 
not work well. 

• Case 2: First settle for the clamped phase, and 
then, without resetting activations, free the output 
units and settle again. This procedure guarantees 
that F(+) > F(-) and that when F(+);:: F(-) the 
activations on the free and clamped phases are the 
same. Gradient descent on J assures that when 
the minima for the clamped phase is achieved, if 
the output unit activations are free, they will not 
change. This form of learning, which can be used 
for recognition offamiliar patterns, is very rapidly 
achieved with CHL (it just takes about 3 trials to 
"recognize" the XOR or the 4-3-4 encoder pat­
terns). Unfortunately, if we just clamp the input 
units without information about the teachers, in 
general the activations will not converge to the 
desired minima. 

• Case 3: Settle during the free phase and then, 
without resetting activations, clamp the output 
units and resettle again. 
This scheme minimizes the probability that the 
clamped and free phases end up in different re­
gions of attraction. In general this procedure 
works well and achieves learning speeds compara­
ble to backpropagation. There are two phenom­
ena though that sometimes occur [3]. Occasion­
ally the network may settle in a different attractor 
than the one to which it had converged in previ~ 
ous trials. This may result in a sudden change in 
activations and and a temporary "unlearning" of 
the weights. In figure 1 it can be seen a typical 
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Figure I: Typicallea.rning curve for the XOR problem. 

learning curve with these temporary unlearning of 
the patterns. It is our experience that as lea.rning 
progresses these sudden jumps to other minima 
tend to diminish. Another problem is that if the 
the clamped and free phases stabilize in different 
regions, the energy of the clamped phase may be­
come lower than the energy in the free phase. If 
this happens, learning usually deteriorates mak­
ing it advisable to start with a different' set of 
weights. Figure 2 shows the energy functions gen­
erated after training a simple network, with an 
input unit, a hidden unit and an output unit, to 
learn the 1-1-1 encoder problem. It can be seen 
that as learning progresses a minimum is created 
at the desired state (output unit activation =1) 
but that a spurious local minimum is also cre­
ated. If in some trial the activations equilibrate 
in that local minimum abrupt distortions in the 
learning curve and temporary unlearning of the 
desired activations may occur 4. 

• Case 4: Sharpening Schedules 5. 

As we previously mentioned if there is a unique 
global minimum of f( -) and of f( +), and the ac­
tivations settle into this minimum then the con­
trastive function J can be considered a proper er­
ror measure. One way of decreasing the likeli­
hood of settling into spurious local minima is the 
use of sharpening schedules. Sharpening sched-

4Since the networks we are considered so far are deter­
ministic, the settling state is determined by the final state. 
However, slight weight modifications made by the learning 
algorithm may be sufficient to make the activations settle 
in completely diiferent attractors 

~I thank Conrad Galland for showing me the role that 
sharpening schedules play in contrastive Hebbian learning. 
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J: 

Figure 2: Contour curves of the free energy function as 
learning progresses. Note that although initially there is a 
unique minimum, eventually an spurious local minimum is 
generated. 

ules modify the gain or sharpness of the activ8r­
tion functions as the settling of the activations 
proceeds. Usually we start with low gain (flat ac· 
tivation functions) and progressively increase it. 
The rational for this procedure is as follows: De­
creasing the sharpness of the activation functions 
is equivalent to weighting more heavily the S part 
of the free energy as defined in equation 1 6. Fig­
ure 3 shows the effect of sharpening on the er· 
ror function learned for the 1-1-1 encoder problem 
mentioned in Case 3. For large decay values (low 
gain) the spurious local minima dissapear. Ide­
ally, we start settling the activations with appro­
priately large decay values that get rid of the spu­
rious local minima but allow the global minimum 
to survive. Then we let the activations settle to­
wards this global minimum and slowly guide them 
away from rest values by progressively decreasing 
decay (increasing gain). Peterson and Anderson 
[11] and Peterson and Hartman[12] call this pro­
cedure annealing for it is a mean field approxi­
mation to annealing schedules of discrete Boltz~ 
mann machines. I have decided to use the term 
sharpening.schedules as defined in [2] to clarify 
the fact that sharpening does not have anything 
to do with increasing the randomness of the net­
work as one would expect of annealing schedules 

6In the interactive activation and competition model 
[10] this is controlled by a the decay parameter. Iflogistic 
activations are used, sharpening is achieved by controlling 
the gain of the activation functions. 
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Figure 3: Tne energy function for different degrees of 
snarpening. In this case sharpening is controlled by a de­
ca.y pa.ra.meter. Note how for low sha.rpening levels spurious 
minima disappear 

7. Although sharpening schedules are not strictly 
necessary for CHL to work, there are reasons to 
believe that they improve learning performance. 

• Case 5: Annealing schedules: In search of 
the continuous Boltzmann machine. Annealing 
schedules are another method for avoiding spu­
rious minima. Annealing schedules progressively 
decrease the randomness of the activations as set­
tling progresses. This may be achieved in interac­
ti ve networks by injecting some form of noise (e.g. 
logistic noise) to the net input of each unit. The 
standard deviation of the noise distribution plays 
a similar effect to the temperature parameter in 
discrete Boltzmann machines. Case 1 in this dis­
cussion can be viewed as a particular case of an­
nealing schedule in which the standard deviation 
of noise is very large for the initial cycle (produc­
ing a random starting point) and then goes to zero 
on the next cycle (making the network determin­
istic). Using slowly decreasing annealing sched­
ules may improve the likelihood of settling in the 
best minimum and avoiding spurious ones. It can 
be shown that this settling method defines a con-

7The term "sharpening" is not without problems either 
for i: con;:eals the fact that .sharpening is a mean field ap­
prmomatlOn to true annealing. Another possible term is 
"mean field annealing" but this may be confused with the 
true annealing method as discussed in case 5. 

tinuous state hidden Markov model ( a diffussion 
process). The activation settling algorithm can 
be seen as an approximation to gradient descent 
of the expected value of the Hopfield energy func­
tion F. The appropriate learning algorith should 
use the difference in the equilibrium expected val­
ues of the activation crossproducts in the clamped 
and free running phase. 
A nice property shown in the appendix is that 
if logistic noise is added to the net input, the 
limiting behavior of interactive networks as the 
sharpness of the activation functions increases is 
given by the discrete Boltzmann machine. This 
property may be used to implement both Boltz­
mann machines and continuous interactive net­
works with the same program. 
In spite of its probleins and the fact that more 
research is needed before using it for large scale 
problems, CHL is a promising, simple to imple­
ment learning method that works for a wide vari­
ety of interactive architectures. In Table 1 appear 
the results of simulations using CHL with the ac­
tivation update rule of the Interactive Activation 
and Competition model. [10]. 

5 APPENDIX 
5.1 S AND THE MEAN FIELD ENTROPY 

TERM 
The entropy term of the energy function proposed by 
Hinton [3] for the Mean Field Algorithm is 

n 

-L (adogai + (1 (1) log (1- ai)). (18) 
i=l 

If we use the standard logistic (0-1) activation func­
tion, 

1 
(19) y == 1 + e- I1l / T 

whose inverse is 

x = T log C Y y) (20) 

then t foYs T log (1 ~ y) dy (21) 

n 

= T L «y log y + (1- y) log (1 - V)) -logO.5) (22) 
i=1 

5.2 S AND THE INTERACTION 
ACTIVATION AND COMPETITION 
MODEL 

The activation update rule of the interactive activation 
and competition model (lAC) as defined in [9] is 

Aai ;: A «max - ai) netj ~ (ai - rest) decay) ; net> 0 
(23) 
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Aa; :;:::; A «aj - min) netf - (a; - rest) decay) ; net ~ 0 
(24) 

which can be derived from equation 5 applied to the 
following activation function 

mail! net; + rest decay 0 a; :;:::; .; net> 
net; + decay -

(25) 

min net, - rest decay 0 
aj:;:::; ; net < 

net, - decay -
(26) 

where max is the maximum value of the activation, 
rest the activation when the net input is zero, min the 
minimum value of the activation, and decay a positive 
constant. And applying equation 3, it is easy to see 
that 

with 

(
max - rest) Si :;:; decay«max - rest) log 
maX - at 

- (a; - rest»; aj ~ rest 

, ( aj - min) Sf :;:; decay«mm - rest) log . 
rest - mm 

+ (a; - rest»; 0,; S rest 

(27) 

(28) 

(29) 

(30) 

(31) 

with the decay parameter assuming the same function 
than gain in the logistic model. 

5.3 HOPFIELD'S PROOF OF THE 
STABILITY OF ACTIVATIONS 

Hopfield showed that if the network is regulated by 
equation 4 it will stabilize. This is done by showing 
that the Hopfield model has an associated Lyapunov 
function. Here, a similar argument is used to show 
that using equation 5 the network also stabilizes. To 
facilitate the calculation of the derivatives of. E, we 
collapse into Q the part of F that does not depend on 
ai, 

1 n n 

E = -'2 L:L:>kWkla/ 
1:=1/:::1 

1 n 

:;;::; -'2(a;wuai + aiel: a"'Wik 

n 

k""~ 
k¢' 

+ L: a/wEi) + Q) 
1=1 
I,,; 

and considering that the weights are symmetric, 

(32) 

(33) 

(34) 

(35) 

Regarding S, since the derivative of the integral of a 
function is the function itself 

oS :;:::; 1:-1(0.;) (36) 
00.; • 

and 
{)F oE oS -1 
- == - + - == -neti + Ii (ai) (37) {)aj 8ai 8aj . 

If we make 
do.· 
d; :;: A (-ai + I(netk» (38) 

then, a.pplying the chain rule, 

dF = t of dak (39) 
dt k:::1 oak dt 

n 

= L: A (-net + lk'l(a",)) (-ak + I(neh» (40) 
k=1 

but since Ik is monotonic, (-net + I; 1 (ak») has the 
same sign as (-/(netk) + ak), making 

dF 0 -< dt -
(41) 

Since F is bounded and on ea.ch time step F decreases 
then 

lim dF = 0 (42) 
t_oo dt 

and since equation 39 shows that 

dF = 0 ¢=>- do." = 0 <==?- o8F O;k = 1, ... ,n 
dt dt ak 

then 

I, dai. 0 k 1 1m -= ; = , ... ,n 
t-oo dt 

(43) 

(44) 

which tells us that the activations will tend to equilib­
rium as time progresses and that on equilibrium they 
are in a minima of F. 

5.4 SMOOTHING NET INPUTS VS. 
ACTIVATIONS 

Equation 4 can be discretized as 

A/i-1(ai(t») = A (- It1(ai(t» + neti(t» 
or 

(45) 

li- 1(ai(t+1») = (1- A)/i-1(ai(t» + Aneti(t) (46) 
equivalently, equation 5 would be discretized as 

a'(t+l) == (1 - A)ai(t) + AI( neti(t» (47) 

Equation 46 is an exponential smoothing of the net 
input. The activation function is then applied to 
this smoothed net, Another possibility, represented 
in equation 47, is to apply the activation function to 
the instantaneous net input and then to exponentially 
smooth these activations. 
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5.5 THE DERIVATIVES OF THE 
EQUILIBRIUM POINTS OF F 

First consider the weights that connect different units. 
Extracting the cross products with a Wij term. We 
have 

E = -~ (2aiWii(i.j + t t (i.I:Wklal) (48) 
.1:::::1 1=1 

J; ,1y!-i.i;k,ly6j,i 

and considering that Wij is the only weight depending 
on Wij. 

{)E 1 v v v {)li· v ()aj 
'j'\""""" = --2(2aiaj + 2Wijai~{) J + 2Wijaj-{) 
VWij Wij Wij 

(49) 

+ ~~. (V {)o'l v ()ak » 
4..-J 4..-J Wkl a.\: a + a, a 
.\:::::1 1=1 Wij Wij 

k,l;l;·.,h~,l¢j,i. 

(50) 

Reorganizing terms considering that the weights are 
symmetric, 

{)E = _~ (2O,iaj +2t .. ()al: t Wk1(J1) (51) 
{)Wij 2 .\:=1 ()Wij 1=1 

which easily leads to equation 9. Similar arguments 
can be applied to derive equation 10. Equation 11 is 
easy to obtain by applying the chain rule and the fact 
that the derivative is the inverse of the integral. 

5.6 CONTRASTIVE HEBBIAN AND 
BACKPROPAGATION LEARNING 
ARE EQUIVALENT WHEN THERE 
ARE NO HIDDEN UNITS 

The backpropagation weight update equation is 
AWlj ex: /d'(aj)(tj - aJ) (52) 

where Wij is the weight connecting input unit i with 
output unit j, fl the derivative ofthe activation func~ 
tion, and tJ the teacher for output unit j. The con~ 
trastive Hebbian weight update is 

AWij ex: o'~+)a)+) - O,~-)O,)-) (53) 
Since the input units are clamped in both phases, they 
are not influenced by the output units and the equilib­
rium point of the activations would be the same as in 
backpropagation. Taking this into consideration and 
reorganizing terms we have 

AWlj ex: a~+)(a)+) - a}-») (54) 

where a)+) is the same as the teacher, and a~+) the 
clamped input. Since the derivative of the activation 
function is always positive (for strictly increasing ac~ 
tivation functions), the cosine of the angle between 
the update vectors in backpropagation and contrastive 
HebMan is positive and therefore they both minimize 
the same error function. Since there are no hidden 
units, the error function has a unique minima and thus 
the final learned solutions will be equivalent in both 
backpropagation and contrastive Hebbian. 

5.7 INTERACTIVE NETWORKS WITH 
LOGISTIC NOISE APPROXIMATE 
BOLTZMANN MACHINES AS THE 
SHARPNESS OF THE ACTIVATION 
FUNCTIONS INCREASES 

AB sharpening increases, the activation function con· 
verges to a threshold function 

at = maill; net, > 0 

at ;;: min; neti S; 0 

(55) 

(56) 

where ma:c is the upper bound of the activation, min 
the lower bound, and nett has an added logistic noise 
component (0') with variance T~t . 

It follows that 

Prob(ai = rnaiV') = Prob(net, > 0) 

::: 1 - Prob(O' ::; -aT Wi) 

-1- 1 
- 1 + e(af W;)/T 

1 
= 1 + e-(ar Wi)/T 

which defines a Boltzmann machine. 

(57) 

(58) 

(59) 

(60) 

(61) 

5.8 SKETCH OF THE MAIN ROUTINES 
OF A CONTRASTIVE HEBBIAN 
PROGRAM 

1. Get a training pattern. 

2. Reset activations to rest and net inputs to zero. 

3. Clamp inputs to desired pattern. 

4. Settle activations according to equations 23 and 
24. The program may provide some facility for 
sharpening schedules (changing the decay or gain 
parameter through settling), and annealing sched­
ules (changing the standard deviation of noise 
added to the net inputs). 

5. Collect cross products of activations multiplied by 
a negative constant. 

6. Clamp also the output units to the desired pat­
tern. 

7. Settle activations according to equations 23 and 
24. 

8. Collect cross products of activations multiplied by 
a positive constant. 

Termination of settling may be done after a fixed num­
ber of iterations (let us say 30), or after the changes 
in activations are smaller than a certain criteria (e.g. 
biggest activation change is smaller than 0.01). Bel. 
low is an example of a settling cycle using the update 
function of the lAC model (9]. 
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for(i::::1,· i~ number_of_ units; i++){ 

for(j::::l,· j$. number.of_units; i++){ 

net{i} :::: net{ij + w[j}{iJ*activation(jJ ; 
} 
if(net{i};;:: 0) act{i} :::: acti{i} + lambda*((actimax 

-act{i]) *net{i} ~ decay*(acti[zJ-rest)); 
else acti{i} =acti{i} + lambda *(( acti{i)- actimin)*net[i] 
• decay*( acti{i}-rest)); 
if(acti{i} > max) acti{i]::::maxi 
if(acti{iJ < min) adi[i]=min; 
} 

Where max is the maximum value of the activatioIlB, 
min the minimum value, rest the activation when net 
is zero, lambda the stepsize of the activation change 
(smoothing constant), and decay a positive constant. 
We have obtained good results with actimax =1.0, ac­
timin = -1.0, rest =0.0, decay =0.1, lambda:::: 0.2. 

This is an example of a weight change routine 
for(i:::l,' :5 n'Umber~of_unitsi i++) 

forO;:::; 1 i ~ number.ol_units; j++){ 

weight_change{iJ[j} :::: weighLchange{i}{j} + phase 
*epsilon * a{i]*a[j} ; 

} 
} 

Where phase is (+ 1) for the clamped case and (-1) 
for the free case. Epsilon is the stepsize of the weight 
change. Weights may be updated after each phase, 
each pattern or after a batch of patterns. Table 1 
may be used to standardize new implementa.tions of 
the algorithm. 

stepslze 
hidden u. U.l .)1 ).001 

1 1: U .:0 (0 2' ~ C ) ~~ UI 
Z 1 U a l > 

01 . 3 21 . 5 '1 4 . I) > 
l 4~ 1 :3 l 241 

11> 2:3( (0) 98 .5 0) 24.5 I) 4 

Table I: Results for the XOR problem. Networks were 
tully connected (including self connections). There 
were 10 simulations per cell with different starting ran­
dom weights from a uniform (-0.5 to 0.5) distribution. 
Outside parenthesis are median number of epochs un­
til ma.ximum absolute error was smaller than 0.2. In 
parenthesis are number of simulations in which learn­
ing took longer than 300 epochs. Learning was on 
batch mode. Update of activation was done accord­
ing to the lAC equations with the following param~ 
ter values: ma.x=LO; min=-1.0; rest=O,Oj decay=O.lj 
lambda= 0.2. Update of activations was stopped af­
ter the change in aU the activations was SIhaller than 
0.0001 or the number of cycles bigger than 100. No 
annealing or shatpening was used 
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