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Professor Douglas Nitz, Chair 
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To survive and effectively interact with the environment, human sensorimotor 

control system collects sensory information and acts based on the state of the world. 

Human behavior can be considered and studied at discrete time or continuous time. For 
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the former, human makes discrete categorical decisions when presented with different 

alternative choices (e.g. choose Left or Right at an intersection). For the later, humans 

plan and execute continuous movements when instructed to perform a motor task (e.g. 

drive to a destination). In this dissertation we examine human behavior at both levels. 

Part I focuses on understanding decision-making at discrete time using Bayesian Models. 

We start by investigating the influence of environmental statistics in a saccadic visual 

search ask, in which we use a dynamic belief model to describe subjects’ learning process 

of the environment statistics cross-trials. Then we look at a special effect of decision-

making, the sequential effect, and apply the dynamic belief model to explain subjects’ 

cross-trial learning and a drift diffusion model to explain their within-trial decision-

making process. Part II focuses on examining motor control at continuous time using 

Optimal Control Theory. We start by investigating the objective functions in oculomotor 

control (saccadic eye movement, smooth pursuit, and applications in eye-hand 

coordination) with an infomax model. Then we apply inverse optimal control model to 

study impaired motor behavior in depressed individuals. In particular, we present a 

framework based on optimal control theory, which can distinguish the effects of 

sensorimotor speed, goal setting and motivational factors in goal-directed motor tasks. 

Finally, we propose to use facial expression as another measure of the emotional state in 

depressed individuals, which can be used to provide further understanding of the 

behavior and model parameters estimated from the proposed inverse framework. 

!
!
! !
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Chapter 1 
 
Introduction 

 
To effectively interact with the environment, humans make decisions and plan 

movements based on the sensory information collected from the world. This dissertation 

is going to focus on two types of behavior to gain better understanding of human 

sensorimotor processing: perceptual decision making (or action selection) at discrete 

time, and goal-directed motor control (or movement planning and execution) at 

continuous time.  

Decision-making and motor control are not two independent behavior systems 

(Trommershauser, Maloney & Landy 2003; Rigoux & Guigon 2012).  They both describe 

human sensorimotor processes, and can fit in reinforcement learning theory (Sutton & 

Barto, 1998; Wolpert & Landy 2012). That is, both decision-makers and movement 

controllers have the goal to achieve an objective function (maximize the reward or 

minimize the loss) in a given task. They do this by learning the dynamics of how the state 

updates (i.e. state transitions), predicting the state of the environment and taking actions 

that are based on sensory observations, and then using observed outcomes to optimize 

performance (Figure 1.1).  

Given a certain decision-making task, for example a 2 Alternative-Forced-Choice 

(2AFC) task, a decision-maker evaluates benefits and costs associated with the given 

choices, uses perceived sensory information, and selects the action that will maximize the 

expected benefit. Then the decision-maker will use the observed outcomes to improve the!
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decision-making process. Thus it forms a sensorimotor loop between the decision-maker 

and the environment.  

Given a goal-directed motor task, for example driving a car to a stop sign, the 

movement controller also assesses the reward and cost associated with the task, uses 

perceived sensory information to evaluate current state of the car (car position, velocity 

etc.), and based on which sends motor command to execute the action to interact with the 

environment. Then the movement controller will use the observed sensory information to 

update the state information at next time step to make continuous motor commands. Thus 

it also forms a sensorimotor feedback loop between the movement controller and the 

environment. 

 

Figure 1.1: Decision-making & Motor control in sensorimotor feedback loop 

1.1 Bayesian approach in Decision-making 

Bayesian approach is one of the most important computational models in studying 

decision-making under uncertainty (Kording 2007; Yu 2007). It provides quantitative 

measures of how one’s belief changes based on prior knowledge and new sensory 

Sensory observation
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observation. Bayesian inference has been applied successfully in a variety of tasks 

(Yuille & Bulthoff 1994; Huys & Dayan 2009; Vilares & Kording 2011) and has been 

shown to be an effective model to explain human behavior. In particular, from a Bayesian 

viewpoint, we can now examine different factors that influence how new information is 

combined with past knowledge. For example, with different expectations of how stable 

the environment is (i.e. how frequently unexpected changes occurs in the environment), it 

may not be ideal to keep tracking of outcomes in the far past. That is, in a highly non-

stationary environment, the prior knowledge may not contribute as effectively in the 

decision-making process as it would in a more stationary world, in which past knowledge 

can provide much insight in predicting the state in the future. Thus, one’s internal 

measure of the environment stability can be one important factor in combining prior and 

new information. In this dissertation, we are going to investigate this issue by using a 

dynamic belief model (Yu & Cohen 2009), which takes into account of individual’s 

belief of the stability of the environment in estimating the posterior belief of the 

underlying state.   

It is worth noting that, recursive Bayesian inference can be considered as a 

problem of Kalman filter (Berniker & Kording 2011), which is a key concept in control 

theory. Kalman filter is a recursive process for inference about underlying state !! using 

observations !!, based on an observation equation that describes how observation !! is 

generated from the underlying state !! with an observation noise, and a state equation 

that describes how state !! transitions over time with a state noise. It predicts the current 

state !! based on past observations and the state equation (i.e. ! !! !!!! , predict step), 

and then updates the state estimation (i.e. ! !! !! , update step), by comparing observed 
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error between the observation prediction (based on ! !! !!!!  and the observation 

equation), and the actual observation!!!, so to predict the state at next time step (i.e. 

! !!!! !! ).  Also note in this framework, it assumes the state of environment can 

change over time. A brief illustration is shown as follows.  

Bayes’ theorem: ! !"#"$ !"#" ∝ ! !"#"$ !! !"#" !"#"$  

                       It can also be written as:!! !! !! ∝ ! !! !!!! !! !! !!!) 

That is, the updated filter distribution ! !! !!  is found by combining the current 

predictive distribution ! !! !!!! !(used as a prior) with the new likelihood ! !! !!!) 

from the incoming observation.  

 

1.2 Optimal Control Theory in Motor-control 

While some tasks focus on discrete actions, most tasks in daily activities require 

continuous planning and execution of complex trajectories. Unlike the simple 2 AFC task 

in which the cost only depends on the outcome of the decision (final state), in a motor 

task (e.g. driving to a target location), the cost also includes the physical effort of the 

movement that can accumulate over the entire trajectory. Optimal control theory 

addresses this issue by using a cost function that is a weighted mixture of the inaccuracy 

of reaching task goal and the accumulated effort.  

 

1.2.1 Forward model: Generate optimal movements 
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In tasks where the objective function (reward function or loss function) is 

specified by the experimenter, optimal control theory will generate the optimal action 

sequences that maximize the reward (or minimize the loss). This forward model has been 

widely applied in the robotic control field. Recently it also has gained attention in human 

biological movement research (Liu & Todorov 2007; Todorov 2004; 2009) and is shown 

to be a plausible model to explain the underlying computational principles of human 

movements.  

 

1.2.2 Inverse model: Estimating reward/loss function 

In tasks where the objective function (reward function or loss function) is not 

specified, we can inverse the process (inverse optimal control), using observed sequence 

of actions to infer the underlying objective function that is used to optimize the 

movement (Ng & Russell 2000; Abbeel & Ng 2004). It is also known as inverse 

reinforcement learning, imitation or apprentice learning. Inferring subjects’ reward (or 

loss) function has been used to understand sensorimotor learning (Kording & Wolpert 

2004), urban navigation (Ziebart et al. 2008), and human goal inference (Baker, Saxe and 

Tenenbaum 2009). A brief illustration of forward/inverse model is shown in Figure 1.2. 
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Figure 1.2: Forward/Inverse Model in Optimal Control  

 

With different components (e.g. state estimation, objective function, etc.) in 

sensorimotor processes, studying discrete decision-making or continuous motor control 

can address different problems of interest.  

 

1.3 Dissertation Outline 

1.3.1 Decision-making at discrete time 

Part I (Chapter 2 and Chapter 3) will be focused on perceptual decision-making 

process. First, we want to explore if human subjects can learn statistical regularities in the 

environment and utilize this information in decision-making process. In Chapter 2 

(Figure 1.3), we present a visual search task in which there is an embedded target 

distribution among three alternative locations (i.e. 1:3:9 to be the target).  Subjects were 

instructed to locate the target as fast as possible, and were rewarded by correct decision 

and fewer locations searched. Research questions here are, if subjects can learn the 
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underlying state of the environment (i.e. the target distribution embedded in the 

environment), and use the learned statistics to decide a search path (i.e. a sequence of 

fixations) to optimize the search strategy (e.g. based on the decreasing target probability 

at those locations). In addition, if we can use Bayesian models to explain how subjects’ 

belief (of the state of the environment) changes over time, and to provide insights of the 

underlying computational principles of their decision-making process. 

In chapter 3 (Figure 1.4), we want to investigate one of the special effects in 

human sensorimotor processing, the sequential effect (Yu & Cohen 2009). Sequential 

effect describes the fact that humans respond faster with a higher accuracy to a stimulus 

that is consistent with a strong local pattern (e.g. A coming after AAAA or ABABA), 

while they respond slower with a higher error rate to the stimulus that violates such local 

pattern (B coming after AAAA or ABAB). For this type of behavior, the research 

question is, if we can find a rationale based on Bayesian approach to explain this 

seemingly ‘superstitious’ behavior.  

 

 

Figure 1.3: The Influence of Environmental statistics in Visual Search Tasks (Chapter 2) 
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Figure 1.4: Sequential Effect in 2AFC Tasks (Chapter 3) 

1.3.2 Motor-control at continuous time 

Part II (chapter 4-chapter 7) will be focused on human movement at continuous 

time. In particular, it seeks to uncover the objective function that human subjects are 

using to generate the observed movements. In Chapter 4 (Figure 1.5), we want to explore 

how humans plan saccadic eye movements under uncertainty and noise (e.g. signal-

dependent noise). For example, in a rapid reaching task under risk, in which the subject 

needs to point to a small target location within a limited amount of time, due to the 

uncertainty of the target location, subjects need to use visual information to provide the 

state of the environment (target location), and guide the hand movement at continuous 

time. Here, the research question is, how does the subject minimize the uncertainty of the 

target by coordinating eye–hand movements at continuous time, and can we find the 

underlying computational principles to explain observed eye movement and hand 

movement trajectories.  
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Figure 1.5: Informax model of oculomotor control (Chapter 4) 

 

Another important facet of looking at motor control is to explain observed motor 

performance impairment in different populations, for example, depressed individuals.  

Chapters 5-6 (Figure 1.6) are focused on studying the motor deficits in depressed 

population. In Chapter 5, we proposed a simulated driving task to study impaired motor 

performance in depressed individuals. Chapter 6 presents an inverse optimal control 

framework, which can disentangle different components (sensorimotor speed, goal state, 

motivation) in this goal-directed motor task. We applied this framework in the simulated 

driving task, to study the influence of depression in sensorimotor system and reward-

evaluation.   
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Figure 1.6: Inverse model of depressed behavior (Chapter 5-6) 
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Chapter 2 
 
Maximizing masquerading as matching: 

Statistical learning and decision-making in 

choice behavior 

 
Abstract: There has been a long-running debate over whether humans match or 

maximize when faced with differentially rewarding options under conditions of 

uncertainty. While maximizing, i.e. consistently choosing the most rewarding option, is 

theoretically optimal, humans have often been observed to match, i.e. allocating choices 

stochastically in proportion to the underlying reward rates. Previous models assumed 

matching behavior to arise from biological limitations or heuristic decision strategies; 

this, however, would stand in curious contrast to the accumulating evidence that humans 

have sophisticated machinery for tracking environ- mental statistics. It begs the questions 

of why the brain would build sophisticated representations of environmental statistics, 

only then to adopt a heuristic decision policy that fails to take full advantage of that 

information. Here, we revisit this debate by presenting data from a novel visual search 

task, which are shown to favor a particular Bayesian inference and decision-making 

account over other heuristic and normative models. Specifically, while subjects’ first-

fixation strategy appears to indicate matching in aggregate data, they actually maximize !
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on a finer, trial-by-trial timescale, based on continuously updated internal beliefs about 

the spatial distribution of potential target locations. In other words, matching-like 

stochasticity in human visual search is neither random nor heuristics-based, but due!

specifically to fluctuating beliefs about stimulus statistics. These results not only shed 

light on the matching versus maximizing debate, but also more broadly on human 

decision-making strategies under conditions of uncertainty.!

 

Motivation 

The cognitive process involved in decision-making leading to complex actions is 

difficult to investigate. However, over the past decade, remarkable progress has been 

made in studies of visual-saccadic decision-making (Hanes & Schall 1996; Shadlen & 

Newsome 1996, 2001), an experimentally accessible approach to understand decision 

making in general. 

Features of Decision-Making Process 

Decision-making has some important features: active, sequential and goal-driven. 

Active: To select the best choice among a set of alternatives, we always actively explore 

the resources to collect valuable information and use those 'as evidence' to support or 

against existing alternatives. 

Sequential: Any decision is a consequence of a series of decisions following the goal, 

which sequentially affects each other over time. Also, experience and prior knowledge 

will affect one’s decision-making process as well.  

Goal-driven: Any decision-making process coexists with a goal, which is used to guide 
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the information collection, information process and action selection. This ‘gain’ is 

measured as a reward from selecting one action from a set of alternatives, and the goal of 

decision-making is to maximize the reward. 

Features of saccadic-visual system 

Our vision system also shares those features. 

Active: Saccadic eye movement in visual-search is an active process, because what we 

see is influenced by where we fixate, through actively using fovea vision to focus on the 

interesting area to get the sharp vision.  

Sequential: Our eyes explore the world in a series of fixations connected by saccadic eye 

movements. In a visual-search task, prior experience and knowledge of the "visual target" 

will affect the planning of the saccades’ sequence. For example, if you are looking for a 

cup in a room, most likely you will start from the desk, instead of the ceiling or floor. 

Goal-driven: The world is filled with noisy sensory information. In order to efficiently 

interact with the environment, our eye movement needs to quickly gather useful 

information in the noisy world.  

 

Decisions involved in saccadic eye movement 

With limited sensing abilities from degraded vision of the periphery, it is 

extremely important for our brain to efficiently acquire sensory information in a goal-

driven manner. Actions in a visual-search task are the result of two basic decisions: 

where to look at and when to look away from one location to the other. The first action of 

where to look entails motor planning, which is affected by observer's goal, environment, 

and expectation. The second action of when to saccade away from one location to the 

other entails the interaction of motor planning and sensory processing, in which the visual 
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information collected during sensory processing will determine if the observer 

successfully achieves his goal or need to go to next location. 

Choice of fixations (where to look at) is not a trivial process in visual-search, but 

reflects how we actively decide where to acquire sensory information to efficiently 

achieve the goal. Extensive studies of eye fixations have been done in past decades. It has 

been proposed that eye movements are directed to maximize the information gain about 

the target (Najemnik & Geisler 2005; Butko & Movellan, 2010), which for both a static 

but also a moving target (Land & McLeod 2000; Talbott, Huang & Movellan 2012). It 

also has been shown the spatial information of the target can be used to facilitate the 

search process (Zelinsky & Sheinberg 1997; Walthew & Gilchrist 2006), and subjects 

may use a search strategy that maximize the current posterior probability of the target 

location (MAP), thus favoring the most likely location (Najemnik & Geisler 2008). 

However, so far, it is still unclear how human learn the spatial statistics and use them in 

planning saccadic search sequence. For example, Araujo, Kowler & Pavel 2001 showed 

that majority of the subjects in their study did not use the probability cue of the target and 

did not select the high-probability target as the first fixation. Studies are also indicating 

subjects match their response probabilities to the payoff probabilities instead of choosing 

the most rewarding action that maximizes the probability (probability matching vs. 

maximization; Herrnstein 1961; Koehler & James 2009).  Recently, it has been proposed 

(Gaissmaier & Schooler 2008) that probability matching, a seemingly irrational and sub-

optimal strategy may be a ‘smart’ strategy that facilitates subjects to ‘search’ the 

underlying statistical pattern. Alternatively, there are also studies shown that, due to 

limited memory, subjects may use ‘maximization’ strategy but only for a limited time 
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window, which is known as melioration theory (Herrnstein & Prelec 1991). Indeed, using 

spatial statistics in eye movement planning still remains largely unexplained.  

Choice of fixation duration (when to look away), another decision in saccadic eye 

movement planning, is influenced by the sensory strength of the stimulus. In a random-

dot direction discrimination task (Gold & Shadlen 2000), it has been shown that with 

increasing uncertainty of the sensory information (i.e. decreasing coherence level of the 

primary motion) in the stimulus, there will be increasing view time and thus longer 

reaction time to the identification of the target. With the presence of sensory uncertainty, 

our current knowledge of how human subjects plan eye movement under both target 

spatial uncertainty and stimulus sensory uncertainty is extremely limited.  

Here we propose to use a visual-search task with random-dot stimulus to 

investigate if human subjects can internalize spatial statistics and use this information in 

guiding eye movement planning. In particular (Chapter 2), we examine the matching vs. 

maximizing strategy with the assumption that matching behavior may be due to subject’s 

internal belief of the stability of the spatial statistics in the environment, which is coupled 

but not dissociated with the maximizing decision process. We achieve this by using two 

modified versions of Bayesian models (Dynamic Belief Model/DBM and Fixed Belief 

Model/FBM; Yu & Cohen 2009) and compare human fixation choices to different 

models (DBM + match, DBM + max, FBM + match, and FBM + max, melioration). We 

also use this task to investigate if/how fixation duration is influenced by the spatial 

statistics and sensory uncertainty (see Ahmad, Huang & Yu 2014), in particular, if 

subjects’ fixation duration is biased by their prior belief of the target probability (i.e. 

confirmation bias).  
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2.1 Introduction 

There has been a long history of debate over whether humans and animals match 

(Herrnstein, 1961) or maximize (Hall-Johnson & Poling, 1984; Blakely, Starin, & Poling, 

1988), when choosing among options with unequal rates or probabilities of reward. While 

maximizing, or consistently choosing the most rewarding option, is theoretically optimal 

(greatest cumulative accuracy or reward in the long-term), there is a substantial body of 

literature indicating a curious tendency for humans and animals to match (e.g. Herrnstein, 

1961; Sugrue, Corrado, & Newsome, 2004), or to allocate their choices in approximate 

proportion to the underlying reward rates. 

This apparently sub-optimal stochasticity in choice behavior has been interpreted 

as either a con- sequence of biological limitations or, relatedly, a fast and frugal heuristic 

for coping with hard decision problems. For example, one prominent account is 

melioration theory (Herrnstein, 1970) and the formally equivalent “Take-the-Best” (TTB) 

heuristic (Gigerenzer & Goldstein, 1996): it posits that humans and animals have a 

limited memory buffer and that they choose the best (maximizing) option based on only a 

few recent data points, so that on average the choice policy will appear stochastic due to 

fluctuations in empirical statistics. An even simpler proposal is that sub- jects base each 

decision entirely on the last trial, by persisting with the same choice when met with 

success, and switching otherwise; it is known as the “Win-Stay-Lose-Shift” (WSLS) 

algorithm (Rapoport & Chammah, 1965; Nowak & Sigmund, 1993; Randall & Zentall, 

1997; Warren, 1966; Steyvers, Lee, & Wagenmakers, 2009; Lee, Zhang, Munro, & 

Steyvers, 2011) for binary choices, and Take-the-Last (TTL) when there are more than 
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two choices (Gigerenzer & Goldstein, 1996). Separately, it has been suggested that 

matching can serve as a heuristic exploration strategy in a noisy and changeable 

environment, so that the decision-maker does not persevere with outdated choices (Daw, 

O’Doherty, Dayan, Seymour, & Dolan, 2006). 

The shared assumption of these heuristic accounts, that humans and animals are 

incapable of utilizing sophisticated decision strategies, stands in curious contrast with the 

converging behavioral and neurophysiological evidence that the brain possesses the 

machinery to near-optimally track evolving environmental statistics (Yu & Dayan, 

2005b; Daw et al., 2006; Behrens, Woolrich, Walton, & Rushworth, 2007; Nassar et al., 

2012; Ide, Shenoy, Yu*, & Li*, 2013). It begs the questions why the brain would build 

sophisticated representations of environmental statistics, only then to adopt a heuristic 

decision policy that fails to take full advantage of that information. 

Here, we re-examine this matching vs. maximizing debate within a Bayesian ideal 

observer framework (Green & Swets, 1966), specifically proposing the hypothesis that 

humans continuously track environmental statistics with an implicit assumption that the 

world can change at any moment; consequently, they choose where to search at any given 

time using an optimal, maximizing strategy but which is based on their dynamically 

evolving beliefs about environmental statistics. In other words, we hypothesize that the 

matching-like choice behavior is not due to random exploration or limitations of memory, 

but due to specific fluctuations in internal beliefs about environmental statistics, coupled 

with an optimal (maximizing) decision process. The hypothesis that humans have a 

natural tendency to extract statistical patterns while assuming such patterns are 

changeable over time is motivated by our previous work (Yu & Cohen, 2009), showing 
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that a similar hypothesis can explain a classical sequential effect in 2-alternative forced 

choice (2AFC) tasks, in which responses are faster and more accurate if a stimulus 

extends a recent run of repetitions or alternations, and conversely slower and less 

accurate when a stimulus violates such a run, even if these runs arise purely by chance 

(Soetens, Boer, & Hueting, 1985). Subjects appear to act with the implicit assumption 

that the world is potentially changeable – giving more recent observations greater 

emphasis in predicting future outcomes, instead of giving uniform weights to the entire 

history of data (Yu & Cohen, 2009; Wilder, Jones, & Mozer, 2010). Here, we adopt a 

similar Bayesian modeling framework to examine whether subjects depend more on the 

recent trials to predict next target location (Dynamic Belief Model; DBM) or treat all 

previous data equivalently when making that prediction (Fixed Belief Model; FBM). 

These two candidate models for prior learning/updating reflect differing statistical 

assumptions that either do (DBM) or do not (FBM) allow the possibility of un-signaled, 

discrete changes in the statistical regularities in the environment. 

To examine this hypothesis, we obtain behavioral data from a novel visual search 

paradigm, in which subjects can exploit statistical regularities in target location in order 

to improve the accuracy and efficiency of their search strategy. The key behavioral 

measure is how subjects allocate their first fixation choice: do they simply follow the last 

trials target location (WSLS/TTL), do they choose stochastically in proportion to the 

underlying target distribution (matching), or do they systematically choose the most 

probable target location (maximizing)? We adopt a visual search task because it has long 

been known that saccadic eye movements are influenced by various cognitive factors 

(Yarbus, 1967), such as prior knowledge about target location (He & Kowler, 1989; 
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Einha ̈user, Rutishauser, & Koch, 2008), temporal onset (Oswal, Ogden, & Carpenter, 

2007), reward probabilities (Roesch & Olson, 2003), and general scene context (Ehinger, 

Hidalgo-Sotelo, Torralba, & Oliva, 2009). In daily tasks, saccadic patterns have been 

observed to be different among visual search, scene memorization (Henderson, 2007), 

reading (Rayner, 1998), tea and sandwich making (Land & Hayhoe, 2001), and driving 

(Land & Lee, 1994). It is poorly under- stood how such contextual knowledge is acquired 

and how it precisely modulates saccadic choices and perceptual decisions – a scientific 

lacuna we address here. Compared to the rather abstract or artificial stimuli more 

commonly used in choice tasks, we expect human subjects to be particularly adept at 

internalizing and utilizing the spatial statistics of visual targets. 

In this work, we compare human fixation choice behavior to the predictions of 

various models. We consider four Bayesian models, which differ in the assumptions they 

make about statistical learning and decision-making. Statistical learning refers to the 

observers’ internal representation of the target location statistics, and the sequential 

updating of the prior distribution over where the target lies based on experienced 

outcomes. We examine two variants of Bayesian learning models, DBM and FBM. We 

also examine two different decision processes: (1) Match, which produces saccade 

fixation locations in proportion to the internal predictive distribution of target location, 

and (2) Max, which always chooses to first search the currently most probable target 

location. Thus, there are four Bayesian models altogether, DBM+Match, DBM+Max, 

FBM+Match, FBM+Max. In addition, we also consider a heuristic algorithm, 

melioration, which does not require a sophisticated statistical representation. We note 

that melioration is equivalent to TTB, and subsumes TTL as a special case, where the 
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memory buffer is just the last trial. In the following, we first describe the experimental 

design and present some basic data. We then use a series of data-model comparison to 

narrow down the best model for explaining human data. 

2.2 Results 

We first briefly describe the visual search task (see Methods for more details), 

before delving into the experimental findings and comparison to the various models. In 

the task (Figure 2.1a), subjects must find a target stimulus (random-dot motion stimulus 

moving in a certain direction) in one of three possible locations, with the other two 

locations containing distractors (random-dot motion stimulus moving in the opposite 

direction). In the 1:3:9 condition, the target location is biased among the three options 

with 1:3:9 odds. In the 1:1:1 condition, the target appears in the three locations with equal 

probability on each trial. To eliminate the complications associated with the 

spatiotemporal dynamics of covert attention, which we cannot measure directly, the 

display is gaze-contingent: only the fixated stimulus is visible at any given time, with the 

other two stimuli being replaced by two small dots located at the center of the stimulus 

patches. Subjects receive feedback about true target location on each trial after making 

their choice, as well as their choice accuracy, search duration, and number of switches; 

they are encouraged through a point-based reward function to be fast, accurate, and 

efficient with the number of fixation switches (see Methods).
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Figure 2.1: Experimental design and data. (a) On each trial, two of the random-dot 
stimuli are distractors, one is the target; subjects must find the target (see Methods). (b) 
Subjects are more accurate in finding the target in the 1:3:9 condition than the 1:1:1 
condition, and (c) faster. (d) 1:3:9 condition, allocation of fixation location on first 
fixation (black), and second fixation when subjects first fixated the 9 location and found 
that it was not the target (white), averaged over all subjects. Green dashed lines indicate 
the matching probabilities on the first fixation, (1/13, 3/13, 9/13); blue dashed lines 
indicate matching probabilities on the second fixation, (1/4, 3/4). n = 11. Errorbars: s.e.m. 
across subjects. 

 

We found that human subjects indeed internalized and exploited the spatial 

statistics to locate the target stimulus more accurately (Figure 2.1b) and rapidly (Figure 

2.1c). Subjects were more accurate in finding the target in the 1:3:9 condition than the 

1:1:1 condition (one-sided t-test, p < 0.01), and faster at finding the target in the 1:3:9 
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Figure 1: Experimental design and data. (a) On each trial, two of the random-dot stimuli are distractors,
one is the target; subjects must find the target (see Methods). (b) Subjects are more accurate in finding
the target in the 1:3:9 condition than the 1:1:1 condition, and (c) faster. (d) 1:3:9 condition, allocation of
fixation location on first fixation (black), and second fixation when subjects first fixated the 9 location and
found that it was not the target (white), averaged over all subjects. Green dashed lines indicate the matching
probabilities on the first fixation, (1/13, 3/13, 9/13); blue dashed lines indicate matching probabilities on
the second fixation, (1/4, 3/4). n = 11. Errorbars: s.e.m. across subjects.
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condition than the 1:1:1 condition (p < 0.001). Underlying this performance improvement 

was a prioritized search strategy that favors the more probable locations as a fixation 

choice. For the first fixation, subjects preferentially fixated the 9 location over the 3 

location (p < 0.0001), which in turn was favored over the 1 location (p < 0.01). Similarly, 

for the second fixation, on trials in which the first fixation was at 9 and that was not the 

target, subjects then favored the 3 location over the 1 location (p = 0.005). Altogether, 

these results indicate that subjects not only knew where the most probable target location 

was, but had a graded representation of target probabilities at the different locations. 

Aggregate statistics are coarse by nature, and much information is lost by 

averaging all trials together. In particular, it ignores the potential role of statistical 

learning. Subjects could be learning about spatial statistics based on each experienced 

trial, in a manner similar to DBM or FBM, and thus a Match or Max strategy should be 

defined with respect to their internal representation at each moment in time, instead of 

with respect to the “true” generative statistics (1:3:9 or 1:1:1), which they have no direct 

access to. Details of DBM and FBM can be found in Methods; here, we briefly describe 

their assumptions and properties. The versions of DBM and FBM used here are mult-

alternative extensions of simpler models we previously developed for 2AFC tasks (Yu & 

Cohen, 2009). Although the true configuration of most probable, medium probable, and 

least probable target location does not change within a block (it is pseudo-randomized 

across blocks), and the relative odds for those locations remain at 1:3:9 for all blocks, 

DBM allows the possibility that subjects assume the underlying statistics to be 

changeable within a block. We entertain this hypothesis here, because we previously 

showed that, in 2AFC tasks, subjects act as though they assume the relative probability of 
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stimulus type is predictable from recent trial history, consistent with DBM (Yu & Cohen, 

2009), even though the true experimental statistics are constant (and random) throughout 

the experiment. Figure 2.2a shows the generative model for DBM and FBM. Figure 2.2b 

shows a sample run of DBM on an actual experienced sequence of trials for a subject. 

The predictive probability DBM assigns to each of the potential target locations on each 

trial fluctuates with the recent history of experienced trials. DBM+max produces fixation 

predictions that closely correspond to this subject’s actual choices (top panel). The rare 

discrepancies occur when there are unexpected observations and the underlying 

probabilities are close in magnitude: for example, trial 80. Most of the time, even when 

the underlying probabilities are similar due to unexpected observations, DBM+max and 

the subject concur in switching (57, 78) or staying (64, 71, 75, 76, 77, 79, 83, 85). 

 

 

Figure 2.2: Dynamic Belief Model (DBM) and Fixed Belief Model (FBM) model 
architecture and comparison to behavioral data. (a) graphical model for DBM and FBM. 
FBM can be thought of as a special case of DBM, with α = 1. (b) An example trial 
sequence (subject 2, block 4, trials 55-85) and corresponding DBM inference/prediction 
behavior (α = 0.92). Given the sequence of target location experienced by a subject 
(green crosses in top panel), DBM computes the predictive probability on each trial k of 
each location containing the target (bottom panel), and the maximum is taken as the 
model prediction of choice (filled blue circle, top panel); compared to the subject’s actual 
first fixation location (open blue circle, top panel). 
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77, 79, 83, 85).

In addition to the Bayesian models, we entertain the possibility that subjects employ melioration
(Herrnstein, 1970), which keeps a limited and fixed memory of the last k trials, and picks the most
frequent target location among these k trials as next trial ’s first fixation choice (ties are broken
randomly). It is clear that subjects would show average “matching” behavior even if they always
first searched in the last target’s location (k = 1), because this choice distribution would exactly
track the empirical target distribution, with a one-trial lag that would not be apparent in aggregate
data. We fit the best memory size (number of recent trials kept in the buffer) for the melioration
model, which was left as a free parameter in the original model (Herrnstein, 1970). Note that
this subsumes the T T L/WSLS model as a special case with the memory size being 1 trial. B y
simulating the melioration model with different memory sizes (from 1 to 10), and comparing the
choice predicted by the model and subjects’ actual first fixation location, we found that the a
memory size of 3 trials was the best at predicting subjects’ choice.

To distinguish among the models, we examined the evolution of fixation choice pattern of humans,
in comparison to the various models. O ver the time course of a block, we found that subjects gradu-
ally learn to favor the more probable locations, in a manner well-matched by both F B M + Match and
D B M + Max (F ig. 3a;b). In contrast, F B M + Max over-matched (F ig. 3a, solid) and D B M + Match

8
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In addition to the Bayesian models, we entertain the possibility that subjects 

employ melioration (Herrnstein, 1970), which keeps a limited and fixed memory of the 

last k trials, and picks the most frequent target location among these k trials as next trial’s 

first fixation choice (ties are broken randomly). It is clear that subjects would show 

average “matching” behavior even if they always first searched in the last target’s 

location (k = 1), because this choice distribution would exactly track the empirical target 

distribution, with a one-trial lag that would not be apparent in aggregate data. We fit the 

best memory size (number of recent trials kept in the buffer) for the melioration model, 

which was left as a free parameter in the original model (Herrnstein, 1970). Note that this 

subsumes the TTL/WSLS model as a special case with the memory size being 1 trial. By 

simulating the melioration model with different memory sizes (from 1 to 10), and 

comparing the choice predicted by the model and subjects’ actual first fixation location, 

we found that the a memory size of 3 trials was the best at predicting subjects’ choice. 

To distinguish among the models, we examined the evolution of fixation choice 

pattern of humans, in comparison to the various models. Over the time course of a block, 

we found that subjects gradually learn to favor the more probable locations, in a manner 

well matched by both FBM+Match and DBM+Max (Figure 2.3a;b). In contrast, 

FBM+Max over-matched (Figure 2.3a, solid) and DBM+Match (Figure 2.3b, dashed) 

under-matched subjects’ fixation choice distribution. Note that the fact that the human 

behavior and model traces reach asymptotic values pretty early (Figure 2.3a;b) is not 

necessarily indicative of the cessation of learning after the curves flatten out. Where the 

curves asymptote reflect more on learning, such that if human behavior flattened out at 

global maximizing (as in FBM+Max in Figure 2.3a), then that would indicate cessation 
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of learning. But in fact, human behavior flattens out at a level well below global 

maximizing, indicating either significant asymptotic learning (DBM+max) or asymptotic 

random stochasticity (FBM+match). 

 

Figure 2.3: Model comparison of fixation distributions. (a) Averaged over subjects (n = 
11) and blocks (6), first fixation location (colored bars: blue=9, green=3, red=1) 
increasingly favor the 9 location over 3, and in turn over 1, for different segments of the 
90-trial blocks. FBM+max (solid line) predicts faster learning/over-matching compared 
to subjects; FBM+match produces predictions more similar to subjects’ data. (b) Human 
data (colored bars) same as in (a). DBM+max produces predictions similar to subjects’ 
data; DBM+match produces slower learning/under-matching compared to subjects. All 
predictions based on actual sequences of trials experienced by subjects. Errorbars = s.e.m. 
over blocks and subjects. (c) The average distribution of first-fixation choice, among the 
three patches, for the last ten trials of each block minus average choice distribution in the 
first ten trials. 
 

This data also rule out melioration/TTB/TTL heuristic strategies, since they 

would produce choice statistics that are constant over the block (because they track 

empirical statistics, which are on average constant over the block). Fig. 3c shows the 

model comparison in a different way. When we look at the difference in subjects’ 

average fixation distribution between the last ten trials and the first ten trials of each 

block, we find that subjects favor the 9 location much more relative to the 3 and 1 

locations, toward the end of the block than at the beginning of the block. This trend is 

best captured by DBM+max (on average 20% different from data in absolute units, as 
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Figure 3: Model comparison of fixation distributions. (a) Averaged over subjects (n = 11) and blocks
(6), first fixation location (colored bars: blue=9, green=3, red=1) increasingly favor the 9 location over
3, and in turn over 1, for different segments of the 90-trial blocks. F B M +max (solid line) predicts faster
learning/over-matching compared to subjects; F B M +match produces predictions more similar to subjects’
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minus average choice distribution in the first ten trials.

(F ig. 3b, dashed) under-matched subjects’ fixation choice distribution. Note that the fact that the
human behavior and model traces reach asymptotic values pretty early (F ig. 3a;b) is not necessar-
ily indicative of the cessation of learning after the curves flatten out. Where the curves asymptote
reflect more on learning, such that if human behavior flattened out at global maximizing (as in
F B M + Max in F ig. 3a), then that would indicate cessation of learning. But in fact, human behav-
ior flattens out at a level well below global maximizing, indicating either significant asymptotic
learning (D B M +max) or asymptotic random stochasticity (F B M +match).

This data also rule out melioration/T T B/T T L heuristic strategies, since they would produce choice
statistics that are constant over the block (because they track empirical statistics, which are on
average constant over the block). F ig. 3c shows the model comparison in a different way. When
we look at the difference in subjects’ average fixation distribution between the last ten trials and
the first ten trials of each block, we find that subjects favor the 9 location much more relative to
the 3 and 1 locations, toward the end of the block than at the beginning of the block. This trend
is best captured by D B M + Max (on average 20% different from data in absolute units, as shown
in F ig. 3c), second best by F B M + Match (39% absolute difference from data), and very poorly by
melioration (74% absolute difference from data, memory size = 3, best-fitting parameter setting).

Left with two remaining model candidates, D B M + Max and F B M + Match, we next examine sub-
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shown in Figure 2.3c), second best by FBM+match (39% absolute difference from data), 

and very poorly by melioration (74% absolute difference from data, memory size = 3, 

best-fitting parameter setting). 

Left with two remaining model candidates, DBM+Max and FBM+Match, we next 

examine subjects’ fixation choice distribution conditioned on the last target location. In 

FBM, new data have less and less capacity to shift the posterior as the total amount of 

data builds and the posterior becomes more rigid (Yu & Cohen, 2009), thus predicting 

that last trial’s target location to have little to no effect on current trial fixation choice 

when averaged over the whole experimental session (Figure 2.4c). In contrast, DBM 

continuously entertains the possibility of change, and thus allows its posterior to shift 

according to new data (Yu & Cohen, 2009), thus predicting that last trial’s target location 

should have asymptotically non-trivial effect on current trial fixation location (Figure 

2.4b). Fig 2.4a shows that human subjects behave as predicted by DBM: while the 9 

location is most frequently the first fixation location in all cases, its advantage is much 

reduced if the last target was in location 1 or 3, and increased if the last target was in 

location 9. More specifically, following the target being in location 1, first fixation 

percentage is boosted in location 1 on the subsequent trial; similarly, following the target 

in in location 3, first fixation percentage is boosted in location 3 on the subsequent trial. 

This indicates that subjects are not adopting the same stochastic “matching” policy on 

every trial, but are exquisitely sensitive to recent trial history. While DBM+max yields 

conditional distributions statistically indistinguishable from subjects’ first fixation 

distributions (one-sided t-test of average Kullback-Leibler Divergence between subjects’ 

conditional distributions and that of DBM+max, one-sided paired t-test, p = 0.076), 
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FBM+match produces conditional distributions that are significantly different (one-sided 

paired t-test, p < 0.001). 

 

Figure 2.4: Data vs. model prediction of first fixation distribution conditioned on last 
target location. (a) In the 1:3:9 condition, human subjects generally prefer 9 (white) over 
1 (black) and 3 (gray) regardless of last trial target location, but location 1 is particularly 
favored if the last target location was also 1 (left group), location 2 is particularly favored 
if the last target location was also 3 (middle group), and location 9 is particularly favored 
if the last target was also 9 (right group). (b) DBM+max produces a conditional 
distribution very similar to the behavioral data in (a). (c) FBM+match produces a 
conditional distribution dissimilar to the behavioral data in (a), in particular it is relatively 
insensitive to last trial target location. All model predictions based on actual sequences of 
stimuli subjects experienced. Errorbars = s.e.m. over blocks and subjects. 

 

A different analysis shows the impressive advantage DBM+max has over other 

models not only in characterizing gross empirical statistics, but also in predicting trial-to-

trial first fixation choice. For each model, we compute on each trial the prior probability 

each model assigns to the subject’s actual first-fixation choice. It is 1 or 0 for 

deterministic models (Follow-Last-Trial and Maximization), for correct and incorrect 

predictions, and somewhere in between for stochastic models (Match). For DBM, we first 

find the best-matching α parameter for each subject, which was on average 0.87, with a 

standard deviation of 0.15. We find that DBM+max has an average predictive accuracy 

of 0.81, far outperforming TTL or melioration with a 1-trial buffer (0.54), FBM+Match 
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Figure 4: Data vs. model prediction of first fixation distribution conditioned on last target location. (a)
In the 1:3:9 condition, human subjects generally prefer 9 (white) over 1 (black) and 3 (gray) regardless
of last trial target location, but location 1 is particularly favored if the last target location was also 1 (left
group), location 2 is particularly favored if the last target location was also 3 (middle group), and location
9 is particularly favored if the last target was also 9 (right group). (b) D B M +max produces a conditional
distribution very similar to the behavioral data in (a). (c) F B M +match produces a conditional distribution
dissimilar to the behavioral data in (a), in particular it is relatively insensitive to last trial target location. A ll
model predictions based on actual sequences of stimuli subjects experienced. Errorbars = s.e.m. over blocks
and subjects.

jects’ fixation choice distribution conditioned on the last target location. In F B M, new data have
less and less capacity to shift the posterior as the total amount of data builds and the posterior be-
comes more regid (Yu & Cohen, 2009), thus predicting that last trial ’s target location to have little
to no effect on current trial fixation choice when averaged over the whole experimental session
(F ig. 4c). In contrast, D B M continuously entertains the possibility of change, and thus allows its
posterior to shift according to new data (Yu & Cohen, 2009), thus predicting that last trial ’s target
location should have asymptotically non-trivial effect on current trial fixation location (F ig. 4b).
F ig. 4a shows that human subjects behave as predicted by D B M: while the 9 location is most fre-
quently the first fixation location in all cases, its advantage is much reduced if the last target was in
location 1 or 3, and increased if the last target was in location 9. More specifically, following the
target being in location 1, first fixation percentage is boosted in location 1 on the subsequent trial;
similarly, following the target in in location 3, first fixation percentage is boosted in location 3 on
the subsequent trial. This indicates that subjects are not adopting the same stochastic “matching”
policy on every trial, but are exquisitely sensitive to recent trial history. While D B M + Max yields
conditional distributions statistically indistinguishable from subjects’ first fixation distributions
(one-sided t-test of average Kullback-Leibler D ivergence between subjects’ conditional distribu-
tions and that of D B M +max, one-sided paired t-test, p = 0.076), F B M +match produces condi-
tional distributions that are significantly different (one-sided paired t-test, p < 0.001).
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(0.58), DBM+match (0.59), FBM+max (0.78), p < 0.01 in each case (two-sided t-test). 

This big advantage is not due to the extra parameter, α, in DBM, which specifies an 

individual’s belief about the probability of the target location statistics not changing from 

trial to trial (in contrast to FBM, which has no free parameters), as leave-one-block-out 

cross validation yields a predictive accuracy of 0.80, which is statistically 

indistinguishable from the training data predictive accuracy (two-tailed t-test, p = 0.728). 

That DBM is not over-fitting is hardly surprising, as we are in the realm of many more 

data points (540 trials per subject) than parameters (1 per subject). 

While DBM+max can predict an individual’s first fixation choice about 80% of 

the time, i.e. subjects choose the most probable target location 80% of the time, subjects 

do choose the other two locations about 20% of the time. We find that subjects favor the 

more probable of the remaining two options instead of choosing among equally often 

(12.2% versus 6.7%, p = 0.016). This raises the possibility that subjects may be applying 

some sort of softmax decision policy that is in be- tween matching and maximizing. We 

therefore fit a choice distribution (q1, q2, q3) that is a softmax function of the belief 

distribution (p1, p2, p3): 

                                             

We use a polynomial form of softmax instead of an exponential form, seen in 

related work, (e.g. as in Daw et al., 2006), because the polynomial form has a natural 

interpretation in terms of matching (β = 1), under-matching (β < 1), and over-matching (β 

> 1). We find that the best-fitting β values across subjects are significantly greater than 1 

A different analysis shows the impressive advantage D B M +max has over other models not only
in characterizing gross empirical statistics, but also in predicting trial-to-trial first fixation choice.
For each model, we compute on each trial the prior probability each model assigns to the subject’s
actual first-fixation choice. It is 1 or 0 for deterministic models (Follow-Last-Trial and Maxi-
mization), for correct and incorrect predictions, and somewhere in between for stochastic models
(Match). For D B M, we first find the best-matching α parameter for each subject, which was on
average 0.87, with a standard deviation of 0.15. We find that D B M +max has an average predictive
accuracy of 0.81, far outperforming T T L or melioration with a 1-trial buffer (0.54), F B M + Match
(0.58), D B M +match (0.59), F B M +max (0.78), p < 0.01 in each case (two-sided t-test). This big
advantage is not due to the extra parameter, α, in D B M, which specifies an individual ’s belief
about the probability of the target location statistics not changing from trial to trial (in contrast to
F B M, which has no free parameters), as leave-one-block-out cross validation yields a predictive
accuracy of 0.80, which is statistically indistinguishable from the training data predictive accuracy
(two-tailed t-test, p = 0.728). That D B M is not over-fitting is hardly surprising, as we are in the
realm of many more data points (540 trials per subject) than parameters (1 per subject).

While D B M +max can predict an individual ’s first fixation choice about 80% of the time, i.e. sub-
jects choose the most probable target location 80% of the time, subjects do choose the other two
locations about 20% of the time. We find that subjects favor the more probable of the remaining
two options instead of choosing among equally often (12.2% versus 6.7%, p = 0.016). This raises
the possibility that subjects may be applying some sort of softmax decision policy that is in be-
tween matching and maximizing. We therefore fit a choice distribution (q1 , q2 , q3) that is a softmax
function of the belief distribution (p1 , p2 , p3):

qi =
pβ
i∑

j∈{h,m,l} pβ
j

. (1)

We use a polynomial form of softmax instead of an exponential form, seen in related work, (e.g. as
in Daw et al., 2006), because the polynomial form has a natural interpretation in terms of matching
(β = 1), under-matching (β < 1), and over-matching (β > 1). We find that the best-fitting β

values across subjects are significantly greater than 1 (p < 0.00002), with a mean value of 3.27
(std = 1.00). β = 3.27 suggests a very strong tendency to maximize, as it would, for example, turn
(p1, p2, p3) = (9 / 13, 3 / 13, 1 / 13) into (q1, q2, q3) = (0.973, 0.027, 0.001).

F inally, we note that a thorough analysis of the uniform condition behavior is omitted, because
behavior in those blocks is completely unconstrained. Subjects can choose to employ whatever

11
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(p < 0.00002), with a mean value of 3.27 (std = 1.00). β = 3.27 suggests a very strong 

tendency to maximize, as it would, for example, turn (p1, p2, p3) = (9/13, 3/13, 1/13) into 

(q1, q2, q3) = (0.973, 0.027, 0.001). 

Finally, we note that a thorough analysis of the uniform condition behavior is 

omitted, because behavior in those blocks is completely unconstrained. Subjects can 

choose to employ whatever idiosyncratic strategy they like (including, for example, 

always starting from the same location, or systematically rotate through them, A, B, C, A, 

B, C, ....), and they would on average perform exactly equally well. We find that, indeed, 

there is quite a bit of variability of first-fixation strategy among subjects on the uniform 

blocks. 

2.3 Methods  

Experimental Design 

The data are from eleven subjects, recruited from the UCSD undergraduate 

students (five females). Subjects first performed a random-dot coherent motion direction 

discrimination task (Britten, Shadlen, Newsome, & Movshon, 1992) training session and 

achieved an accuracy exceeding 75% for 12%-coherence stimuli, before continuing onto 

the main experiment. In the main visual search experiment, subjects must identify one of 

the three random-dot stimulus patches as the target (left- moving for five subjects, right-

moving for six subjects), the other two being distractor stimuli moving in the opposite 

direction. Subjects began each trial by fixating a central cross, then sequentially fixated 

one or more stimulus patches until pressing a space bar, which indicated that the last 

viewed stimulus was the chosen target. The three stimulus patches were circular and 
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equidistant from the central cross, rotationally symmetrically positioned at non-cardinal 

angles. In the 1:1:1 condition (2 blocks), the target appeared in the three locations with 

equal likelihood on each trial; in the 1:3:9 locations (6 blocks, one of each possible 

configuration), the target appeared in the three locations with correspondingly biased 

probabilities. The order of the eight blocks (six biased blocks and two uniform ones, 90 

trials per block) was randomized for each subject. Before the main experiment, subjects 

experienced 3 practice blocks: respectively, they consisted of 30, 40, and 40 trials, each 

with target location distribution drawn randomly from the configuration in the main 

experiment (2/8 probability of a 1:1:1 block, 1/8 probability of each of the 6 1:3:9 

blocks). The random-dot motion coherences of the three blocks were 30%, 20%, and 

12%, respectively. A target identification accuracy of 80% had to be reached in the first 

two practice two blocks, or else the same block has to be repeated; similarly, in the third 

practice block, an accuracy of 68% had to be reached before the subject can proceed to 

the main experiment. Other than experiencing practice blocks with similar statistics as in 

the main experiment, subjects did not receive explicit instructions on the spatial 

distribution of target location. 

The gaze-contingent display only revealed a motion stimulus in the fixated 

location, with the remainder replaced by a central dot; boundaries for fixation 

determining which stimulus was shown at any given time are as shown in Fig 2.1a. 

Subjects’ eye movements were monitored using a SR Research Eyelink 1000 eye tracker. 

A timing bar on the left side of the screen indicated time elapsed since onset of first 

stimulus fixation, first decreasing in length (green) until 8 seconds elapsed, and then 

growing in length in the opposite direction (red) at the same rate, though subjects were 
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told that points were deducted indefinitely in proportion to their total response time 

(12.5/sec) even after the red bar reaches the edge of the display. At the end of each trial, 

subjects were shown the true target location and the total points gained/lost for that trial: 

100 - 12.5 × (seconds taken to respond) + 25×(number of fixation switches, 0 if only one 

patch fixated) ± 50 (+ if final response correct, - if incorrect). Subjects were told about 

the reward scheme at the start of the experiment, in addition to receiving detailed 

feedback, as explained above, during the experiment. Subjects were paid at the end of the 

experiment proportional to the total points earned, which were calibrated so as to award 

the average subject about 10 an hour. 

Subjects were excluded from the study if they did not have normal or corrected 

vision, achieved less than 50% accuracy in the main experiment (lower than in the 

practice blocks), or showed unusually large first fixation spatial bias (> 2 standard 

deviations away in Kullback-Leibler divergence from the population mean distribution of 

first fixation, in the 1:3:9 condition). 

 

Theoretical Modeling 

To distinguish the two hypotheses that stochasticity in subjects’ saccade choices 

arise from stable beliefs about target location statistics plus matching-like randomness in 

action selection, versus fluctuating beliefs about target location statics plus a maximizing 

strategy, we implement two distinct Bayesian models of trial-by-trial statistical learning: 

one that assumes that subjects use the entire history of observed data in the current block 

to infer about the target location statistics (Fixed Belief Model, FBM), and another that 

assumes that subjects use only recent history to make inferences about target location 
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(Dynamic Belief Model, or DBM). The versions of DBM and FBM used here are multi-

alternative extensions of simpler models we previously developed for 2AFC tasks (Yu & 

Cohen, 2009). 

We first describe DBM, and then explain how FBM differs. In the DBM, we 

model subjects’ trial-by-trial inference using a hidden Markov model. In the generative 

model (Fig. 2.2a), the target location on trial k, denoted by sk ∈ {1, 2, 3}, depends on the 

configuration bk and multinomial parameters γk := (γh, γm, γl), where γh + γm + γl = 1: 

             

At the start of each experimental block, the prior distribution over b1 and γ1 on 

the first trial are p0(γ)p0(b), where p0(γ) is a Dirichlet distribution Dir(γ;9/13, 3/13,1/13), 

and      

                                                             

In order to capture the assumption of a non-stationarity, we assume (bk , γk ) to be 

subject to change: on each trial, it has probability α of remaining the same as the last trial, 

and probability 1 − α of being redrawn from the prior distribution p0 (bk , γ k ). 
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In order to capture the assumption of a non-stationarity, we assume (bk , γ k ) to be subject to change:
on each trial, it has probability α of remaining the same as the last trial, and probability 1 − α of
being redrawn from the prior distribution p0 (bk , γ k ). 1

P (bk , γ k |bk−1 , γ k−1 ) = αδ((bk , γ k ) − (bk−1 , γ k−1 )) + (1 − α)p0 (bk , γ k ) (4)

The recognition model inverts the above generative process to infer the current parameter values
γ k and configuration bk based on observed target locations sk : = (s1 . . . sk ). This inference of the
joint distribution over (bk , γ k ) can be computed iteratively as follows:

P (bk , γ k |sk ) ∝ P (sk |bk , γ k )P (bk , γ k |sk−1 ) (5)

P (bk , γ k |sk−1 ) = αP (bk−1 , γ k−1|sk−1 ) + (1 − α)p0 (bk , γ k ) (6)

The predictive distribution over the upcoming target location can be computed by marginalizing
1 We also explored an alternative model in which the parameters γ were not subject to unsignaled reset, only bk is.

However, the choices made by this model under a maximizing strategy were statistically indistinguishable from those
of the D B M described in the main text.
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The recognition model inverts the above generative process to infer the current 

parameter values γ k and configuration bk based on observed target locations sk:= (s1 . . . 

sk ). This inference of the joint distribution over (bk , γ k ) can be computed iteratively as 

follows: 

 

The predictive distribution over the upcoming target location can be computed by 

marginalizing out model variables: 

   

FBM differs from DBM in that it assumes that the target statistics are stable over 

time. It can bethought of a special case of DBM, in which α = 1. 

 

Data analysis: model predictive accuracy 

We use the average predictive probability of subjects’ first fixation under each 

model for comparing among the various models. For DBM+max and FBM+max, the 

predictive probability on a trial is 1 if the model successfully predicted the subject’s first 

fixation choice on that trial, and 0 otherwise. For DBM+match and FBM+match, the 

predictive probability refers to the probability assigned by each model to the subject’s 

choice. These predictive probabilities are then averaged across subjects and blocks of 

trials. 
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out model variables:

P (sk |sk−1 ) =
∑

bk

∫

γk

P (sk |bk , γ k )P (bk , γ k |sk−1 )dγ k (7)

F B M differs from D B M in that it assumes that the target statistics are stable over time. It can be
thought of a special case of D B M, in which α = 1.

3.3 Data analysis: model predictive accuracy

We use the average predictive probability of subjects’ first fixation under each model for comparing
among the various models. For D B M +max and F B M +max, the predictive probability on a trial is 1
if the model successfully predicted the subject’s first fixation choice on that trial, and 0 otherwise.
For D B M +match and F B M +match, the predictive probability refers to the probability assigned by
each model to the subject’s choice. These predictive probabilities are then averaged across subjects
and blocks of trials.

For D B M, we use leave-block-out cross-validation performance to assess any potential over-fitting
due to the α parameter, the sole free parameter in the model. For the 1:3:9 condition, for each
subject, the average predictive probability on 5 nonuniform blocks was minimized by selecting α

from a range of values covering the range [0, 1]. The model ’s performance was then evaluated, for
the chosen value of α, on the held-out 6th nonuniform block. This procedure was repeated with
each block as hold-out set, and the average “test-data” predictive accuracy is reported in the main
text.

4 Discussion

The experimental and theoretical results in this study shed new light on the debate of matching ver-
sus maximizing in choice behavior. A s evidenced by our careful model-based analysis of human
fixation choice behavior in a novel visual search task, apparently matching-like behavior actu-
ally arises from a dynamically evolving Bayesian learning process, combined with a maximizing
decision policy. We find that humans readily internalize spatial statistics after just a handful of
exemplars, and use that information to improve accuracy and efficiency in target search by biasing
saccadic choice in a systematic manner. This work shows that the control of eye movements is

15
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For DBM, we use leave-block-out cross-validation performance to assess any 

potential over-fitting due to the α parameter, the sole free parameter in the model. For the 

1:3:9 condition, for each subject, the average predictive probability on 5 nonuniform 

blocks was minimized by selecting α from a range of values covering the range [0, 1]. 

The model’s performance was then evaluated, for the chosen value of α, on the held-out 

6th nonuniform block. This procedure was repeated with each block as hold-out set, and 

the average “test-data” predictive accuracy is reported in the main text. 

 

2.4 Discussion 

The experimental and theoretical results in this study shed new light on the debate 

of matching versus maximizing in choice behavior. As evidenced by our careful model-

based analysis of human fixation choice behavior in a novel visual search task, apparently 

matching-like behavior actually arises from a dynamically evolving Bayesian learning 

process, combined with a maximizing decision policy. We find that humans readily 

internalize spatial statistics after just a handful of exemplars, and use that information to 

improve accuracy and efficiency in target search by biasing saccadic choice in a 

systematic manner. This work shows that the control of eye movements is not only 

sensitive to low-level sensori-motor factors previously identified, such as saliency (Itti & 

Koch, 2000) or long-term ones such as visual acuity map (Najemnik & Geisler, 2005), 

but also to dynamically changing contextual factors such as evolving spatial knowledge 

about the spatial distribution of target location. 

Our results contrast with most previous work on choice behavior under conditions 
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of uncertainty, which attributed matching-like behavior of subjects solely to inherent 

stochasticity in decision policy (Sugrue, Corrado, & Newsome, 2005; Daw et al., 2006; 

Vul, Goodman, Griffiths, & Tenenbaum, 2009); it builds on recent work suggesting that 

humans are continuously learning about environmental statistics due to an implicit 

assumption of a changing world (Yu & Cohen, 2009) and that matching-like behavior 

may arise from mistuned prior probabilistic beliefs rather than a truly sub-optimal 

decision policy (Grene, Benson, Kersten, & Schrater, 2010). The specific contribution we 

make here is that matching-like behavior in part arises from a maximizing (and optimal) 

choice strategy based on stochastic beliefs about stimulus statistics, which are driven by 

chance fluctuations in empirical statistics over the experimental session. While the non-

stationary assumption seems sub-optimal in our experimental context, it would be a 

valuable asset in natural environments where statistical regularities do change over time, 

such as seasonal weather patterns, rise and fall in predator and prey populations, financial 

and economic markets, and so on. We hypothesize that the apparently irrational matching 

behavior is an adaptive response to the inherent non-stationarity in natural environments, 

and that the variability in how close subjects act like a “matcher” versus a “maximizer” 

may arise from implicit assumptions about the stability of environmental statistics in a 

particular behavioral context. 

We found in the study that as a population, human subjects tend to act as though 

they believe environmental statistics could be changing on the order of once every seven 

to eight trials (corresponding to the population mean of the best-fittingα value of 0.87), 

though there was significant variability across the population. We also found that 

subjects’ choice distribution significantly over-matched with respect to their prior 
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probability distribution (with an average polynomial ex- ponent of 3.27), again with 

significant variability across the population. It is possible that subjects may not be exactly 

maximizing, but injecting a certain amount of stochasticity into their choice pol- icy that 

is still highly over-matching. However, with the current experimental design, it is 

difficult if not impossible to distinguish whether there is true stochasticity in their choice 

policy, or whether there is apparent noise due to DBM still not being quite the correct 

learning model. Indeed, it has been shown in a two-alternative forced choice task that a 

modification to the DBM learning model, termed DBM2 (Dynamic Belief Mixture 

Model), captures certain minor but systematic aspects of sequential adjustment not 

captured by DBM (Wilder et al., 2010). Future experimental and modeling work will 

certainly be helpful to further unravel the precise nature of learning and decision-making 

in these tasks. 

While subjects behave as bounded rational observers, operationalized as iterative 

Bayesian inference, we note that this work does not necessarily imply that doing the task 

requires explicit representation of probabilities. The brain evolved under the selective 

pressure to approach statistical optimality, but may do so mechanistically without any 

explicit representation or understanding of probabilities. Indeed, previously we have 

shown that the predictive probabilities yielded by the Bayesian Model, DBM, can be well 

approximated by simple leaky accumulating neuronal dynamics, as long as the 

parameters of the dynamics are tuned just right to reflect the statistics of the problem (Yu 

& Cohen, 2009). Relatedly, although at first glance, FBM appears to need to keep track 

of all past observations at all times, and thus may impose an unrealistic demand on an 

arbi- trary large memory, it can be actually be implemented exactly by keeping track of a 



! 38 

running total of the number of times the target appears in each of the stimulus locations, 

as these provide the sufficient statistics for the Dirichlet posterior distribution (Bishop, 

2006). Thus, the implementation of neither FBM nor DBM requires an explicit 

representation of probabilities or particularly complex computations, and the issue of 

computational complexity and neural plausibility is not a particularly pertinent one for 

dismissing one model in favor of the other, or both altogether. 

While not explicitly addressed here, our results do not preclude the possibility that 

humans can learn about the true nature of the stability, or lack thereof, of statistical 

regularities in the environment. However, as we showed previously (Yu & Cohen, 2009), 

it can take even an ideal Bayesian learner a surprising number of trials to exchange a 

prior bias toward changeable, statistical regular world for a random, stationary world – 

thus, even if humans are capable of adapting to the rate of statistical change in the world, 

the length of our experimental session may be insufficient for that type of learning. 

Future work is needed to clarify the extent to which humans can adapt their internal 

assumptions about the rate of change of the world in different behavioral contexts. 

Our results are also relevant for the study of attention. Our findings demonstrate 

that overt attention, mediated by purposeful eye movements, complement covert attention 

to play a critical role in the brain’s selection and filtering process. While traditionally 

attentional selection was thought of arising from limited neuronal resources at perceptual, 

cognitive, and motor levels (Broadbent, 1958; Deutsch & Deutsch, 1963; Treisman, 

1969; Eriksen & St James, 1986), more recently for- mal Bayesian statistical models have 

suggested covert attentional selection to be computationally desirable beyond any 

resource limitation considerations (Dayan & Yu, 2002; Dayan & Zemel, 1999; Yu & 
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Dayan, 2005a; Yu & Cohen, 2009). The current work adds to this “selection-for- 

computation” principle of attentional selection (Dayan & Zemel, 1999; Yu & Dayan, 

2005b; Yu, Dayan, & Cohen, 2009), the concept that attentional processes support the 

optimization of the inductive process (Helmholtz, 1878) inherent in sensory and 

perceptual processing (see Yu, 2013 for a longer discussion). Specifically, this work 

demonstrates that eye movements contribute to sensory processing efficiency by 

specifically favoring sensing locations in a manner that is sensitive to environmental 

statistics and task objectives. Understanding the precise manner in which covert and overt 

attention interact to mediate efficient sensory processing is an important direction of 

future research. 
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Chapter 3 

Sequential effects: A Bayesian analysis of 

prior bias on reaction time and behavioral 

choice 

Abstract- Human subjects exhibit “sequential effects” in many psychological 

experiments, in which they respond more rapidly and accurately to a stimulus when it 

reinforces a local pattern in stimulus history, compared to when it violates such a pattern. 

This is often the case even if the local pattern arises by chance, such that stimulus history 

has no real predictive power, and therefore any behavioral adjustment based on these 

erroneous pre- dictions essentially amounts to superstition. Earlier, we proposed a 

normative Bayesian learning model, the Dynamic Belief Model (DBM), to demonstrate 

that such behavior reflects the engagement of mechanisms that identify and adapt to 

changing patterns in the environment (Yu & Cohen, 2009). In that earlier work, we 

assumed a monotonic relationship between prior bias and response time (bias toward a 

stimulus was assumed to result in faster reaction time when that was the actual stimulus; 

conversely, when the other stimulus was present, it was assumed to result in a slower 

response). Here, we present a more detailed and quantitative analysis of the relationship 

between prior bias and behavioral outcome, in terms of response time and choice 

accuracy. We  also  present  novel  behavioral  data, along with  a  framework  for jointly 
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identifying subject-specific parameters of the trial-by-trial learning (Dynamic Belief 

Model, DBM) and within-trial sensory processing and decision-making (Drift-Diffusion 

Model, DDM) based on the behavioral data. Our results provide strong evidence for 

DBM, and reveal potential individual differences, in their differential beliefs about the 

timescale at which local patterns persist in sequential data. 

 

Motivation 

Decisions are influenced by outcomes in the past. It is true when there is a 

statistical structure in the stimulus (Chapter 2), in which subjects can learn information of 

the underlying state of the environment from the recent history to facilitate the decision-

making process. It also exists when there is no embedded rewarding structure in the 

stimulus, for example if the stimulus in each trial is randomly ordered (i.e. no special 

statistical structure in target appearance). For instance, it has been shown that in a 2AFC 

task with A/B stimulus, subjects responded faster with higher accuracy if the current trial 

follows a local pattern (e.g. AAAA followed by A or ABAB followed by A), but are 

slower with higher error rate for the contrary situation (e.g. AAAA followed by B or 

ABAB followed by B). This sequential effect has been observed and reported from a 

variety of studies (Soetens, Boer & Hueting 1985; Hogarth & Einhorn 1992; Cho et al. 

2002; Jones, Curran, Mozer & Wilder 2013).  

In a 2AFC choice task (Choe et al. 2002), a Dynamic Belief Model (DBM) 

proposed by Yu & Cohen 2009 was used to account for its influence of reaction time and 

error rate, by assuming subject’s belief of the correct choice is a combination of the result 
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from recent stimulus history and the internal belief of the stability of the environment. 

They showed that prior belief of a non-stationary environment could produce the 

observed sequential effects reported in the experiment. This model is also shown to be an 

approximated linear-exponential filtering of past observations. That is, the prior bias 

inferred from the model has an approximately linear effect on RT.  

On the other hand, Drift Diffusion model (Ratcliff & Smith 2004; Bogacz, 

Brown, Moehlis, Holmes & Cohen, 2006; Ratcliff & Mckoon 2008) received increasing 

attention in past decade, for its accountability to explain reaction time and error rate in 2 

choice discrimination tasks. Here (Chapter 3), in addition to use DBM for cross-trial 

learning, we propose to further investigate the influence of prior belief on decision-

making within a trial by using a Drift-Diffusion Model. In particular, we propose to use 

the prior belief inferred from DBM as the starting point (bias) of the DDM, and 

subjective sensing difficulty in stimulus information (sensory noise in the stimulus) as the 

drift rate, thus to provide a more explicit model for both cross-trial learning and within-

trial decision-making process.  

 

3.1 Introduction 

In a variety of behavioral experiments, human subjects display “sequential 

effects”, a modulation of response time and/or accuracy by recent trial history (e.g. 

Bertelson, 1961; Laming, 1968; Kornblum, 1973; Soetens, Boer, & Hueting, 1985; Cho 

et al., 2002; Jones, Curran, Mozer, & Wilder, 2013). For example, in two-alternative 

forced choice experiments, in which subjects discriminate between two types of stimuli 
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(A or B), subjects respond more accurately and rapidly if a trial is consistent with the 

recent pattern (e.g. AAAAA followed by A, ABABA followed by B), than if it is 

inconsistent (e.g. AAAAA followed by B, ABABA followed by A). This sequential 

effect depends on the length of the run (Cho et al., 2002). For instance, an alternation 

following four repetitions affects responding more than one following only two 

repetitions. Figure 3.1 illustrates a robust finding of the dependence of RT and error rate 

on recent trial his- tory, both being largest when a relative long run of repetitions or 

alternations are broken by the current observation (middle two trial types), and smallest 

when such runs are extended (left and right end). 

Previously, we proposed a Bayesian learning model, the Dynamic Belief Model 

(DBM), to account for sequential effects, via a human learning mechanism that assumes 

the potential for discrete, un-signaled changes in the environment. Consequently, DBM 

repeatedly modifies internal estimates of the relative probability of one stimulus type 

versus another occurring, based on recent stimulus history (Yu & Cohen, 2009). By 

assuming reaction time and error rate to be monotonically and inversely correlated with 

the estimated prior probability of observing the actual stimulus prior to stimulus onset, 

DBM can qualitatively reproduce the empirically observed sequential effects shown by 

Cho et al. (2002). 

In this work, we give a more precise and quantitative treatment of the influence of 

prior expectations on sensory processing and decision-making within a trial, by assuming 

an evidence-integration-to-bound process (Gold, 2002), which is formally similar to the 

Drift-Diffusion Model (DDM) (e.g. Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006) 

and appears to explain activities of parietal cortical neurons during primate perceptual 
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decision- making (Roitman & Shadlen, 2014). We present a Bayesian method for 

simultaneously identifying subject- specific parameters of DBM and DDM based on an 

individual’s choice accuracy and reaction times, and apply it to behavioral data collected 

in a simple 2-alternative choice perceptual discrimination task. Using this quantitative 

method, we will compute the relative support, measured in Bayes factors, the data lend to 

DBM versus a competing model, the Fixed Belief Model (FBM) (Yu & Cohen, 2009), 

which assumes that human subjects do not believe the task statistics to be changeable 

over time. We will also characterize the population distributions of subject-specific 

Bayesian model parameters, which cor- respond to semantically readily interpretable 

variables, such as subjects’ beliefs about the rate of change in the environmental 

statistics, the overall relative frequency of repetition and alternation trials, and the 

subjective difficulty (or sensory/perceptual noise) associated with processing the sensory 

stimulus. 

The paper is organized as follows. First, we will describe the experiment and the 

data collected. Second, we will review DBM and FBM, showing their qualitative 

differences in trial-wise behavior. Next, we will introduce the quantitative model of prior 

bias on choice RT and ac- curacy. Subsequently, we will analyze the empirical data using 

the models. And finally, we will conclude with a discussion of the results, their 

implications, and directions for future inquiries. 

 

3.2 Experiment 

42 college students in UCSD participated in this experiment, all with normal or 
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corrected vision. In this 2AFC discrimination task, subjects were instructed to decide if 

the coherent motion of a patch of moving dots on the computer screen was toward left or 

right by pressing the corresponding arrow keys. Subjects were seated in a chair 

approximately 60 cm from the computer screen. When a trial started, a patch (diameter: 5 

deg visual angel) with coherent moving dots would appear on the screen, moving at a 

speed of 5 deg/second. The density of the dots was 16.7 dots per sq deg/second, with 3 

pixels per dot. 

All subjects needed to complete two practice sessions and reach an accuracy of at 

least 80% to proceed to the main experiment. In the main experiment, there were 7 

coherence levels, ranging from 0 to 100%. There were 14 blocks in total, with 120 

trials/block, and 2 blocks/coherence. As our first modeling attempt, we only considered 

data collected from the blocks with 100% coherence. There was no time limit on each 

trial. Stimuli repetition or alternation was 650 ms. Subjects received feedback at the end 

of each trial with a beep to indicate if the response was correct. A crisp beep indicated a 

correct response, while a low-frequency beep indicated an incorrect response. There was 

a 4-second black screen penalty for premature response (respond within 100 ms after 

stimuli appears). 

Figure 3.1 C;D demonstrate that very similar sequential effects were observed in 

this experiment as in (Cho et al., 2002). 
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Figure 3.1: Sequential effects in 2AFC tasks manifested in previous and current 
experiments. (A) Median reaction time (RT) and (B) error rate (ER) averaged across six 
subjects, adapted from Figure 1 of (Cho et al., 2002). Along the abscissa are all of the 
possible five-stimulus- long sequences, where R stands for repetition, and A stands for 
alternation. Each sequence, read from top to bottom, proceeds from the earliest stimulus 
progressively toward the present stimulus. (C) Median RT and (D) error rate from the 
current experiment show similar pat- terns; error bars: s.e.m. (Each error bar shows the 
standard error of subjects’ median RT’s for the corresponding sequence) 

 

3.3 Learning Models 

We give a brief summary of the two Bayes-optimal, ideal observer models in (Yu 

& Cohen, 2009), which have different assumptions about the temporal persistence of 

statistical contingencies in the world. 

 

Fixed Belief Model (FBM): Learning about a Fixed World 

culty (or sensory/perceptual noise) associated with pro-
cessing the sensory stimulus.

The paper is organized as follows. First, we will de-
scribe the experiment and the data collected. Second,
we will review DBM and FBM, showing their qualitative
differences in trial-wise behavior. Next, we will introduce
the quantitative model of prior bias on choice RT and ac-
curacy. Subsequently, we will analyze the empirical data
using the models. And finally, we will conclude with a dis-
cussion of the results, their implications, and directions
for future inquiries.

Experiment
42 college students in UCSD participated in this experi-
ment. All with normal or corrected vision. In this 2AFC
discrimination task, subjects were instructed to decide if
the coherent motion of a patch of moving dots on the
computer screen was toward left or right by pressing the
corresponding arrow keys. Subjects were seated in a chair
approximately 60 cm from the computer screen. When a
trial started, a patch (diameter: 5 deg visual angel) with
coherent moving dots would appear on the screen, mov-
ing at a speed of 5 deg/second. The density of the dots
was 16.7 dots per sq deg/second, with 3 pixels per dot.

All subjects needed to complete two practice sessions
and reach an accuracy of at least 80% to proceed to
the main experiment. In the main experiment, there
were 7 coherence levels, ranging from 0 to 100%. There
were 14 blocks in total, with 120 trials/block, and 2
blocks/coherence. As our first modeling attempt, we only
considered data collected from the blocks with 100% co-
herence. There was no time limit on each trial. Stimuli
repetition or alternation were d650 ms. Subjects received
feedback at the end of each trial with a beep to indicate
if their response was correct. A crisp beep indicated a
correct response, while a low-frequency beep indicated
an incorrect response. There was a 4-second black screen
penalty for premature response (respond within 100 ms
after stimuli appears).

Figure 1 C;D demonstrate that very similar sequential
effects were observed in this experiment as in (Cho et al.,
2002).

Learning Models
We give a brief summary of the two Bayes-optimal, ideal
observer models in (Yu & Cohen, 2009), which have dif-
ferent assumptions about the temporal persistence of sta-
tistical contingencies in the world.

Fixed Belief Model (FBM): Learning about
a Fixed World

Suppose the subject has an internal model that on each
trial t, there is a fixed probability γ of seeing a repetition
(xt = 1), and therefore a probability 1 − γ of seeing an
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Figure 1: Sequential effects in 2AFC tasks manifested in
previous and current experiments. (A) Median reaction
time (RT) and (B) error rate (ER) averaged across six
subjects, adapted from Figure 1 of (Cho et al., 2002).
Along the abscissa are all of the possible five-stimulus-
long sequences, where R stands for repetition, and A
stands for alternation. Each sequence, read from top to
bottom, proceeds from the earliest stimulus progressively
toward the present stimulus. (C) Median RT and (D)
error rate from the current experiment show similar pat-
terns; error bars: s.e.m. (each error bar shows the stan-
dard error of subjects’ median RT’s for the corresponding
sequence)

alternation (xt=0). p0(γ) is the generic prior to capture
the subject’s belief about γ before any observations. The
prior is modeled as a Beta distribution, Beta (a, b). Over
time, the subject can use the number of observed repe-
titions versus alternations to gain an increasingly precise
estimate of the underlying γ. After t observations, the
posterior belief of γ is

p(γ|xt) ∼ p(xt|γ)p0(γ) (1)

which is simply Beta (a+ rt, b+ t− rt), where rt is the
number of repetitions observed up to trial t; xt is short-
hand for the vector of observed sequence (x1, . . . , xt). The
probability of observing a repetition on trial t + 1 is the
mean of the posterior distribution over γ:

p(xt+1 = 1|xt) =
rt + a

t+ a+ b
(2)

Dynamic Belief Model (DBM): Learning
about a Changing World

Suppose the subjects believe that the relative frequency
of repetition (versus alternation) can undergo discrete
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Suppose the subject has an internal model that on each trial t, there is a fixed 

probability γ of seeing a repetition (xt = 1), and therefore a probability 1 − γ of seeing an 

alternation (xt =0). P0(γ) is the generic prior to capture the subject’s belief about γ before 

any observations. The prior is modeled as a Beta distribution, Beta (a, b). Over time, the 

subject can use the number of observed repetitions versus alternations to gain an 

increasingly precise estimate of the underlying γ. After t observations, the posterior belief 

of γ is 

 

which is simply Beta(a + rt, b + t − rt), where rt is the number of repetitions 

observed up to trial t; xt is shorthand for the vector of observed sequence (x1,...,xt). The 

probability of observing a repetition on trial t + 1 is the mean of the posterior distribution 

over γ: 

                                 

Dynamic Belief Model (DBM): Learning about a Changing World 

Suppose the subjects believe that the relative frequency of repetition (versus 

alternation) can undergo discrete changes at unsignaled times during the experimental 

session (see Figure 3.2B for graphical representation of the model), the subject’s implicit 

task, then, is to track the evolving frequency of repetition versus alternation over the 

course of the experiment. The crucial assumption is that γt has a Markovian dependence 

on γt−1, such that there is a large probability α of them being the same, and a small 

probability 1 − α of γt being redrawn from the generic prior distribution, p0. As with the 

cul ty (or sensory / percep t ual noise) associated wi t h pro-
cessing t he sensory st imulus.

T he paper is organized as follows. F irst , we will de-
scribe t he experiment and t he dat a collected. Second,
we will review D B M and F B M , showing t heir quali t a t ive
differences in t rial-wise behavior. N ex t , we will int roduce
t he quant i t at ive model of prior bias on choice R T and ac-
curacy. Subsequent ly, we will analyze t he empirical dat a
using t he models. A nd finally, we will conclude wi t h a dis-
cussion of t he resul ts, t heir implica t ions, and direct ions
for fu t ure inquiries.

E x p er i ment
42 college st udents in U C SD par t icipated in t his experi-
ment . A ll wit h normal or corrected vision. In t his 2 A F C
discriminat ion t ask , sub jects were inst ructed to decide if
t he coherent mot ion of a pa tch of moving dots on t he
compu ter screen was toward left or right by pressing t he
corresponding arrow keys. Sub jects were sea ted in a chair
approximately 60 cm from t he compu ter screen. W hen a
t rial st ar ted, a pa tch (diameter: 5 deg visual angel) wi t h
coherent moving dots would appear on t he screen, mov-
ing a t a speed of 5 deg / second. T he densi ty of t he dots
was 16.7 dots per sq deg / second, wi t h 3 pixels per dot .

A ll sub jects needed to complete two pract ice sessions
and reach an accuracy of a t least 80% to proceed to
t he main experiment . In t he main experiment , t here
were 7 coherence levels, ranging from 0 to 100%. T here
were 14 blocks in tot al, wi t h 120 t rials / block , and 2
blocks / coherence. A s our first modeling a t temp t , we only
considered da t a collected from t he blocks wi t h 100% co-
herence. T here was no t ime limi t on each t rial. St imuli
repet i t ion or al ternat ion were d650 ms. Sub jects received
feedback at t he end of each t rial wi t h a beep to indica te
if t heir response was correct . A crisp beep indica ted a
correct response, while a low-frequency beep indicated
an incorrect response. T here was a 4-second black screen
penal ty for prema t ure response (respond wi t hin 100 ms
after st imuli appears).

F igure 1 C ; D demonst rate t ha t very similar sequent ial
effects were observed in t his experiment as in ( C ho et al.,
2002).

L ear ning M o dels
We give a brief summary of t he two B ayes-op t imal, ideal
observer models in ( Yu & C ohen, 2009), which have dif-
ferent assumpt ions abou t t he temporal persistence of st a-
t ist ical cont ingencies in t he world.

F i xed B elief M o del ( F B M ): L ea r n i ng a b ou t
a F i xed W or l d
Suppose t he sub ject has an internal model t hat on each
t rial t , t here is a fixed probabili ty γ of seeing a repet i t ion
( x t = 1), and t herefore a probabili ty 1 − γ of seeing an

F igure 1: Sequent ial effects in 2 A F C t asks manifested in
previous and current experiments. ( A ) M edian react ion
t ime ( R T ) and ( B ) error rate ( E R ) averaged across six
sub jects, adap ted from F igure 1 of ( C ho et al., 2002).
A long t he abscissa are all of t he possible five-st imulus-
long sequences, where R st ands for repet i t ion, and A
st ands for al terna t ion. E ach sequence, read from top to
bot tom, proceeds from t he earliest st imulus progressively
toward t he present st imulus. ( C ) M edian R T and ( D )
error rate from t he current experiment show similar pa t-
terns; error bars: s.e.m. (each error bar shows t he st an-
dard error of sub jects’ median R T ’s for t he corresponding
sequence)

al ternat ion ( x t = 0). p0 (γ) is t he generic prior to cap t ure
t he sub ject ’s belief abou t γ before any observat ions. T he
prior is modeled as a B et a dist ribu t ion, B et a (a , b). O ver
t ime, t he sub ject can use t he number of observed repe-
t i t ions versus al terna t ions to gain an increasingly precise
est ima te of t he underlying γ . A fter t observa t ions, t he
posterior belief of γ is

p(γ|x t ) ∼ p( x t |γ)p0 (γ) (1)

which is simply B et a (a + r t , b + t − r t ), where r t is t he
number of repet i t ions observed up to t rial t; x t is shor t-
hand for t he vector of observed sequence ( x 1 , . . . , x t ). T he
probabili ty of observing a repet i t ion on t rial t + 1 is t he
mean of t he posterior dist ribu t ion over γ:

p( x t + 1 = 1|x t ) =
r t + a

t + a + b
(2)

D y n a m ic B elief M o del ( D B M ): L ea r n i ng
a b ou t a C h a ngi ng W or l d
Suppose t he sub jects believe t hat t he rela t ive frequency
of repet i t ion (versus al terna t ion) can undergo discrete
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after st imuli appears).

F igure 1 C ; D demonst rate t hat very similar sequent ial
effects were observed in t his experiment as in ( C ho et al.,
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We give a brief summary of t he two B ayes-op t imal, ideal
observer models in ( Yu & C ohen, 2009), which have dif-
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Suppose t he sub ject has an internal model t hat on each
t rial t , t here is a fixed probabili ty γ of seeing a repet i t ion
( x t = 1), and t herefore a probabili ty 1 − γ of seeing an
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t ime ( R T ) and ( B ) error rate ( E R ) averaged across six
sub jects, adap ted from F igure 1 of ( C ho et al., 2002).
A long t he abscissa are all of t he possible five-st imulus-
long sequences, where R st ands for repet i t ion, and A
st ands for al ternat ion. E ach sequence, read from top to
bot tom, proceeds from t he earliest st imulus progressively
toward t he present st imulus. ( C ) M edian R T and ( D )
error ra te from t he current experiment show similar pa t-
terns; error bars: s.e.m. (each error bar shows t he st an-
dard error of sub jects’ median R T ’s for t he corresponding
sequence)

al terna t ion ( x t = 0). p0 (γ) is t he generic prior to cap t ure
t he sub ject ’s belief abou t γ before any observa t ions. T he
prior is modeled as a B et a dist ribu t ion, B et a (a , b). O ver
t ime, t he sub ject can use t he number of observed repe-
t i t ions versus al terna t ions to gain an increasingly precise
est ima te of t he underlying γ . A fter t observat ions, t he
posterior belief of γ is

p(γ|x t ) ∼ p( x t |γ)p0 (γ) (1)

which is simply B et a (a + r t , b + t − r t ), where r t is t he
number of repet i t ions observed up to t rial t; x t is shor t-
hand for t he vector of observed sequence ( x 1 , . . . , x t ). T he
probabili ty of observing a repet i t ion on t rial t + 1 is t he
mean of t he posterior dist ribu t ion over γ:

p( x t + 1 = 1|x t ) =
r t + a

t + a + b
(2)

D y n a m ic B elief M o del ( D B M ): L ea r n i ng
a b ou t a C h a ngi ng W or l d
Suppose t he sub jects believe t ha t t he relat ive frequency
of repet i t ion (versus al ternat ion) can undergo discrete

1845



! 53 

FBM, the observer would then need to combine the sequentially developed prior belief 

about stimulus identity, with the incoming stream of sensory inputs, x1,x2,...,xt,..., to infer 

the identity of the stimulus in each trial in an iterative fashion:          

 

and the posterior distribution is: 

           

The probability of seeing a new repetition is thus: 

          

 

           

Figure 3.2: Generative models of the fixed and dynamic belief models. (A) Fixed Belief 
Model (FBM): a hidden bias parameter specifies the frequency of repetitions (and al- 
ternations) in the experiment. (B) Dynamic Belief Model (DBM): the hidden bias 
parameter can change from trial t to trial t+1. 

One important consequence of the diminishing uncertainty in the FBM versus the 

persisting uncertainty in the DBM is that the influence of individual observations persist 
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F igure 2: G enera t ive models of t he fixed and dynamic be-
lief models. ( A ) F ixed B elief Model ( F B M ): a hidden bias
parameter γ specifies t he frequency of repet i t ions (and al-
ternat ions) in t he experiment . ( B ) D ynamic B elief Model
( D B M ): t he hidden bias parameter can change from t rial
t to t rial t + 1.

changes a t unsignaled t imes during t he experiment al ses-
sion (see F igure 2B for graphical represent at ion of t he
model), t he sub ject ’s implici t t ask , t hen, is to t rack t he
evolving frequency of repet i t ion versus alternat ion over
t he course of t he experiment . T he crucial assump t ion is
t hat γt has a M arkovian dependence on γt−1 , such t hat
t here is a large probabili ty α of t hem being t he same, and
a small probabili ty 1 − α of γt being redrawn from t he
generic prior dist ribu t ion, p0 . A s wi t h t he F B M , t he ob-
server would t hen need to combine t he sequent ially devel-
oped prior belief abou t st imulus ident i ty, wi t h t he incom-
ing st ream of sensory inpu ts, x 1 , x 2 , . . . , x t , . . . , to infer
t he ident i ty of t he st imulus in each t rial in an i terat ive
fashion:

p(γt = γ|x t−1 ) = αp(γt−1 = γ|x t−1 ) + (1 − α)p0 (γ) (3)

and t he posterior dist ribu t ion is:

p(γt = γ|x t ) ∝ p( x t |γt = γ)p(γt = γ|x t−1 ) (4)

T he probabili ty of seeing a new repet i t ion is t hus:

p( x t = 1|x t−1 ) =
∫

p( x t = 1|γt )p(γt |x t−1 )dγt

= (1 − α)⟨γ⟩p0 (γ ) + α⟨γt |x t−1⟩
(5)

O ne impor t ant consequence of t he diminishing uncer-
t ainty in t he F B M versus t he persist ing uncer t ainty in
t he D B M is t ha t t he influence of individual observa t ions
persist indefini tely in F B M , bu t decreases over t ime for
D B M , wit h t he parameter α determining t he effect ive
t ime window over which individual events exer t predic-
t ive influence on fu t ure events. F igure 3 graphically il-
lust rates analyses of t he consequences of t he different as-
sump t ions made by t he two models. T hese simula t ion re-
sul ts suppor t our hypot hesis t ha t t he t rial-to-t rial adjust-
ments seen in sub jects’ behavior in 2 A F C t asks reflect a
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F igure 3: Sequent ial effects t ransient in F B M , persistent
in D B M . ( A ) illust ra tes t he t rial-wise predict ive proba-
bili ty of repet i t ion by F B M (cyan), to a sequence of 100
dat a points, random wi t h γ = .5 for a repet i t ion. A n ideal
observer implement ing F B M is superior: i t becomes im-
mune to t he noisy fluct uat ions in t he sequence of observa-
t ions ( t he darkening and narrowing band) and converges
to t he t rue value. ( B ) illust ra tes t he t rial-wise predict ive
probabili ty by D B M under t he same process. A s D B M
is (erroneously) applied to learn abou t a st at ionary (and
random) process, i t is st rongly and persistent ly influenced
by spurious local pa t terns. ( C ) W hen t he underlying en-
vironment is t ruly volat ile, F B M cannot easily adap t to
new values of γ , whereas as ( D ) D B M negot iates t hese
changes adroi t ly.

(perhaps implici t and unconscious) assump t ion t hat st a-
t ist ical regulari t ies, such as runs of repet i t ions or al ter-
nat ions, exist and persist on a characterist ic t imescale.
Such a st rategy is useful for a t ruly vola t ile environment
bu t inappropriate for t he experiment al environment , in
which st imulus st at ist ics are held fixed.

B ayesian M o del of P r ior B elief on
R eact ion T i me an d C hoice

P reviously ( Yu & C ohen, 2009), we suggested wi t hin-t rial
percep t ual inference and decision-making to be analogous
to t he sequent ial hypot hesis rat io test (SP R T ), and made
a loose argument for t he prior bias (inferred by D B M ) to
have an approxima tely linear effect on mean R T . Sepa-
rately, we have found t hat t he approximately linear rela-
t ionship to R T hold for a wide range of α values (dat a not
shown). H ere, we t ake a similar approach bu t explici t ly
model t he relat ionship between prior bias and R T . T he
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(5)

O ne impor t ant consequence of t he diminishing uncer-
t ainty in t he F B M versus t he persist ing uncer t ainty in
t he D B M is t ha t t he influence of individual observat ions
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percep t ual inference and decision-making to be analogous
to t he sequent ial hypot hesis rat io test (SP R T ), and made
a loose argument for t he prior bias (inferred by D B M ) to
have an approximately linear effect on mean R T . Sepa-
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F igure 2: G enera t ive models of t he fixed and dynamic be-
lief models. ( A ) F ixed B elief Model ( F B M ): a hidden bias
parameter γ specifies t he frequency of repet i t ions (and al-
terna t ions) in t he experiment . ( B ) D ynamic B elief Model
( D B M ): t he hidden bias parameter can change from t rial
t to t rial t + 1.

changes at unsignaled t imes during t he experiment al ses-
sion (see F igure 2B for graphical represent a t ion of t he
model), t he sub ject ’s implici t t ask , t hen, is to t rack t he
evolving frequency of repet i t ion versus alternat ion over
t he course of t he experiment . T he crucial assump t ion is
t hat γt has a M arkovian dependence on γt−1 , such t hat
t here is a large probabili ty α of t hem being t he same, and
a small probabili ty 1 − α of γt being redrawn from t he
generic prior dist ribu t ion, p0 . A s wi t h t he F B M , t he ob-
server would t hen need to combine t he sequent ially devel-
oped prior belief abou t st imulus ident i ty, wi t h t he incom-
ing st ream of sensory inpu ts, x 1 , x 2 , . . . , x t , . . . , to infer
t he ident i ty of t he st imulus in each t rial in an i tera t ive
fashion:

p(γt = γ|x t−1 ) = αp(γt−1 = γ|x t−1 ) + (1 − α)p0 (γ) (3)

and t he posterior dist ribu t ion is:

p(γt = γ|x t ) ∝ p( x t |γt = γ)p(γt = γ|x t−1 ) (4)

T he probabili ty of seeing a new repet i t ion is t hus:

p( x t = 1|x t−1 ) =
∫

p( x t = 1|γt )p(γt |x t−1 )dγt

= (1 − α)⟨γ⟩p 0 (γ ) + α⟨γt |x t−1⟩
(5)

O ne impor t ant consequence of t he diminishing uncer-
t ainty in t he F B M versus t he persist ing uncer t ainty in
t he D B M is t ha t t he influence of individual observa t ions
persist indefini tely in F B M , bu t decreases over t ime for
D B M , wit h t he parameter α determining t he effect ive
t ime window over which individual events exer t predic-
t ive influence on fu t ure events. F igure 3 graphically il-
lust ra tes analyses of t he consequences of t he different as-
sump t ions made by t he two models. T hese simula t ion re-
sul ts suppor t our hypot hesis t ha t t he t rial-to-t rial adjust-
ments seen in sub jects’ behavior in 2 A F C t asks reflect a
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F igure 3: Sequent ial effects t ransient in F B M , persistent
in D B M . ( A ) illust ra tes t he t rial-wise predict ive proba-
bili ty of repet i t ion by F B M (cyan), to a sequence of 100
da t a points, random wi t h γ = .5 for a repet i t ion. A n ideal
observer implement ing F B M is superior: i t becomes im-
mune to t he noisy fluct ua t ions in t he sequence of observa-
t ions ( t he darkening and narrowing band) and converges
to t he t rue value. ( B ) illust rates t he t rial-wise predict ive
probabili ty by D B M under t he same process. A s D B M
is (erroneously) applied to learn abou t a st at ionary (and
random) process, i t is st rongly and persistent ly influenced
by spurious local pa t terns. ( C ) W hen t he underlying en-
vironment is t ruly vola t ile, F B M cannot easily adap t to
new values of γ , whereas as ( D ) D B M negot iates t hese
changes adroi t ly.

(perhaps implici t and unconscious) assump t ion t hat st a-
t ist ical regulari t ies, such as runs of repet i t ions or al ter-
na t ions, exist and persist on a characterist ic t imescale.
Such a st rategy is useful for a t ruly vola t ile environment
bu t inappropriate for t he experiment al environment , in
which st imulus st at ist ics are held fixed.

B ayesian M o del of P r ior B elief on
R eact ion T i me an d C hoice

P reviously ( Yu & C ohen, 2009), we suggested wi t hin-t rial
percep t ual inference and decision-making to be analogous
to t he sequent ial hypot hesis rat io test (SP R T ), and made
a loose argument for t he prior bias (inferred by D B M ) to
have an approximately linear effect on mean R T . Sepa-
rately, we have found t hat t he approximately linear rela-
t ionship to R T hold for a wide range of α values (da t a not
shown). H ere, we t ake a similar approach bu t explici t ly
model t he relat ionship between prior bias and R T . T he
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= (1 − α)⟨γ⟩p 0 (γ ) + α⟨γt |x t−1⟩
(5)

O ne impor t ant consequence of t he diminishing uncer-
t ainty in t he F B M versus t he persist ing uncer t ainty in
t he D B M is t ha t t he influence of individual observa t ions
persist indefini tely in F B M , bu t decreases over t ime for
D B M , wit h t he parameter α determining t he effect ive
t ime window over which individual events exer t predic-
t ive influence on fu t ure events. F igure 3 graphically il-
lust rates analyses of t he consequences of t he different as-
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da t a points, random wi t h γ = .5 for a repet i t ion. A n ideal
observer implement ing F B M is superior: i t becomes im-
mune to t he noisy fluct uat ions in t he sequence of observa-
t ions ( t he darkening and narrowing band) and converges
to t he t rue value. ( B ) illust rates t he t rial-wise predict ive
probabili ty by D B M under t he same process. A s D B M
is (erroneously) applied to learn abou t a st at ionary (and
random) process, i t is st rongly and persistent ly influenced
by spurious local pa t terns. ( C ) W hen t he underlying en-
vironment is t ruly vola t ile, F B M cannot easily adap t to
new values of γ , whereas as ( D ) D B M negot iates t hese
changes adroi t ly.

(perhaps implici t and unconscious) assump t ion t hat st a-
t ist ical regulari t ies, such as runs of repet i t ions or al ter-
na t ions, exist and persist on a characterist ic t imescale.
Such a st rategy is useful for a t ruly volat ile environment
bu t inappropria te for t he experiment al environment , in
which st imulus st a t ist ics are held fixed.

B ayesian M o del of P r ior B elief on
R eact ion T i me an d C hoice

P reviously ( Yu & C ohen, 2009), we suggested wi t hin-t rial
percep t ual inference and decision-making to be analogous
to t he sequent ial hypot hesis rat io test (SP R T ), and made
a loose argument for t he prior bias (inferred by D B M ) to
have an approxima tely linear effect on mean R T . Sepa-
ra tely, we have found t ha t t he approximately linear rela-
t ionship to R T hold for a wide range of α values (da t a not
shown). H ere, we t ake a similar approach bu t explici t ly
model t he relat ionship between prior bias and R T . T he
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indefinitely in FBM, but decreases over time for DBM, with the parameter α determining 

the effective time window over which individual events exert predictive influence on 

future events. Figure 3.3 graphically illustrates analyses of the consequences of the 

different assumptions made by the two models. These simulation results support our 

hypothesis that the trial-to-trial adjustments seen in subjects’ behavior in 2AFC tasks 

reflect a (perhaps implicit and unconscious) assumption that statistical regularities, such 

as runs of repetitions or alternations, exist and persist on a characteristic timescale. Such 

a strategy is useful for a truly volatile environment but inappropriate for the experimental 

environment, in which stimulus statistics are held fixed. 

 

3.4 Bayesian Model of Prior Belief on Reaction Time 

and Choice 

Previously (Yu & Cohen, 2009), we suggested within-trial perceptual inference 

and decision-making to be analogous to the sequential hypothesis ratio test (SPRT), and 

made a loose argument for the prior bias (inferred by DBM) to have an approximately 

linear effect on mean RT. Separately, we have found that the approximately linear 

relationship to RT hold for a wide range of α values (data not shown). Here, we take a 

similar approach but explicitly model the relationship between prior bias and RT. The 

general idea is to specify a within trial mapping from the belief state (prior probability 

impending stimulus type), and the stimulus strength/sensory uncertainty, to choice and 

RT of a given trial. 



! 55 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Sequential effects transient in FBM, persistent in DBM. (A) illustrates the 
trial-wise predictive probability of repetition by FBM (cyan), to a sequence of 100 data 
points, random with = .5 for a repetition. An ideal observer implementing FBM is 
superior: it becomes immune to the noisy fluctuations in the sequence of observations 
(the darkening and narrowing band) and converges to the true value. (B) illustrates the 
trial-wise predictive probability by DBM under the same process. As DBM is 
(erroneously) applied to learn about a stationary (and random) process, it is strongly and 
persistently influenced by spurious local patterns. (C) When the underlying environment 
is truly volatile, FBM cannot easily adapt to new values of, whereas as (D) DBM 
negotiates these changes adroitly. 

 

Within-Trial Processing 

We introduce our method in the context of our experiment, whereby the decision 

maker needs to decide whether the coherent motion of the dots is toward left or right. For 

simplicity, and similar to the signal-detection- theory (SDT) formulation (Green & Swets, 

1966), we assume each of the two possible stimuli generates normally distributed noisy 

neural responses at some intermediate stage of the visual pathway, based on which the 
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fashion:

p(γt = γ|x t−1 ) = αp(γt−1 = γ|x t−1 ) + (1 − α)p0 (γ) (3)

and t he posterior dist ribu t ion is:
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T he probabili ty of seeing a new repet i t ion is t hus:

p( x t = 1|x t−1 ) =
∫

p( x t = 1|γt )p(γt |x t−1 )dγt

= (1 − α)⟨γ⟩p 0 (γ ) + α⟨γt |x t−1⟩
(5)

O ne impor t ant consequence of t he diminishing uncer-
t ainty in t he F B M versus t he persist ing uncer t ainty in
t he D B M is t ha t t he influence of individual observa t ions
persist indefini tely in F B M , bu t decreases over t ime for
D B M , wit h t he parameter α determining t he effect ive
t ime window over which individual events exer t predic-
t ive influence on fu t ure events. F igure 3 graphically il-
lust rates analyses of t he consequences of t he different as-
sump t ions made by t he two models. T hese simula t ion re-
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bili ty of repet i t ion by F B M (cyan), to a sequence of 100
da t a points, random wi t h γ = .5 for a repet i t ion. A n ideal
observer implement ing F B M is superior: i t becomes im-
mune to t he noisy fluct ua t ions in t he sequence of observa-
t ions ( t he darkening and narrowing band) and converges
to t he t rue value. ( B ) illust ra tes t he t rial-wise predict ive
probabili ty by D B M under t he same process. A s D B M
is (erroneously) applied to learn abou t a st at ionary (and
random) process, i t is st rongly and persistent ly influenced
by spurious local pa t terns. ( C ) W hen t he underlying en-
vironment is t ruly volat ile, F B M cannot easily adap t to
new values of γ , whereas as ( D ) D B M negot iates t hese
changes adroi t ly.

(perhaps implici t and unconscious) assump t ion t ha t st a-
t ist ical regulari t ies, such as runs of repet i t ions or al ter-
na t ions, exist and persist on a characterist ic t imescale.
Such a st rategy is useful for a t ruly vola t ile environment
bu t inappropria te for t he experiment al environment , in
which st imulus st at ist ics are held fixed.

B ayesian M o del of P r ior B elief on
R eact ion T i me an d C hoice

P reviously ( Yu & C ohen, 2009), we suggested wi t hin-t rial
percep t ual inference and decision-making to be analogous
to t he sequent ial hypot hesis ra t io test (SP R T ), and made
a loose argument for t he prior bias (inferred by D B M ) to
have an approxima tely linear effect on mean R T . Sepa-
ra tely, we have found t ha t t he approxima tely linear rela-
t ionship to R T hold for a wide range of α values (da t a not
shown). H ere, we t ake a similar approach bu t explici t ly
model t he relat ionship between prior bias and R T . T he
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subsequent brain region(s) must decide which stimulus was present (and thus which 

response is required) and when to respond. We assume that the perceived strength and 

uncertainty of the motion does not depend on its direction, thus the two distributions 

under hypothesis H1 (motion toward the left) and H2 (motion toward the right) have 

means −µ and µ, and equal variance, σ2. The distribution under the true hypothesis is 

termed the target distribution. Figure 3.4A illustrates SDT. 

SPRT solves the problem of deciding between H1 and H2, based on an ongoing 

stream of independent series of sensory signals from the stimulus (the target distribution), 

y1,...,yt,..., perceived at discrete steps. The total length (sample size) of sensory signals is 

also under the observer’s control. SPRT says that the observer should keep tracking the 

relative likelihoods of the two hypotheses being true, and choose the more likely one as 

soon as the likelihood ratio crosses some decision threshold Z1 (in which case, stop and 

decide H1) or Z2 (stop and decide H2). Suppose the prior probability of H1 being true is 

p; the probability of the sensory signals up to time t, yt := {y1, . . . , yt}, conditioned on 

hypothesis H1 being true, is f1(yt), and the probability of the same sequence of sensory 

signals being generated by hypothesis H2 is f2(yt), then SPRT says to stop as soon as Sn 

:= !!!!(!!)
!!! !!(!!)

 ≥ Z1 or if Sn ≤ Z2, and continue otherwise (i.e. if Z2 < Sn < Z1). Suppose ε 

is the type I error to be controlled for deciding on either hypothesis, then Z1= !!!! , and 

Z2= !
!!!. 

It has long been noted that SPRT is formally equivalent to a bounded random-

walk model (Laming, 1968; Bogacz et al., 2006). When the observations have 
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statistically independent noise, we have !! !!,… ,!! = !∏!!!
! !! !"  for j = 1,2, and thus 

 

Notice that f1 and f2 are density functions of Gaussian distributions N(−µ, σ2) 

and N(µ, σ2). The increment of information gained from a sensory signal yi, and its mean 

and variance are 

                        

Since log Sn is strictly monotonically related to Sn, the decision policy is 

equivalent to stopping as soon as In ≥ Z (and choose H1) or In ≤ −Z (and choose H2), for 

Z := log(1 − ε) − log ε. In other words, the sensory signal accumulation in SPRT is 

equivalent to a bounded random walk with noisy increments that have a mean drift rate of 

m per time step (positive if H1 is true, negative if H2 is true). 

We can then rewrite the total sensory evidence accrued with n steps as 

                                           

where I0 := log p − log(1 − p) is the starting bias toward H1. Assuming sensory 

signals are obtained at small time intervals, we consider the continuous-time limiting 

F igure 4: G raphical represent at ion of t he joint inference
of t he cross-t rial learning ( D B M ) and wi t hin-t rial deci-
sion making ( D D M ). D iscriminabili ty of t he hypot het ical
dist ribu t ions in SD T (cap t ured by µ , since we can fix σ
at 1 wi t hou t loss of generali ty) determines t he ra te (m)
and variabili ty (s2 ) of sensory evidence accumulat ion in
D D M wi t hin a t rial. T he bias of D D M ( I 0 ) is deter-
mined by t he prior probabili ty of repet i t ion as inferred
by D B M from cross-t rial learning, condi t ioned on t he pa-
rameter associa ted wi t h a st a t ionary environment (α) and
t he generic prior belief of t he probabili ty of a repet i t ion
t rial (e). Shaded nodes represent variables t ha t are ob-
servable to t he experimenter, or can be calcula ted in a
model-free fashion, such as t he st imulus sequence ( x t ),
t he observed choices and R T ’s ( D t ), and t he log odds
of overall accuracy of decision making ( Z ). T he black
solid frame indica tes t repea ted plates of t he cross-t rial
variables. C olored broken frames illust ra te different com-
ponents in t he composi te model.

general idea is to specify a wi t hin-t rial mapping from t he
belief st ate (prior probabili ty impending st imulus type),
and t he st imulus st rengt h / sensory uncer t ainty, to choice
and R T of a given t rial.

W i t h i n- T r ial P rocessi ng
We int roduce our met hod in t he contex t of our ex-
periment , whereby t he decision maker needs to decide
whet her t he coherent mot ion of t he dots is toward left or
right . For simplici ty, and similar to t he signal-detect ion-
t heory (SD T ) formulat ion ( G reen & Swets, 1966), we as-
sume each of t he two possible st imuli genera tes normally
dist ribu ted noisy neural responses a t some intermedia te
st age of t he visual pa t hway, based on which t he subse-
quent brain region(s) must decide which st imulus was

present (and t hus which response is required) and when
to respond. We assume t ha t t he perceived st rengt h and
uncer t ainty of t he mot ion does not depend on i ts direc-
t ion, t hus t he two dist ribut ions under hypot hesis H 1 (mo-
t ion toward t he left ) and H 2 (mot ion toward t he right )
have means −µ and µ , and equal variance, σ2 . T he dis-
t ribu t ion under t he t rue hypot hesis is termed t he target
dist ribu t ion. F igure 4 A illust ra tes SD T .

SP R T solves t he problem of deciding between H 1 and
H 2 , based on an ongoing st ream of independent series
of sensory signals from t he st imulus ( t he target dist ri-
bu t ion), y1 , . . . , y t , . . . , perceived at discrete steps. T he
tot al lengt h (sample size) of sensory signals is also un-
der t he observer’s cont rol. SP R T says t hat t he observer
should keep t racking t he rela t ive likelihoods of t he two
hypot heses being t rue, and choose t he more likely one as
soon as t he likelihood rat io crosses some decision t hresh-
old Z 1 (in which case, stop and decide H 1 ) or Z 2 (stop
and decide H 2 ). Suppose t he prior probabili ty of H 1 be-
ing t rue is p; t he probabili ty of t he sensory signals up
to time t , y t : = { y1 , . . . , y t } , condi t ioned on hypot he-
sis H 1 being t rue, is f 1 ( y t ), and t he probabili ty of t he
same sequence of sensory signals being generated by hy-
pot hesis H 2 is f 2 ( y t ), t hen SP R T says to stop as soon
as S n : = p f 1 (yt )

( 1−p ) f 2 (yt ) ≥ Z 1 or if S n ≤ Z 2 , and cont inue
ot herwise (i.e. if Z 2 < S n < Z 1 ). Suppose ϵ is t he type
I error to be cont rolled for deciding on ei t her hypot hesis,
t hen Z 1 = 1−ϵ

ϵ , and Z 2 = ϵ
1−ϵ .

I t has long been noted t hat SP R T is formally equivalent
to a bounded random-walk model ( L aming, 1968; Bogacz
et al., 2006). W hen t he observat ions have st at ist ically
independent noise, we have f j (y1 , . . . , y t ) =

∏t
i = 1 f j (y i )

for j = 1, 2, and t hus

I n : = log S n = log
p

1 − p
+

t∑

i = 1

log
f 1 (y i )
f 2 (y i )

Not ice t hat f 1 and f 2 are densi ty funct ions of G aussian
dist ribu t ions N (−µ , σ2 ) and N (µ , σ2 ). T he increment of
informa t ion gained from a sensory signal y i , and i ts mean
and variance are

δ I i = log
f 1 (y i )
f 2 (y i )

= −2µ
σ2 y i

m : = E (δ I i ) = ±
2µ 2

σ2

s2 : = Var (δ I i ) =
4µ 2

σ2

(6)

Since log S n is st rict ly monotonically related to S n , t he
decision policy is equivalent to stopping as soon as I n ≥
Z (and choose H 1 ) or I n ≤ −Z (and choose H 2 ), for
Z : = log(1− ϵ) − log ϵ. In ot her words, t he sensory signal
accumula t ion in SP R T is equivalent to a bounded random
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servable to t he experimenter, or can be calcula ted in a
model-free fashion, such as t he st imulus sequence ( x t ),
t he observed choices and R T ’s ( D t ), and t he log odds
of overall accuracy of decision making ( Z ). T he black
solid frame indica tes t repea ted plates of t he cross-t rial
variables. C olored broken frames illust rate different com-
ponents in t he composi te model.

general idea is to specify a wi t hin-t rial mapping from t he
belief st ate (prior probabili ty impending st imulus type),
and t he st imulus st rengt h / sensory uncer t ainty, to choice
and R T of a given t rial.

W i t h i n- T r ial P rocessi ng
We int roduce our met hod in t he contex t of our ex-
periment , whereby t he decision maker needs to decide
whet her t he coherent mot ion of t he dots is toward left or
right . For simplici ty, and similar to t he signal-detect ion-
t heory (SD T ) formulat ion ( G reen & Swets, 1966), we as-
sume each of t he two possible st imuli genera tes normally
dist ribu ted noisy neural responses a t some intermedia te
st age of t he visual pa t hway, based on which t he subse-
quent brain region(s) must decide which st imulus was

present (and t hus which response is required) and when
to respond. We assume t hat t he perceived st rengt h and
uncer t ainty of t he mot ion does not depend on i ts direc-
t ion, t hus t he two dist ribut ions under hypot hesis H 1 (mo-
t ion toward t he left ) and H 2 (mot ion toward t he right )
have means −µ and µ , and equal variance, σ2 . T he dis-
t ribu t ion under t he t rue hypot hesis is termed t he target
dist ribu t ion. F igure 4 A illust rates SD T .

SP R T solves t he problem of deciding between H 1 and
H 2 , based on an ongoing st ream of independent series
of sensory signals from t he st imulus ( t he target dist ri-
bu t ion), y1 , . . . , y t , . . . , perceived at discrete steps. T he
tot al lengt h (sample size) of sensory signals is also un-
der t he observer’s cont rol. SP R T says t ha t t he observer
should keep t racking t he relat ive likelihoods of t he two
hypot heses being t rue, and choose t he more likely one as
soon as t he likelihood ra t io crosses some decision t hresh-
old Z 1 (in which case, stop and decide H 1 ) or Z 2 (stop
and decide H 2 ). Suppose t he prior probabili ty of H 1 be-
ing t rue is p; t he probabili ty of t he sensory signals up
to time t , y t : = { y1 , . . . , y t } , condi t ioned on hypot he-
sis H 1 being t rue, is f 1 ( y t ), and t he probabili ty of t he
same sequence of sensory signals being generated by hy-
pot hesis H 2 is f 2 ( y t ), t hen SP R T says to stop as soon
as S n : = p f 1 ( y t )

( 1−p ) f 2 ( y t ) ≥ Z 1 or if S n ≤ Z 2 , and cont inue
ot herwise (i.e. if Z 2 < S n < Z 1 ). Suppose ϵ is t he type
I error to be cont rolled for deciding on ei t her hypot hesis,
t hen Z 1 = 1−ϵ

ϵ , and Z 2 = ϵ
1−ϵ .

I t has long been noted t ha t SP R T is formally equivalent
to a bounded random-walk model ( L aming, 1968; Bogacz
et al., 2006). W hen t he observat ions have st at ist ically
independent noise, we have f j (y1 , . . . , y t ) =

∏t
i = 1 f j (y i )

for j = 1, 2, and t hus

I n : = log S n = log
p

1 − p
+

t∑

i = 1

log
f 1 (y i )
f 2 (y i )

Not ice t hat f 1 and f 2 are densi ty funct ions of G aussian
dist ribu t ions N (−µ , σ2 ) and N (µ , σ2 ). T he increment of
informat ion gained from a sensory signal y i , and i ts mean
and variance are

δ I i = log
f 1 (y i )
f 2 (y i )

= −2µ
σ2 y i

m : = E (δ I i ) = ±
2µ 2

σ2

s2 : = Var (δ I i ) =
4µ 2

σ2

(6)

Since log S n is st rict ly monotonically related to S n , t he
decision policy is equivalent to stopping as soon as I n ≥
Z (and choose H 1 ) or I n ≤ −Z (and choose H 2 ), for
Z : = log(1− ϵ) − log ϵ. In ot her words, t he sensory signal
accumula t ion in SP R T is equivalent to a bounded random

1847

0 0.5 1
0

2

4

6

8

N
um

be
r o

f s
ub

j.

α
0 0.5 1

0

2

4

6

8

e
0 2 4

0

2

4

6

µ

F igure 5: D ist ribu t ions of t he M A P est imates of α, e and
µ

walk wit h noisy increments that have a mean drift rate
of m per t ime step (posi t ive if H 1 is t rue, negat ive if H 2
is t rue).

We can t hen rewri te t he tot al sensory evidence accrued
wi t h n steps as

I n = I 0 +
n∑

i = 1

δ I i (7)

where I 0 : = log p − log(1 − p) is t he st ar t ing bias toward
H 1 . A ssuming sensory signals are ob t ained at small t ime
intervals, we consider t he cont inuous-t ime limi t ing pro-
cess, I (t), which sa t isfies t he stochast ic different ial equa-
t ion

d I = mdt + sdW, I (0) = I 0 (8)

where m and s2 are defined by E quat ion 6. E quat ion 8
is a drift diffusion process. T he t hresholds for I n , wi t h
respect to t he t hresholds in t he original SP R T form, are
just ± Z . F igure 4B illust rates D D M .

C ross- T r ial P rocessi ng
Bot h D B M and F B M infer t he ident i ty of t he st imulus
(repet i t ion vs al ternat ion) for each t rial, based on t he pre-
vious observed sequence ( E quat ion 2 and E quat ion 5). A t
t rial t , t he prior probabili ty of seeing a repet i t ion p( x t =
1|x t−1 ) can be readily t ranslated to t he bias in SP R T :
I 0 = ± (log p( x t = 1|x t−1 ) − log(1 − p( x t = 1|x t−1 )))
which t akes posi t ive (negat ive) sign if H 1 ( H 2 ) was t rue
on t he previous t rial.

G r a p h ical M o del I m p le m en t a t ion
F igure 4C shows a graphical represent at ion of our join
inference of D B M , SD T , and D D M . U nshaded nodes rep-
resent model parameters to be inferred from da t a. B e-
cause only t he rat io of µ and σ (relat ive discriminabili ty
of t he two hypot heses) mat ters in determining t he drift
of D D M , we can fix σ at 1. We model t he generic prior
of t he probabili ty of repet i t ion in D B M using B et a(a , b),
and denote i ts mean by e : = a / (a + b). To reduce compu-
t at ional complexi ty, we fix a + b at 2, assuming sub jects
have (equally) low cer t ainty of t he environment before
observing any st imulus. We also use t he simplest t reat-
ment for non-decision t ime by sub t ract ing t he smallest
R T for each sub ject . In fit t ing t he joint model, we first

F igure 6: L eft: dist ribu t ion of B ayes factors of D B M
against F B M , wi t h each brick showing one sub ject; R ight:
model predicted R T ’s compared to dat a.

generated t he sequent ial predict ions by D B M , given t he
t rue sequence of st imuli observed by each sub ject , using a
grid (.02 increment ) of α and e values ranging between 0
and 1. We t hen used M C M C sampling for t he graphical
model inference using a uniform prior between 0 and 10
for µ , and “discret ized uniform ” priors for α and e. We
fit t he model to each individual sub ject , and conducted
a formal model comparison between D B M and F B M by
examining t he B ayes factors (e.g. K ass & R aftery , 1995).

R esul ts
T he top row of F igure 5 shows dist ribu t ions (over all sub-
jects) of t he maximum a posterior ( M A P ) est imates of t he
D B M parameter, α, t he prior belief of t he mean probabil-
i ty of repet i t ion, e, and t he psychological discriminabili ty
of t he t arget direct ion, µ . T he dist ribu t ion of α has large
variat ion indicat ing individual differences. T he mean of
t he dist ribu t ion of e is smaller t han .5, implying a bias
toward al ternat ion in general. However, we can clearly
see t hat some sub jects hold a greater bias toward ei t her
repet i t ion or al terna t ion, as indicated by t he more ex-
t reme est imates of e. T here is only one sub ject who had
poor choice accuracy (.74), cap t ured by a low µ value
in SD T represent at ion. We did not find any significant
correlat ions between any pair of parameters.

We examine D B M and F B M in t heir abili t ies of cap-
t uring empirical dat a, using t he B ayes factor as a model
comparison measure. We calculate t he B ayes factor of
D B M against F B M , bot h combined wi t h D D M , for each
individual sub ject . T he left panel of F igure 6 shows t he
dist ribu t ion of B ayes factors over all sub jects. E vidence
for D B M against F B M is posi t ive for 35 (ou t of 42) sub-
jects, wi t h a B ayes factor greater t han 3 (according to
t he interpret a t ion scale proposed by K ass and R aftery
(1995)). We also compared t he R T condi t ioned on 5 pre-
vious t rials predicted by D B M and F B M a t t heir best
parameterizat ion. T he right panel of F igure 6 shows t hat
F B M predicts a much smaller sequent ial effect as com-
pared to real-world behavior, whereas D B M can cap t ure
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process, I(t), which satisfies the stochastic differential equation 

 

where m and s2 are defined by Equation 6. Equation 8 is a drift diffusion process. 

The thresholds for In, with respect to the thresholds in the original SPRT form, are just 

±Z. Figure 3.4 B illustrates DDM. 

 

Cross-Trial Processing 

Both DBM and FBM infer the identity of the stimulus (repetition vs. alternation) 

for each trial, based on the previous observed sequence (Equation 2 and Equation 5). At 

trial t, the prior probability of seeing a repetition p(xt = 1|xt−1) can be readily translated to 

the bias in SPRT: I0 = ± (log p(xt = 1|xt−1) − log(1 − p(xt = 1|xt−1))) which takes positive 

(negative) sign if H1 (H2) was true on the previous trial. 

 

Graphical Model Implementation 

Figure 3.4C shows a graphical representation of our join inference of DBM, SDT, 

and DDM. Unshaded nodes represent model parameters to be inferred from data. Be- 

cause only the ratio of µ and σ (relative discriminability of the two hypotheses) matters in 

determining the drift of DDM, we can fix σ at 1. We model the generic prior of the 

probability of repetition in DBM using Beta(a, b), and denote its mean by e := a/(a + b). 

To reduce computational complexity, we fix a + b at 2, assuming subjects have (equally) 

low certainty of the environment before observing any stimulus. We also use the simplest 

treatment for non-decision time by subtracting the smallest RT for each subject. In fitting 
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F igure 5: D ist ribu t ions of t he M A P est ima tes of α, e and
µ

walk wit h noisy increments that have a mean drift rate
of m per t ime step (posi t ive if H 1 is t rue, nega t ive if H 2
is t rue).

We can t hen rewri te t he tot al sensory evidence accrued
wi t h n steps as

I n = I 0 +
n∑

i = 1

δ I i (7)

where I 0 : = log p − log(1 − p) is t he st ar t ing bias toward
H 1 . A ssuming sensory signals are ob t ained at small t ime
intervals, we consider t he cont inuous-t ime limi t ing pro-
cess, I (t), which sa t isfies t he stochast ic different ial equa-
t ion

d I = mdt + sdW, I (0) = I 0 (8)

where m and s2 are defined by E qua t ion 6. E qua t ion 8
is a drift diffusion process. T he t hresholds for I n , wi t h
respect to t he t hresholds in t he original SP R T form, are
just ± Z . F igure 4B illust ra tes D D M .

C ross- T r ial P rocessi ng
Bot h D B M and F B M infer t he ident i ty of t he st imulus
(repet i t ion vs al ternat ion) for each t rial, based on t he pre-
vious observed sequence ( E quat ion 2 and E quat ion 5). A t
t rial t , t he prior probabili ty of seeing a repet i t ion p( x t =
1|x t−1 ) can be readily t ranslated to t he bias in SP R T :
I 0 = ± (log p( x t = 1|x t−1 ) − log(1 − p( x t = 1|x t−1 )))
which t akes posi t ive (negat ive) sign if H 1 ( H 2 ) was t rue
on t he previous t rial.

G r a p h ical M o del I m p le m en t a t ion
F igure 4C shows a graphical represent at ion of our join
inference of D B M , SD T , and D D M . U nshaded nodes rep-
resent model parameters to be inferred from da t a. B e-
cause only t he ra t io of µ and σ (rela t ive discriminabili ty
of t he two hypot heses) mat ters in determining t he drift
of D D M , we can fix σ at 1. We model t he generic prior
of t he probabili ty of repet i t ion in D B M using B et a(a , b),
and denote i ts mean by e : = a / (a + b). To reduce compu-
t a t ional complexi ty, we fix a + b at 2, assuming sub jects
have (equally) low cer t ainty of t he environment before
observing any st imulus. We also use t he simplest t reat-
ment for non-decision t ime by sub t ract ing t he smallest
R T for each sub ject . In fit t ing t he joint model, we first

F igure 6: L eft: dist ribu t ion of B ayes factors of D B M
against F B M , wi t h each brick showing one sub ject; R ight:
model predicted R T ’s compared to da t a.

generated t he sequent ial predict ions by D B M , given t he
t rue sequence of st imuli observed by each sub ject , using a
grid (.02 increment ) of α and e values ranging between 0
and 1. We t hen used M C M C sampling for t he graphical
model inference using a uniform prior between 0 and 10
for µ , and “discret ized uniform ” priors for α and e. We
fit t he model to each individual sub ject , and conducted
a formal model comparison between D B M and F B M by
examining t he B ayes factors (e.g. K ass & R aftery , 1995).

R esul ts
T he top row of F igure 5 shows dist ribu t ions (over all sub-
jects) of t he maximum a posterior ( M A P ) est imates of t he
D B M parameter, α, t he prior belief of t he mean probabil-
i ty of repet i t ion, e, and t he psychological discriminabili ty
of t he t arget direct ion, µ . T he dist ribu t ion of α has large
variat ion indica t ing individual differences. T he mean of
t he dist ribu t ion of e is smaller t han .5, implying a bias
toward al ternat ion in general. However, we can clearly
see t hat some sub jects hold a greater bias toward ei t her
repet i t ion or al terna t ion, as indica ted by t he more ex-
t reme est ima tes of e. T here is only one sub ject who had
poor choice accuracy (.74), cap t ured by a low µ value
in SD T represent at ion. We did not find any significant
correlat ions between any pair of parameters.

We examine D B M and F B M in t heir abili t ies of cap-
t uring empirical dat a, using t he B ayes factor as a model
comparison measure. We calcula te t he B ayes factor of
D B M against F B M , bot h combined wi t h D D M , for each
individual sub ject . T he left panel of F igure 6 shows t he
dist ribu t ion of B ayes factors over all sub jects. E vidence
for D B M against F B M is posi t ive for 35 (ou t of 42) sub-
jects, wi t h a B ayes factor greater t han 3 (according to
t he interpret a t ion scale proposed by K ass and R aftery
(1995)). We also compared t he R T condi t ioned on 5 pre-
vious t rials predicted by D B M and F B M a t t heir best
parameterizat ion. T he right panel of F igure 6 shows t ha t
F B M predicts a much smaller sequent ial effect as com-
pared to real-world behavior, whereas D B M can cap t ure
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the joint model, we first generated the sequential predictions by DBM, given the true 

sequence of stimuli observed by each subject, using a grid (.02 increment) of α and e 

values ranging between 0 and 1.  

 

          

Figure 3.4: Graphical representation of the joint inference of the cross-trial learning 
(DBM) and within-trial decision making (DDM). Discriminability of the hypothetical 
distributions in SDT (captured by µ, since we can fix at 1 without loss of generality) 
determines the rate (m) and variability (s2) of sensory evidence accumulation in DDM 
within a trial. The bias of DDM (I0) is determined by the prior probability of repetition as 
inferred by DBM from cross-trial learning, conditioned on the parameter associated with 
a stationary environment and the generic prior belief of the probability of a repetition trial 
(e). Shaded nodes represent variables that are observable to the experimenter, or can be 
calculated in a model-free fashion, such as the stimulus sequence (xt), the observed 
choices and RT’s (Dt), and the log odds of overall accuracy of decision making (Z). The 
black solid frame indicates t repeated plates of the cross-trial variables. Colored broken 
frames illustrate different components in the composite model. 

We then used MCMC sampling for the graphical model inference using a uniform 

prior between 0 and 10 for µ, and “discretized uniform” priors for α and e. We fit the 
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model to each individual subject, and conducted a formal model comparison between 

DBM and FBM by examining the Bayes factors (e.g. Kass & Raftery, 1995). 

 

3.5 Results 

      

Figure 3.5: Distributions of the MAP estimates of α, e and µ 

 

The top row of Figure 3.5 shows distributions (over all subjects) of the maximum 

a posterior (MAP) estimates of the DBM parameter, α, the prior belief of the mean 

probability of repetition, e, and the psychological discriminability of the target direction, 

µ. The distribution of α has large variation indicating individual differences. The mean of 

the distribution of e is smaller than .5, implying a bias toward alternation in general. 

However, we can clearly see that some subjects hold a greater bias toward either 

repetition or alternation, as indicated by the more extreme estimates of e. There is only 

one subject who had poor choice accuracy (.74), captured by a low µ value in SDT 

representation. We did not find any significant correlations between any pair of 

parameters. 
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F igure 5: D ist ribu t ions of t he M A P est imates of α, e and
µ

walk wit h noisy increments tha t have a mean drift rate
of m per t ime step (posi t ive if H 1 is t rue, nega t ive if H 2
is t rue).

We can t hen rewri te t he tot al sensory evidence accrued
wi t h n steps as

I n = I 0 +
n∑

i = 1

δ I i (7)

where I 0 : = log p − log(1 − p) is t he st ar t ing bias toward
H 1 . A ssuming sensory signals are ob t ained at small t ime
intervals, we consider t he cont inuous-t ime limi t ing pro-
cess, I (t), which sat isfies t he stochast ic different ial equa-
t ion

d I = mdt + sdW, I (0) = I 0 (8)

where m and s2 are defined by E qua t ion 6. E qua t ion 8
is a drift diffusion process. T he t hresholds for I n , wi t h
respect to t he t hresholds in t he original SP R T form, are
just ± Z . F igure 4B illust ra tes D D M .

C ross- T r ial P rocessi ng
Bot h D B M and F B M infer t he ident i ty of t he st imulus
(repet i t ion vs al ternat ion) for each t rial, based on t he pre-
vious observed sequence ( E qua t ion 2 and E quat ion 5). A t
t rial t , t he prior probabili ty of seeing a repet i t ion p( x t =
1|x t−1 ) can be readily t ranslated to t he bias in SP R T :
I 0 = ± (log p( x t = 1|x t−1 ) − log(1 − p( x t = 1|x t−1 )))
which t akes posi t ive (negat ive) sign if H 1 ( H 2 ) was t rue
on t he previous t rial.

G r a p h ical M o del I m p le m en t a t ion
F igure 4C shows a graphical represent a t ion of our join
inference of D B M , SD T , and D D M . U nshaded nodes rep-
resent model parameters to be inferred from da t a. B e-
cause only t he ra t io of µ and σ (relat ive discriminabili ty
of t he two hypot heses) mat ters in determining t he drift
of D D M , we can fix σ at 1. We model t he generic prior
of t he probabili ty of repet i t ion in D B M using B et a(a , b),
and denote i ts mean by e : = a / (a + b). To reduce compu-
t at ional complexi ty, we fix a + b at 2, assuming sub jects
have (equally) low cer t ainty of t he environment before
observing any st imulus. We also use t he simplest t reat-
ment for non-decision t ime by sub t ract ing t he smallest
R T for each sub ject . In fit t ing t he joint model, we first

F igure 6: L eft: dist ribu t ion of B ayes factors of D B M
against F B M , wi t h each brick showing one sub ject; R ight:
model predicted R T ’s compared to dat a.

genera ted t he sequent ial predict ions by D B M , given t he
t rue sequence of st imuli observed by each sub ject , using a
grid (.02 increment ) of α and e values ranging between 0
and 1. We t hen used M C M C sampling for t he graphical
model inference using a uniform prior between 0 and 10
for µ , and “discret ized uniform ” priors for α and e. We
fit t he model to each individual sub ject , and conducted
a formal model comparison between D B M and F B M by
examining t he B ayes factors (e.g. K ass & R aftery , 1995).

R esul ts
T he top row of F igure 5 shows dist ribu t ions (over all sub-
jects) of t he maximum a posterior ( M A P ) est imates of t he
D B M parameter, α, t he prior belief of t he mean probabil-
i ty of repet i t ion, e, and t he psychological discriminabili ty
of t he t arget direct ion, µ . T he dist ribu t ion of α has large
variat ion indicat ing individual differences. T he mean of
t he dist ribu t ion of e is smaller t han .5, implying a bias
toward al ternat ion in general. However, we can clearly
see t hat some sub jects hold a grea ter bias toward ei t her
repet i t ion or al ternat ion, as indica ted by t he more ex-
t reme est imates of e. T here is only one sub ject who had
poor choice accuracy (.74), cap t ured by a low µ value
in SD T represent a t ion. We did not find any significant
correlat ions between any pair of parameters.

We examine D B M and F B M in t heir abili t ies of cap-
t uring empirical dat a, using t he B ayes factor as a model
comparison measure. We calculate t he B ayes factor of
D B M against F B M , bot h combined wi t h D D M , for each
individual sub ject . T he left panel of F igure 6 shows t he
dist ribu t ion of B ayes factors over all sub jects. E vidence
for D B M against F B M is posi t ive for 35 (ou t of 42) sub-
jects, wi t h a B ayes factor greater t han 3 (according to
t he interpret a t ion scale proposed by K ass and R aftery
(1995)). We also compared t he R T condi t ioned on 5 pre-
vious t rials predicted by D B M and F B M at t heir best
parameterizat ion. T he right panel of F igure 6 shows t ha t
F B M predicts a much smaller sequent ial effect as com-
pared to real-world behavior, whereas D B M can cap t ure
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Figure 3.6: Left: distribution of Bayes factors of DBM against FBM, with each brick 
showing one subject; Right: model predicted RT’s compared to data. 

 

We examine DBM and FBM in their abilities of capturing empirical data, using 

the Bayes factor as a model comparison measure. We calculate the Bayes factor of DBM 

against FBM, both combined with DDM, for each individual subject. The left panel of 

Figure 3.6 shows the distribution of Bayes factors over all subjects. Evidence for DBM 

against FBM is positive for 35 (out of 42) subjects, with a Bayes factor greater than 3 

(according to the interpretation scale proposed by Kass and Raftery (1995)). We also 

compared the RT conditioned on 5 previous trials predicted by DBM and FBM at their 

best parameterization. The right panel of Figure 3.6 shows that FBM predicts a much 

smaller sequential effect as com- pared to real-world behavior, whereas DBM can capture 

a stronger sequential effect as seen in the data. 

3.6 Discussion 

Previous computational approach to sequential effects focused on Bayes-optimal 
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F igure 5: D ist ribu t ions of t he M A P est ima tes of α, e and
µ

walk wit h noisy increments that have a mean drift rate
of m per t ime step (posi t ive if H 1 is t rue, nega t ive if H 2
is t rue).

We can t hen rewri te t he tot al sensory evidence accrued
wi t h n steps as

I n = I 0 +
n∑

i = 1

δ I i (7)

where I 0 : = log p − log(1 − p) is t he st ar t ing bias toward
H 1 . A ssuming sensory signals are ob t ained at small t ime
intervals, we consider t he cont inuous-t ime limi t ing pro-
cess, I (t), which sa t isfies t he stochast ic different ial equa-
t ion

d I = mdt + sdW, I (0) = I 0 (8)

where m and s2 are defined by E quat ion 6. E quat ion 8
is a drift diffusion process. T he t hresholds for I n , wi t h
respect to t he t hresholds in t he original SP R T form, are
just ± Z . F igure 4B illust rates D D M .

C ross- T r ial P rocessi ng
Bot h D B M and F B M infer t he ident i ty of t he st imulus
(repet i t ion vs al ternat ion) for each t rial, based on t he pre-
vious observed sequence ( E qua t ion 2 and E quat ion 5). A t
t rial t , t he prior probabili ty of seeing a repet i t ion p( x t =
1|x t−1 ) can be readily t ranslated to t he bias in SP R T :
I 0 = ± (log p( x t = 1|x t−1 ) − log(1 − p( x t = 1|x t−1 )))
which t akes posi t ive (negat ive) sign if H 1 ( H 2 ) was t rue
on t he previous t rial.

G r a p h ical M o del I m p le m en t a t ion
F igure 4C shows a graphical represent a t ion of our join
inference of D B M , SD T , and D D M . U nshaded nodes rep-
resent model parameters to be inferred from da t a. B e-
cause only t he ra t io of µ and σ (rela t ive discriminabili ty
of t he two hypot heses) mat ters in determining t he drift
of D D M , we can fix σ at 1. We model t he generic prior
of t he probabili ty of repet i t ion in D B M using B et a(a , b),
and denote i ts mean by e : = a / (a + b). To reduce compu-
t at ional complexi ty, we fix a + b at 2, assuming sub jects
have (equally) low cer t ainty of t he environment before
observing any st imulus. We also use t he simplest t reat-
ment for non-decision t ime by sub t ract ing t he smallest
R T for each sub ject . In fit t ing t he joint model, we first

F igure 6: L eft: dist ribu t ion of B ayes factors of D B M
against F B M , wi t h each brick showing one sub ject; R ight:
model predicted R T ’s compared to da t a.

genera ted t he sequent ial predict ions by D B M , given t he
t rue sequence of st imuli observed by each sub ject , using a
grid (.02 increment ) of α and e values ranging between 0
and 1. We t hen used M C M C sampling for t he graphical
model inference using a uniform prior between 0 and 10
for µ , and “discret ized uniform ” priors for α and e. We
fit t he model to each individual sub ject , and conducted
a formal model comparison between D B M and F B M by
examining t he B ayes factors (e.g. K ass & R aftery , 1995).

R esul ts
T he top row of F igure 5 shows dist ribu t ions (over all sub-
jects) of t he maximum a posterior ( M A P ) est imates of t he
D B M parameter, α, t he prior belief of t he mean probabil-
i ty of repet i t ion, e, and t he psychological discriminabili ty
of t he t arget direct ion, µ . T he dist ribu t ion of α has large
variat ion indica t ing individual differences. T he mean of
t he dist ribu t ion of e is smaller t han .5, implying a bias
toward al ternat ion in general. However, we can clearly
see t ha t some sub jects hold a grea ter bias toward ei t her
repet i t ion or al terna t ion, as indica ted by t he more ex-
t reme est ima tes of e. T here is only one sub ject who had
poor choice accuracy (.74), cap t ured by a low µ value
in SD T represent a t ion. We did not find any significant
correlat ions between any pair of parameters.

We examine D B M and F B M in t heir abili t ies of cap-
t uring empirical dat a, using t he B ayes factor as a model
comparison measure. We calcula te t he B ayes factor of
D B M against F B M , bot h combined wi t h D D M , for each
individual sub ject . T he left panel of F igure 6 shows t he
dist ribu t ion of B ayes factors over all sub jects. E vidence
for D B M against F B M is posi t ive for 35 (ou t of 42) sub-
jects, wi t h a B ayes factor grea ter t han 3 (according to
t he interpret a t ion scale proposed by K ass and R aftery
(1995)). We also compared t he R T condi t ioned on 5 pre-
vious t rials predicted by D B M and F B M a t t heir best
parameteriza t ion. T he right panel of F igure 6 shows t ha t
F B M predicts a much smaller sequent ial effect as com-
pared to real-world behavior, whereas D B M can cap t ure

1848
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learning mechanisms, while giving a simplified treatment to the decision process, such as 

assuming approximate linear effect of prior on choice RT (Yu & Cohen, 2009; Jones et 

al., 2013). In this study, we assume an explicit model for within-trial processing, and 

develop a method for the joint inference of cross-trial learning and within-trial decision 

making, by augmenting the computational learning model with a principled, sequential 

hypothesis testing paradigm that is proven to be optimal in both the frequentist and the 

Bayesian sense (Wald & Wolfowitz, 1948). 

Our joint inference and model comparison results sup- port DBM as a better 

account of human sequential learning than FBM. On the other hand, our results also pro- 

vide strong evidence for individual differences in their belief of the rate of changing of 

the environment. The distribution of the inferred α values across all subjects has a large 

variation that implies potential individual differences. 

Our model builds prior knowledge in the starting point of SPRT (and its 

continuous-time limit, DDM). One of the main theoretical points of proponents of 

alternative race/accumulator type of models is that the starting point confounds prior 

knowledge with decision utilities (values). We do not manipulate utilities in the current 

study, yet future work involves an analysis of how the model would handle decision 

utilities. 

Another future direction is to consider a joint inference of computational and 

neural models, by extending a newly developed, statistical approach of combining neural 

and behavioral measures to study cognition (Turner, in press). By jointly fit the 

computational and neural models, it would become feasible to make simultaneous 

inference about the correlation between parameters at these different levels. 
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Chapter 4 

Infomax models of oculomotor control 

 

Abstract- From a Bayesian point of view, learning is simply the process of 

making inferences about the world based on incoming data. The efficiency of this 

learning is determined by the quality of the information provided by the sensors. Thus, a 

critical part of learning is the existence of a sensory-motor system designed to maximize 

the information required to achieve goals. Here we show that a wide range of primate eye 

movement phenomena can be elegantly explained from the point of view of infomax 

control. The proposed approach describes the velocity profiles of saccadic eye 

movements as well as previously existing models. In addition, the infomax approach 

explains phenomena that are beyond the scope of previous models: non-saccadic eye 

movements, and the difference in end point and velocity profiles observed in saccade- to-

target and reach-to-target tasks. The results suggest that the occulomotor control system 

evolved to be a very efficient real time learning machine. 

 

4.1 Introduction 

From a Bayesian point of view, learning is simply the process of making 

inferences about the world based on incoming data. The efficiency of this learning is 

determined   by   the   ability   of   the   sensory-motor   control   system   to   maximize   the 
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information needed to achieve goals (infomax control). 

Humans make over 150,000 saccades per day, spending about 2 hours in saccadic 

flight, during which useful vision is very poor. It is well known that the velocity profiles 

of primate saccadic eye movements are quite stereotyped and adhere to consistent 

relationships between amplitude, duration, and peak velocity. These relationships have 

been called the "main sequence" (Harris & Wolpert 2006). 

Recent models of oculomotor control have been successful at describing saccade 

velocity profiles using optimal control principles. Typically, these models focus on the 

relationship between motor commands and forces applied to the eyes, and postulate that 

the goal of the oculomotor system is to drive the eye to target locations as quickly and 

accurately as possible. Some models postulate that the eyes minimize the expected 

deviation from a target end point (Harris & Wolpert 1998; Van Beers 2008). Other 

models postulate that eye movements minimize the time required to reach the target point 

(Tanaka et al. 2006), which turns out to be mathematically equivalent. These models 

ignore the sensory properties of the eyes and assume that the goal of oculomotor control 

is to reach target points. How these targets are selected is beyond the scope of the models. 

A recent class of models has focused on explaining how the target points are selected 

using information maximization principles (Najemnik & Geisler 2005; Butko & 

Movellan 2010). Up to now these models have focused on the sensory properties of the 

eyes (e. g. , the fall-off of sensitivity as a function of eccentricity) and have ignored their 

mechanical properties. Here, we show that by jointly examining the sensory and 

mechanical properties of the eyes it is possible to explain a range of new phenomena that 

were beyond the scope of the previous models. The approach shows that a wide range of 
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primate eye movement phenomena reveal that the primate oculomotor system evolved to 

be a very efficient real-time learning machine. 

 

4.2 Infomax Model 

To model oculomotor control, we first need to have a description of the system of 

the eye. We follow Harris & Wolpert 1998 in using a state-space model with signal 

dependent noise to describe the eye. We call the state of the eye at time t as Xt, and 

describe its changes through time with 

                               

Where the matrix A represents the passive dynamics of the system, B describes 

the effects of the control inputs Ut on the state, and C describes the effect of the 

Brownian motion Bt on the state. Xt is the state matrix, which contains the eye position 

!!,!!and velocity !!,! . Notice that the noise scales with the size of the control input, 

which gives rise to a tradeoff between controlling the system and being certain of the 

system's state. The values in the A and B matrices were found from human saccades in 

Robinson 1973, and like Harris & Wolpert 1998 we use these values. These values were 

retrieved from horizontal saccades, and we model saccades similarly in only one 

dimension. 

Although previous models have assumed that the endpoint of a saccade, which we 
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will call Z, is known exactly, here we introduce target uncertainty by treating Z as a 

random variable. Especially if this target is presented in the periphery, subjects will be 

unsure of the target's location due to sensory uncertainty. Here we model the belief of the 

target's location as a Gaussian distribution. Additionally, we assume target has its own 

dynamics described by 

                                             

where ηt is the model of the target's velocity, and dVt is Brownian motion, with 

magnitude determined by n. We assume the model of the target dynamics is known. The 

model could potentially be learned or estimated from the observations of the target, but 

we do not address this issue here. Even though the dynamics are known, Z is not, so we 

need a model for how the eye learns about the location of the target. 

Similar to Erez et al. 2011, who use a POMDP framework to examine hand-eye 

coordination, we model the observations Y that the eye collects about the target. These 

observations change through time as 

                  

If the observations were noiseless and accurate, they would give the eccentricity 

of the target with respect to the location of the eye. However, the observations are 

contaminated by noise, dWt, and the signal-to-noise ratio (SNR) is defined by the visual 

acuity function g. We choose the following form of the visual acuity function: 
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where ρ and β define the shape and width of the falloff in SNR due to the target's 

eccentricity, and r defines the width of the falloff in SNR due to the relative velocity of 

the eye. For computational simplicity, we restrict ρ to be an even number so we can avoid 

using an absolute value on (!!,! − !!). For example, if we assume the velocity term is 

zero, and ρ = 4, Figure 4.1 shows a schematic of how the SNR would decrease as the 

eccentricity (on the x-axis) diverges from zero in either direction. 

 

Figure 4.1 Schematic figure of how the SNR decreases as the eccentricity (x-axis) differs 
increasingly from zero. 

 

A similar shape would hold for the velocity term of the visual acuity function as 

well. The velocity term models the cost of moving the eyes rapidly. In humans, saccadic 

suppression masks high-frequency visual information during fast eye movements. 

Similarly, in the model, a high velocity of the eye with respect to the target reduces the 

SNR of the observations. This sets up another tradeoff. If the eye is far from a stationary 
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target, the controller must decide whether it is better to make slow movements that 

generate more reliable observations, or fast, unreliable movements to decrease the 

eccentricity of the target. The optimal action will depend on the values of the parameters 

ρ, β, and r, and the relative cost of action and uncertainty. Taken together, (1), (3), (4), 

and (5) describe the system to be controlled. What remains is to find a control policy that 

can generate the actions Ut from times o to final time horizon T such that the system is 

driven to a desired state. 

 

Learning the control policy 

To find the optimal policy, we first need to define an objective function. Here we 

use a quadratic objective function, and use iterative Linear Quadratic Gaussian (iLQG) 

control (Todorov & Li, 2005), which will require dealing with both the partial 

observability and the non-linearity from Najemnik & Geisler 2005. In this paper, we will 

model eye movements in three tasks (target-directed saccades, smooth pursuit, and eye-

hand coordination). Objective function in Erez et al. 2011 will be modified based on task 

goals. 

For the moment, we will focus on target-directed saccades. In this task, we use 

data collected from horizontal saccades in humans (Collewijn et al. 1988). The 

participants were asked to saccade from a central fixation point to a flashed target at 

different amplitudes. Because the task involves positioning the eyes as close as possible 

to the target, we start with a term for minimizing the squared error between eye and 

target. Additionally, we include a term to model the cost of action. Let the cost function 

take the form 



! 71 

 

where Q is a scalar that captures the tradeoff in cost related to being far from the 

target point and making actions. 

The expression in (6) will be the cost function if the target location Z is known. 

However, because the location Z is unknown, we cannot use this cost directly. Instead, 

we need to take the expected value of (6), which leads to 

 

where E[Zl = Z and (Jz is the variance of the estimate of the target location. With 

(7), we have a quadratic cost function. Notice that even in a situation where the task is to 

move to a specified location, there is still pressure to find a solution that maximizes the 

information about the target location. 

 

              

Figure 4.2 The two segments of the finite horizon used for control. First, from  time 0 to 
time T, there is no penalty for the distance from the eye to the target. Second, during 
fixation (from time T to time T + F), the penalty on the eye position is enforced. The 
penalty on the magnitude of the action U is enforced for the entire horizon. 
 

In this target-directed task, the entire eye movement in one trial includes first a 

saccade and then a short fixation period at the target. To apply the cost function (7) to the 

entire movement, we also separate the movement control into these two segments, as 

shown in Figure 4.2. The first segment, which we will call the saccade, only contains 
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penalties on the actions. The second segment, from time T to time T + F, which we call 

the fixation, also includes the penalty on the state of the eye. With this, the complete 

minimization objective becomes 

 

Following [9], we include ! and σZ in the state X, and plan according to the belief 

state. Using an extended Kalman-Bucy filter, we can find the dynamics of ! and σZ. The 

extended Kalman-Bucy filter equations are as follows: 

 

where we've defined 

 

and g is as in (5). Using the product rule, we can find 

 

Using the above equations, we can incorporate the observation process Y with the 

estimate of the target location and give the dynamics of ! and σZ in relation to time. 

The final step is to augment the A and B matrices from (1) to include the 
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dynamics of ! and σZ in relation to changes in the other state variables. We can find the 

necessary terms in the augmented matrices by taking the partial derivatives of (12) with 

respect to !!,!!and velocity !!,! , ! and σZ. This will allow us to linearize the dynamics of 

the system around a given state or sequence of states. 

With the linearized dynamics, the belief state Z, and the quadratic cost function, 

we can now solve for a control policy using iLQG. The policy learned by iLQG is a 

closed-loop policy. This means the optimal action at a given time can depend on the state 

rather than just the time; in other words, the optimal policy can react to changes in the 

environment. This feature of the policy is interesting, and differs from previous models, 

and its implications are discussed in more detail in Section V. Once the control policy has 

been learned, it can be applied to a noise-free simulation to give the expected trajectory 

of the eyes for a set of parameters. 

 

4.3  Evaluation Methods  

To evaluate the suitability of the infomax model for describing oculomotor 

control, we looked at three different eye movement paradigms. The first is in describing 

the velocity profiles of horizontal saccades, as was described earlier. Second, we 

examined the qualitative suitability of our model for predicting smooth pursuit in 

amenable situations in simulation. We also examined a task where the eye played a 

supportive role to the hand, which had to reach a target. 

 

Saccades 
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To learn the parameters of the system that describes the eye's movement and 

observations, we perform a pattern search to minimize the root squared error between the 

velocity profiles of 5, 10, 20, 30, 40, and 50 degree saccades generated by the optimal 

controller under the fixed set of parameters and the behavioral data from [10]. We allow 

the saccade duration T to change with each amplitude, but all other parameters are held 

constant across amplitudes. 

To compare the infomax model to other models, we use a cross-validation 

paradigm, where each amplitude saccade is held out in turn. The parameters for each 

model are set from the remaining amplitudes, and an optimal movement for the held-out 

amplitude is generated with the learned parameters. Then, the error is calculated, and 

averaged across the amplitudes. 

 

Smooth pursuit 

To model eye movements other than saccade, we need only make minimal 

changes to the objective function (8). Rather than considering the task where the eyes are 

required to move to a particular location (as was the case in our model of the saccade task 

from Collewijn et al. 1988), here we only consider the goal of minimizing the variance of 

the estimate of the target location. As such, the objective comes closer to pure 

information maximization, and is defined as 

 

Although we have tried the following experiments with an objective function 



! 75 

closer to (8) with similar results, it is more compelling to show that even without a strict 

penalty on the location of the eyes, we can generate qualitatively similar behavior to 

smooth pursuit, so we will focus on this case. 

 

Hand-eye coordination 

We model eye movements in a rapid reaching task (data collected and described 

by Huang et al. 2012) in two conditions: Eye+hand, in which the reward is given based 

on the endpoint of hand movement; Eyes only, in which the reward is given based on the 

endpoint of saccadic eye movement. In the experiment, subjects were instructed to reach 

the target at a distance of 20 cm (25 degree visual angle) from the starting location either 

with hand (Eyes+hand) or eye (Eyes only) movement at a time window of 600 ms. For 

the former, subjects can freely move their eyes and thus eye movements only serve to 

guide hand movements. For the latter, subjects' reward will be based on the endpoints of 

eye movements and thus eye movements contribute directly to the task goal. We used 

Eyelinkl000 system to track eye movement and Phasespace motion capture system to 

record hand movement in the experiment. 

We model the hand as a point mass, and used the dynamics for the hand as 

described in Tanaka et al. 2006. 

For Eyes+hand condition, without constraint on eye movement to the target, the 

objective function for eye movement is 
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where Xh,t is the position of the hand at time t. For Eyes only condition, with the 

task goal of moving eyes to the target, similar as the target-directed saccade task, the 

objective function for eye movement is (8). 

 

4.4  Results 

Predictions of optimal saccades for static targets 

Figure 4.3 compares the infomax model prediction of saccade velocity profiles 

over a range of amplitudes. Optimal velocity profiles (Fig 4.3b) captured the important 

shape features shown in behavioral data (Fig 4.3a) (i. e. symmetric for low 

amplitudes and asymmetric/left-skewed peak for high amplitudes). The optimal positions 

(Fig. 4.3c) also show similar trajectories as in the observed behavior. 

 

       

Figure 4.3: Comparison of behavioral result and infomax predictions. a. Observed 
velocity profiles of horizontal saccades when the target is at 5°, 10°, 20°, 30°, 40° and 
50° ([10]). b. Optimal saccadic velocity profiles for corresponding amplitudes shown in 
a. c. Optimal eye positions (solid blue line) and observed eye positions (dashed black 
line) for the amplitudes shown in a. 
 
 

In Figure 4.4, we compare infomax with previous models (Internal Model from 

Chen-Harris et al. 2008; Minimum Variance Model from Van Beers 2008). RSE 
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comparison (Fig 4.4c) suggests there is no significant difference (summed over all 

velocity profiles between behavior and model predictions) between those 3 models 

(p>0.1). 

 

Figure 4.4: Comparison of infomax and previous models. a. Internal Model from Chen-
Harris et al. 2008. b. Minimum Variance Model from Van Beers 2008. c. Mean RSE over 
all the amplitudes, error bars show the standard error of the mean. 
 

 

Prediction of saccadic and smooth pursuit eye movement for moving targets 

Figure 4.5a and 4.5b show infomax prediction for eye movements when the target 

moves at 20 deg/s with no location difference between initial fixation and the onset of the 

moving target. Eye velocity trace in Fig 4.5a suggests the eye will increase velocity 

rapidly and continuously until reaches the target velocity (~ 40 ms after target onset), and 

then track the target using pursuit eye movements. Eye position trace in Fig 4.5b shows 

eye positions closely match target locations. 
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Figure 4.5: Representative eye movement responses to moving targets. Top row: a. Eye 
velocity trace (solid blue line) and b. corresponding eye position and target position in 
response to a zero offset target moving rightward at 20 deg/s (dashed green line). Bottom 
row: c. Eye velocity trace (solid blue line) and corresponding eye position and target 
position in response to a moving target initially located at 5 deg in the right visual field 
and then moves rightward at 10 deg/s (dashed green line). 

 

Figure 4.5c and 4.5d shows model prediction of eye movement when the moving 

target is initially located 5 deg to the right of fixation, and then moves to the right at 10 

deg/s. Eye velocity trace in Fig 4.5c shows the eye will first make a quick catch- up 

saccade-like movement to the target (~150 ms after target onset) and then track the 

moving target at a matching speed. 

The eye position trace in Fig 4.5d suggests the eye will reach the target at the end 

of the first quick movement and then track the target position. 

 

Prediction of eye movement in Hand-eye coordination  
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Figure 4.6a shows model predictions of eye movement in hand-eye combination 

(solid blue) and eyes only (solid red) conditions. Comparing with behavioral data (dashed 

blue, dashed red lines) observed in the experiment (Figure 4.6b), eye movement 

endpoints in the task show that subjects undershoot target with saccadic eye movements 

when the task goal is to reach the target with the hand (top panel in Figure 4.6b). 

However, the undershooting disappeared when the task goal was to fixate the target with 

eye movements (bottom panel in Figure 4.6b). Infomax predictions (Figure 4.6a) of 

optimal eye positions for the hand-eye condition (solid blue) and eye only (solid red) are 

consistent with this observation from the behavioral data (dashed blue and red). 

 

      

 

Figure 4.6: Eye movements in the reaching task. A. Comparison between informax 
prediction of optimal eye positions (solid lines) and behavioral data (dashed lines). b. Eye 
movement endpoints in Eye+hand condition (top panel) and in Eyes only condition 
(bottom panel). Green circle is the target; red dots are hand endpoints in Eye+hand 
condition; black dots are eye endpoints. 
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4.5 Discussion 

We showed that saccadic eye movements emerge as the solution to an information 

maximization problem with sensors that have a limited field of view and limited temporal 

resolution. The information maximization principle explains the velocity profiles 

observed in saccadic eye movements as well as previous principles, including minimum 

end-point variance (Harris & Wolpert 1998) and minimum time (Tanaka et al. 2006). 

More importantly, information maximization explains eye movement phenomena that 

were beyond the scope of previous models. We showed that, for moving targets, infomax 

generates both saccades and smooth pursuit eye movements. When target onset location 

is close to the initial eye fixation (foveal), infomax predicts smooth pursuit eye 

movement which closely tracks target positions. When the target appears in a peripheral 

location, infomax predicts a catch-up saccade followed up by smooth pursuit eye 

movement. Qualitatively, this behavior was observed in empirical studies (Robinson et al. 

1986; Erkelens 2006). While previous models (Grossberg et al. 2012) explained smooth 

pursuit from the point of view of minimizing tracking errors, here we explain both 

saccadic movements and smooth pursuit from the point of view of maximizing 

information about the location of a target. 

We designed an experiment in which target tracking and information 

maximization make different predictions. Subjects were instructed to reach a target with 

their hands (Hand condition) or with their eyes (Eye condition). Subjects were rewarded 

based on the endpoints of hand movements or eye movements, respectively. For the Eye 

condition, subjects made eye movements as predicted both by the infomax approach and 
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by the target tracking approach. However, for the Hand condition, eye movements 

undershot the target by -2.5 degrees. This result was predicted by the information 

maximization approach but contradicted the target tracking models. According to the 

infomax model, the reason why people undershoot in the Hand condition but not in the 

Eye condition is that moving the eyes close to the target does not improve the accuracy of 

the hand motion. 

It should be noted that the infomax model generates closed- loop control policy 

for the eyes. At first glance, this might seem an undesirable feature since saccades are 

widely believed to be open-loop, ballistic movements. However, due to the limited 

temporal bandwidth of our eye model, when the eyes move quickly they provide very 

little visual information, and thus virtually operate in open loop mode. The decision to 

move slowly in closed loop mode, or quickly in open loop mode, can be seen as the result 

of optimizing a common information maximization principle. 

 

4.6 Conclusions 

From a Bayesian point of view, learning is equivalent to making inferences based 

on the information gathered by the sensors. Efficient learners are thus those that control 

their sensors so as to maximize the expected value of information. Here, we showed that 

a wide range of properties of the oculomotor system, including the velocity profiles of 

saccades, the transition between smooth pursuit and saccadic movements, and eye hand 

coordination in reaching tasks can be explained from the point of view of information 

maximization. In summary we showed that, by considering that the occulomotor system 
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has evolved to be a very efficient real-time learning machine, one can make sense of a 

wide range of phenomena that were previously addressed using different principles or 

that were beyond the scope of previous models. 

It should be noted that our work is agnostic with respect to brain implementation 

issues. For example, while we show that saccadic movements and smooth pursuit 

movements serve a common goal (information maximization) it is perfectly plausible for 

the two forms of movements be controlled by different brain systems. It is also possible 

that, as recently suggested (Erkelens 2006; de Xivry & Lefevre 2007) saccades and 

pursuit are two outcomes of a single sensorimotor system. Regardless, our work suggests 

that the brain systems involved in oculomotor control have evolved to serve a common 

computational principle: efficient, real-time learning. 
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Chapter 5  
 
The Influence of Depression on Cognitive 

Control: Disambiguating Approach and 

Avoidance Tendencies 

 
 

Abstract - It has been difficult to disambiguate the degree to which approach and 

avoidance motivation dysfunctions contribute to performance in goal-directed tasks in 

depression. Here, we propose to use a novel experimental paradigm, i.e. a computer 

simulated driving-task, to study the impact of depressed mood on cognitive control by 

measuring approach and avoidance actions in continuous time. In this task, 39 subjects 

with minimal to severe depression symptoms used a joystick to move a virtual car as 

quickly as possible to a target point without crossing a stop-sign or crashing into a wall. 

We recorded their continuous actions on a joystick and found that depressed mood 1) 

affects stopping position; and 2) biases the magnitude of late deceleration (avoidance) but 

not early acceleration (approach). Taken together, these results suggest that depressed 

mood promotes stronger active avoidance near stopping target, while minimally 

impacting approach motivation.  
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5.1 Introduction 

Depression has been linked to both motivational deficits and impaired motor 

control, which is evidenced in different complex goal-directed tasks (Caligiuri & 

Ellwanger 2000) and increased odds of car accidents (Selzer, Rogers & Kern, 1968; 

Bulmash et al. 2006). Despite this compelling evidence of poor cognitive control in 

depressed individuals, the effect of depressed mood on the implementation of driving 

actions remains largely unknown. Moreover, due to the complex nature of depressive 

symptoms and related neural systems (Drevets, 2001; Liotti & Mayberg, 2001), evidence 

of cognitive control deficits in depression based on standard cued response tasks is at best 

mixed suggesting a need for more sensitive behavioral paradigms to assess cognitive 

control in depression. 

 

Motivational Deficits in Approach-Avoidance Task  

Anhedonia (the decreased capability to experience pleasure and seek reward) is an 

essential symptom of Major Depressive Disorder (MDD; DSM-V; American Psychiatric 

Association, 2013) and is a core feature of reward-processing deficits. Depressed 

individuals report lower positive affect in response to positive stimuli (Dunn, Dalgleish, 

Lawrence, Cusack, & Ogilvie, 2004) and are slower to approach positive social cues 

(Vrijsen, Oostrom, Speckens, Becker & Rinck, 2013). In addition, they are less 

discriminative of and sensitive to monetary rewards to perform more accurately on 

cognitive tasks (Henriques & Davidson, 2000). These reward-seeking deficits appear in 

the context of decreased recruitment of the nucleus accumbens and prefrontal cortex 
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(PFC) upon exposure to rewards, which is believed to reflect impairment in attentional 

switching, regulatory processes (Heller et al., 2009; Epstein et al 2006) and in flexibility 

to alter reward-seeking behavior (Disner, Beevers, Haigh & Beck, 2011). 

While motivational research often focuses on approach deficits in depression, a 

disturbance in avoidance processes may be equally important and relevant to motor 

control performance among depressed individuals (Trew, 2011). For example, depressive 

individuals learn faster to avoid risky gambles (Smoski et al., 2008), and demonstrate 

faster motor response to withdraw from negative stimuli such as negative faces (Seidel et 

al., 2010). Depression is associated with a greater tendency to move away from undesired 

states (avoidance goals; Dickson & MacLeod, 2004) and more reported avoidant schemas 

and emotions (Aldao, Nolen-Hoeksema & Schweizer, 2010). Overall, these findings 

suggest depressed individuals may have attenuated motivation to approach reward as well 

as greater sensitivity to and higher motivation to avoid punishment. However, few studies 

(Layne, Merry, Christian & Ginn, 1982) have attempted to quantify these motivational 

biases in depressed individuals, particularly in terms of their influence on motor-control 

in complex goal-directed tasks.  

 

The Present Study 

To gain a more precise understanding of how motivational dysfunction in 

depression may impact motor control, we designed an experiment allowing us to 

disambiguate approach and avoidance motivational tendencies underlying motor-control 

behavior in continuous time. Specifically, we designed a computer simulated driving task 

including both approach (e.g., speeding to approach the target) and avoidance (e.g., 
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deceleration to avoid passing target) motivational components. The two primary goals of 

this study were: 1) to examine and quantify how these distinct motivational biases may 

impact driving behavior in individuals with depressed mood; 2) to develop a task that will 

allow modeling the relative contribution of approach and avoidance motivations in 

depression and other clinical disorders. We hypothesized that, in this task, depressed 

mood would alter both subjects’ targeted stopping position and motor action. That is, 

based on evidence of increased sensitivity to punishment and avoidance tendency in 

depression, we expected that individuals with depressed mood would stop further away 

from instructed stopping position to avoid inaccuracy (i.e., passing target/crash).  

 

5.2 Method 

Participants  

Thirty-nine college students (age range: 18-22 years old, 23 females /16 males) 

participated this study (approved by the Human Research Protections Program at San 

Diego State University). They were recruited from San Diego State University through an 

online system as part of Psychology 101 class during the spring of 2013. They were 

contacted and scheduled for an experiment session during winter quarter 2013. All 

participants signed informed consent, and were compensated $25 and 2.5 course credits 

for completing the study. 

Before subjects performed the experimental task, they were administered the 

Beck Depression Inventory (BDI-II; Beck AT et al. 1996) to use as a current index of 

depression severity. Participants’ BDI scores ranged from 0 to 40 (mean = 13.5, std = 
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10.77; median = 10). For the following analyses, we grouped subjects by the severity of 

their depression symptoms based on their BDI score (cutoff based on Beck et al., 1996). 

The final groups included 13 non-depressed subjects with BDI<=8 (Non Dep), 14 mildly 

depressed subjects with 9<=BDI<=15 (Mild Dep), and 12 moderately to severely 

depressed subjects with BDI>=15 (Mod-Sev Dep).  

 

Driving Task  

The experiment was comprised of two conditions (Task1: stop sign; Task2: wall) 

and programmed using Matlab on a 15.4-inch Mac-book. Participants completed two 

blocks of 15 trials for each condition in the following order: Task1, Task2, Task1, Task 

2. They were instructed to drive a virtual car on a computer screen from an initial 

position to either a stop sign or a wall (equal distance: 10.62 cm/465 pixels) by pushing 

or pulling a joystick (Logitech Extreme 3D Pro) to control the acceleration and the 

deceleration of the car (Figure 5.1a). They were instructed to drive as quickly as possible 

and stop as close to the stop-sign or the wall as possible without crossing the stop-sign or 

crashing into the wall, respectively.  Each trial had a fixed time-window of 6 seconds.  

The car dynamics adhered to the standard second order Newtonian differential 

equations of motions with viscous friction. The force applied to the car at every point in 

time was proportional to the deviation of the Joystick from the resting point. If forward 

the force pushed the car forwards. If backwards it push the car backwards. (Please see 

appendix for detail). 
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Figure 5.1: a. Experiment paradigm. In Task1 (stop-sign), subjects were instructed to 
drive the car to the stop-sign as quickly as possible and stop as close as possible to the 
sign without crossing the white line. In Task 2 (wall), subjects received the same 
instructions as in task 1, with the addition that they could not crash into the wall (instead 
of not crossing the stop-sign). b. The influence of depressed mood on stopping position in 
stop-sign and wall condition of stopping position: Group comparison; c. The influence of 
depressed mood on stopping position in stop-sign and wall condition of stopping 
position: stopping distance as a function of BDI. 
 

Data Analytic Approach 

The two main dependent variables were participants’ stopping position, i.e. 

distance from stop line/wall in pixels and participants’ continuous 

acceleration/deceleration in joystick control (measured as the joystick position). The first 

variable corresponds to car position when T= 6s, i.e., trial time window, and the second 

one to recorded continuous joystick action for acceleration/deceleration. Based on the 

observed trajectories, further analyses were performed on individuals’ maximum 

acceleration during the initial trial phase (i.e., max acceleration during the first 200 

pixels) and their individual maximum deceleration in the late trial/close to target phase 

(i.e., max deceleration during the last 200 pixels].  

To analyze these data, a linear mixed model (LMM) was fitted for each main 
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dependent variable, with subject model as a random effect and depression severity group 

as well as condition as fixed effects. To ensure participants’ performance was stable and 

avoid confounding factors such as subjects’ learning curve in the task, only data collected 

in the second block for each condition were included in the analyses. We first assessed 

for any group differences in stopping distance and stopping velocity. If differences were 

observed, we followed up by investigating when this difference happened within a trial 

epoch, and what actions caused this difference. For significance tests of main effects and 

interactions, we report change in log likelihood ratio (approximated by a chi-square 

distribution). We also provide the model coefficients of interest with corresponding p 

values.  

 

5.3 Results 

Depressed mood associated with more remote stopping position  

We first examined the effect of depressed mood group (i.e., Non Dep, Mild Dep 

and Mod-Sev Dep) and experimental condition (i.e., Stop sign, Wall) on stopping 

distance. There was a significant group main effect (chi-square = 12.60, df = 2, p = .002) 

and significant interaction between group and condition (chi-square = 12.98, df = 4, p = 

.011), while no main effect of condition was observed (chi-square = 2.86, df = 1, p>.05).  

Specifically, in the stop-sign condition, relative to Non Dep individuals, the Mod-

Sev Dep group stopped significantly further away from the target (B =  -11.08, p =.008; 

Non Dep mean = 131.62, Mod-Sev Dep mean = 120.54) while the Mild Dep and the Non 

Dep groups did not differ in stopping distance (p>.05;see Figure 1b). In the wall 
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condition, relative to Non Dep individuals, the Mod-Sev Dep group had a significantly 

further stopping distance (B = -9.86, p = .02; Non Dep mean = 127.13, Mod-Sev Dep 

mean = 117.27). The Mild Dep and the Non Dep groups did not differ in their stopping 

distance (p>.05) in the wall condition. 

Individual’s average stopping position was negatively correlated with BDI scores 

in both stop-sign and wall conditions indicating that the degree of depression was 

associated with differences in behavior on this task, we found that (Figure 1c).  In other 

words, those individuals with the highest BDI scores stopped furthest away from the 

target position. Similar as the result from mixed linear model, this negative correlation 

was slightly higher in stop-sign condition (regression coefficient =-.4593, p = .01) than in 

the wall condition (regression coefficient = -.3376, p = .04), but this difference is not 

significant (chi-square = 3.62, df = 2, p = .16). 

 

Depressed mood affects the magnitude of deceleration (avoidance), but not 

acceleration (approach) 

Next, we examined continuous car position between three groups within the 6 

seconds trial time window for the stop-sign and wall conditions separately. Figure 2 

indicates that car position between Non Dep and Mod-Sev Dep groups started to differ 

when it was close the target (2a. stop-sign and 2b.wall), in particular during the last 2 

seconds of a trial (Figure 2a&2b Zoom in). It also shows there were no significant 

position differences between Non Dep and Mild Dep groups throughout the 6-sec trial 

window, which is consistent with the stopping position results above. To further 

investigate the cause of this position difference between the Non Dep and Mod-Sev Dep 
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groups, we looked at joystick actions between those the two groups. Action (accelerating 

if > 0, and decelerating if <0) is plotted as a function of distance to target in Figure 

2c&2d.  

 

 

 
Figure 5.2 a & b: Car position as a function of time within a trial (6-seconds): a (stop-
sign), b (wall); c & d: Action as a function of distance to target: c (stop-sign), d (wall). 

 

Maximum Acceleration: there was no significant group main effect (chi-square = 

0.10, df = 1, p = .75), condition main effect (chi-square = .58, df = 1, p = .45), or 

interaction effect (chi-square = .89, df = 2, p = .64) for maximum acceleration (i.e., 
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individuals’ peak acceleration within first 3-seconds trial window) between Non Dep and 

Mod-Sev Dep groups in the stop-sign and the wall condition.  

Maximum Deceleration: We found a significant group effect (chi-square = 17.75, 

df = 1, p <.0000) and group by condition interaction (chi-square = 22.58, df = 2, p<.0000) 

for maximum deceleration (i.e., individuals’ peak deceleration within last 2-sec trial 

window). No significant condition main effect was observed (chi-square = .001, df = 1, p 

= .97). More specifically, the Mod-Sev Dep group had overall greater maximum 

deceleration (i.e., larger dip) relative to the Non Dep group (B=-.97,p<.001). In addition, 

this group difference was statistically significant in the stop-sign condition (B=-1.47; 

Mod-Sev Dep Mean= -5.92 pix/s2; Non Dep Mean=-4.09 pix/s2) but not in the wall 

condition (p>.05). 

 

5.4 Discussion 

In this study, we aimed to disambiguate approach from avoidance motivational 

dysfunction in depression and its effects on motor control. We designed a computer-

simulated driving-task to examine how the severity of depression (measured with BDI 

scores) would impact the motivational underpinnings of individuals’ driving behavior 

through their accelerating and decelerating control. As we outline below, our results are 

consistent with the hypothesis that individuals with depressed mood engage in stronger 

avoidance actions while minimally impacting approach-based actions when getting closer 

to a target. As a consequence, it may negatively deceleration and stopping distance. We 

summarize our results and potential implications below.  
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Relative to healthy controls, moderately to severely depressed individuals stopped 

further away from the stop sign or wall, suggesting they may have a different ‘target’ 

stopping position. In addition, more severely depressed individuals demonstrated a 

significantly stronger deceleration when approaching target. These results suggest that 

greater depression severity may promote stronger proactive avoidance of the target 

(pulling away) in terms of planning stopping position and adjusting movement closer to 

end goal. This is consistent with empirical evidence of both heightened sensitivity to and 

stronger avoidance of negative stimuli in depressed individuals, both behaviorally 

(Kellough, Beevers, Ellis & Wells, 2008; Seidel et al 2010) and neurally (Holmes & 

Pizzagalli 2008).  

Alternatively, given evidence of decreased reward-seeking and approach 

motivation in depression (Beck, 2011), it could be argued that more severely depressed 

individuals have less motivation to perform the task due to anhedonia (Der-Avakian & 

Markou, 2012). That is they may be less motivated to be precise about their stopping 

position and as a result stop further away. However, our results show that the high 

depression group did not differ from healthy controls in their positive control action 

(approach) values, but rather applied higher deceleration when the car was getting closer 

to the stop sign. Overall, these results are broadly consistent with evidence of impaired 

pro-active cognitive control in clinically depressed individuals, both behaviorally (i.e., 

longer response latency to interference) and neurally (i.e, longer event-related potentials 

in dorsal ACC; Vanderhasselt et al., 2014). Thus, depressed individuals may be less 

efficient in incorporating environmental cues that indicate increased need for cognitive 

control (e.g., seeing a stop sign in the distance).  
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Another plausible explanation is that more depressed individuals are lacking fine 

and/or more precise motor control caused by impaired sensorimotor skills, which would 

lead to more inaccuracy and variability in stopping positions. That is, while there is 

somewhat mixed evidence of psychomotor retardation in depression (Sabbe, Hulstijn, 

Hoof, Tuynman-Qua & Zitman, 1999), higher depression severity could result in slower 

sensory processing of the target and slower motor initiation. In future work, we plan to 

incorporate individual differences in sensorimotor skills in the modeling of how goal 

setting and reward-processing influence motor control. 

 

5.5 Summary and Future Directions 

In conclusion, these results provide empirical evidence of altered motivational 

influences in motor control performance among individuals with depressed mood. We 

found that those individuals with the most severe depression stopped furthest away from 

the target and showed the greatest deceleration when approaching the instructed stopping 

target. Together, these results show that the influence of depressed mood in modulating 

approach and avoidance motivations and cognitive control may be more fluid and 

dynamic than expected, with the potential to influence different stages (action planning 

and execution) of a motor-control task. They further highlight the usefulness of a 

continuous time analysis as done in the present study. Finally, our task provides a useful 

platform to study the precise cognitive processes underlying emotion/cognitive control 

interaction in depression. Specifically, we plan to use computational models (e.g. control 

theory) to examine if/how the severity of sensorimotor impairment interacts with 
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motivational deficits in more severely depressed individuals. This research will in turn 

help to more precisely quantify cognitive control deficits in depression and their 

associated neural circuitry. 
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5.7 Appendix 

Car dynamics in the experiment: 

In our experiment (both stop-sign and wall conditions), the car has a linear 

dynamic system, which is modeled by the following equation: 

 

dXt = AXtdt + BUtdt, 

 

in which Xt = state [car position, car velocity], Ut = control action (acceleration or 

deceleration, based on joystick position), A = [0 1; 0 -.35] is the dynamic matrix,  and B 

= [0; 0.5] the input matrix. Those valued are chosen such that the car’s velocity is the rate 

of change of the position: 

dXt = Vtdt , 

and velocity is controlled by joystick action with the influence of viscosity dVt = -

.35Vtdt+.5Utdt, in which  Ut is measured through joystick position (ranges from -10 to 
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10, with 0 being the resting position/no action, positive number indicating accelerating 

action and negative number indicating decelerating action).  

 

In the reported analysis, we used Xt at t = T (T = 6s, trial time window) as the 

stopping position, maximum Ut during the first 200 pixels as participant’s max 

accelerating action in the during the initial trial phase, and minimal Ut during the last 200 

pixels as participant’s max decelerating action in the later trial phase.  
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Chapter 6 

Inverse Optimal model of Depressive 

Behavior in a Simulated Driving Task 

 

Abstract-Depressed individuals have been shown to have impaired sensorimotor 

system, skewed goal setting towards reward or punishment, and lack of motivation. 

However, it has been difficult to distinguish the their effects in goal directed motor tasks, 

as the observed behavior is confounded from their mixed influences. Here, we propose to 

use inverse optimal control approach and a computer-simulated driving task to analyze 

and factorize performance deficits into three components: sensorimotor speed, goal 

setting and motivation. 66 subjects with minimal to severe depression symptoms 

(0<=BDI<=39) participated in our experiment. In Task 1, subjects were instructed to 

push a joystick as quickly as possible once they observe motion onset of a virtual car. In 

Task 2, subjects were instructed to use the joystick to move a virtual car as quickly as 

possible and stop it as close as possible to a stop sign. We estimated sensorimotor speed 

from Task 1 based on recorded continuous joystick position and subject’s reaction time to 

car motion-set and movement time to push the joystick to instructed position. Taking into 

account of the sensorimotor speed from Task 1, we recovered the underlying reward 

function that best explain subject’s behavior in Task 2, which includes the intended stop 

distance to the stop sign (goal state), and the amount of effort one is willing to spend to  
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achieve the goal state (motivation). Results suggest, that relative to healthy controls, 

depressed individuals: 1) have slower sensorimotor speed; 2) have different goal states; 

3) only severely depressed individuals (BDI>=29) have significant lower motivation. 

These results indicate that inverse optimal control framework can quantify in individual 

with depression the combination of sensorimotor deficits and impaired reward-evaluation 

that includes different goal setting and motivational factors. 

 

6. 1 Introduction 

Sensorimotor speed, goal setting, and the amount of effort one is willing to spend 

to achieve the goal (i.e. motivation) are three factors that influence performances in goal-

directed motor tasks. It is important to distinguish their effects to understand the behavior 

differences observed in depressive individuals. At present, however, most of the 

experimental paradigms are restricted to observing the behavior of discrete actions and 

using reaction time as the measure for motor performance. Indeed, it is difficult to 

distinguish those factors from discrete actions or reaction time, because those factors 

jointly influence both the cognitive control (movement planning) and movement 

execution (Sobin & Sackeim 1997). For example, in a goal-directed motor task, a slower 

action may be caused by slower movement execution due to impaired sensorimotor 

system; or by different goals, for example, minimizing the control noise with slower 

velocity; or lack of motivation, for example, having less subject value for the external 

reward. Thus it is difficult to investigate their individual influence from the confounded 

result.  
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It has been shown that depressed individuals have different performance from 

healthy controls in following aspects: increased reaction time (Sobin & Sackeim 1997) 

and lower velocity (Caligiuri & Ellwanger 2000), which indicates impaired sensorimotor 

system; more sensitive to punishment than to reward (Trew 2011), which indicates 

skewed goal setting; and less willing to spend effort to gain reward (Treadway et al. 

2009; Der-Avakian et al. 2012), which indicates the lack of motivation.  However, it is 

important to realize that those results are from mixed effects caused by joint influences of 

sensorimotor speed, goal setting, and motivational factors. To be able to interpret the 

different behavior in depressed individuals, first we need to have a better understanding 

of the underlying causes of those differences. Thus the goal of this paper is to provide an 

experimental paradigm to assess sensorimotor speed, goal setting and motivational 

factors, and apply a computational framework that can take into consideration of all 

factors, to quantity their individual and joint effects to explain observed behavior.  

 

Motor Control in a sensorimotor feedback loop 

Optimal control theory has been shown to be an effective computational 

framework to explain human movements in continuous time (Todorov & Jordan 2002). 

Motor control in a goal-directed task is a dynamic process of sensorimotor integration, in 

which the brain takes sensory information and uses it to make continuous motor actions. 

Optimal control theory frames this dynamic process in a feedback control loop, in which 

the optimal controller estimates the current state at time t, produces a motor command 

based on the goal and keeps an efference copy (the expected outcome of the motor 

command) at the state estimator, and sends the motor command to muscles to generate 
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the movement. The state estimator will update the efference copy with the delayed 

sensory observation to predict state at next time point t+1 and the optimal controller will 

generate new motor commands until the goal is reached.  

In optimal control theory, actions are chosen to optimize a performance criterion. 

The performance criterion is defined as a reward-function that includes task-related 

performance measure and action cost. For example, in a task that instructs subjects to 

drive to a location A as quickly as possible, the performance measure can be the stopping 

distance to A, and the action cost can be the accumulated effort of accelerating and 

decelerating controls. Different individuals may have different target stopping distance to 

A, and different weights to assess the ratio of the closeness to the target location over the 

action cost (the amount of effort one is willing to spend to achieve the intended stopping 

distance), thereby forming different reward-functions. 

With different reward-functions in mind, there will be different action-planning 

strategies, which are defined as control-policies. A control-policy comprises a series of 

dynamic decisions modulating actions at given states in continuous time (Shadmehr 

2008). In a forward model, with experimentally defined reward function (e.g., points), we 

can derive the optimal control-policy to optimize the reward function. In an inverse 

model (Ng & Russell, 2000), with observed continuous actions, we can infer the control- 

policy, and recover the reward-function used in developing this control-policy. Thus the 

objective of inverse optimal control is to infer individuals’ reward-function based on 

observed behaviors.  

Inverse optimal control approach will provide a quantitative comparison of how 

different reward evaluation between depressed and healthy controls lead to observed 
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behavioral differences. Within this framework, we can firstly measure sensorimotor 

speed that has minimal influences from reward evaluation, and take into this baseline 

sensorimotor speed in the dynamic of the control-process, and use observed behavior to 

infer the reward function in a goal-directed motor task.  

In summary, we will apply inverse reinforcement learning approach to investigate 

how sensorimotor impairments and reward-evaluation in depressed individuals influence 

their motor control in a simulated driving task. 

 

6. 2 Methods 

Participants 

66 college students (20 male and 46 female subjects, age 18-27, mean age 20.6, 

std =2.04) in UCSD participated this study in Fall quarter 2013 and Winter & Spring 

quarter 2014. They signed up through UCSD SONA system, and then completed phone-

screening and on-line BDI (Beck Depression Inventory, BDI-II, Beck et al. 1996) 

measure. Qualified subjects completed the experiment (with a second BDI measured 

prior to the task) in the lab, and were compensated by 2 course credits. Their onsite BDI 

range from 0 to 39 with mean BDI=12.59 (std=10.55), median BDI=10. Subjects were 

divided into four groups based on their onsite BDI (Beck AT et al. 1996) as follows: 

Non-dep (0≤BDI≤5, n = 17), Min-mild dep (6≤BDI≤19, n = 33), Mod-dep (20≤BDI≤28, 

n = 9), and Sev-dep (29≤BDI≤63, n = 7).  
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Experiment 

Subjects were instructed to complete two tasks in this experiment. Both tasks 

were computer experiments (on a 15 inch MacBook Pro) programmed in Matlab. We 

recorded their continuous actions using a gaming joystick (Thrust- master HOTAS 

Warthog Flight Stick). The goal of Task 1 (Move-and-Go) is to measure individual’s 

perceptual and motor speed, and the goal of Task 2 (Speed-and-Stop) is to apply inverse 

optimal control model to recover reward-function in a goal-directed task. 

 

Task 1: Move-and-Go  

 

                                          Figure 6.1: Task 1 

Subjects performed Task 1 twice (120 trials, before and after Task 2). In each trial 

(Figure 6.1), a car would appear on the bottom of the screen, and subjects were instructed 

to push the joystick from resting position forward to the maximum position as quickly as 

possible once they observe the car move. Each trial started with a 3-second countdown 

Subjects stats: There were15 male, and 43 female subjects. BDI range from 0 to 36 with 
mean BDI=10.25 (std=8.38), median BDI=8 (19 subjects BDI<=5, 15 subjects 
6<=BDI<=10, 15 subjects 11<=BDI<20, 9 subjects BDI>=20). 

Experiment:

Subjects were instructed to complete 2 tasks in this experiment. Both tasks are 
computer experiments (on a 15 inch MacBook Pro) programmed in Matlab. We 
recorded subjects’ continuous actions using a gaming joystick (Thrustmaster HOTAS 
Warthog Flight Stick), and recorded their facial expression using Logitech HD Webcam 
C615. 

The goal of Task 1 (Move-and-Go) is to measure individual’s perceptual and motor 
delay, and the goal of Task 2 (Speed-and-Stop) is to apply inverse reinforcement 
learning model to recover reward-function in their control-policy (with parameters 
estimated in task1). Computationally, we will have the estimate of individual’s perceptual 
delay, motor delay, target position, position accuracy/action cost ratio (in reward 
function), and motor-noise. 

Task1: Move-and-Go (perceptual-motor delay estimation task)

There were 60 trials in task 1 (about 8-10 minutes to complete). Each subject was 
required to perform task 1 twice (before and after the driving task, thus 120 trials in 
total).  In each trial, a car would appear on the bottom of the screen, and subjects were 
instructed to push the joystick (from resting position) forward to the maximum position 
as quickly as possible once they observe the car starts moving. Each trial starts with 3 
seconds count down and a random waiting interval (1-3 seconds), then the car will start 
to move at a randomly selected speed (.01-.3 cm/second). Trials end once subject 
pushed joystick at its maximum forward position and hold it there for .5 second. 
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and a random waiting interval (1-3 seconds), then the car would start to move at a 

randomly selected speed (.01-.3 cm/second). Trials ended once subjects pushed the 

joystick at its maximum forward position.  

 

Task 2: Speed-and-Stop  

 

                                      Figure 6.2: Task 2 

 

There were 3 blocks, with 20 trials/block in Task 2. In each trial (Figure 6.2), 

subjects were instructed to drive a virtual car as quickly as possible and stop at a stop 

sign (distance: 10.62 cm) without crossing the stop-line, with a fixed time window of 10-

second. Each trial started with a 3-second countdown and ended when time ran out, with 

no performance feedback (e.g., points) in the end. The car has a linear dynamic system 

(see Appendix), in which the car position is controlled by continuous joystick position. 

We measure subjects’ perceptual delay from their reaction time to motion onset of the 
car, and measure their motor delay from the recorded continuous joystick position and 
time used to push the joystick from resting position to maximum forward position. 
Perceptual delay provides a quantitative measure of the discrepancy between the actual 
car position and the observed car position (due to sensory delay). Motor delay provides 
a quantitative measure of the lag between the desired movement and the actual 
movement (without sensory processing involved). 

Task 2: Speed and Stop (driving task)

There were 3 blocks, with 20 trials/block in task 2 (about 25 minutes to complete). In 
each trial, subjects were instructed to drive a virtual car using a joystick, to a stop-sign 
(distance: 10.6202 cm/ 465 pixels) as quickly and stop as closely to the stop-sign as 
possible within a 10s time-window. Each trial starts with 3 seconds count-down and 
ends when time runs out, with no performance feedback in the end. The car has a linear 
dynamic system, in which car position is controlled by velocity changes through joystick 
action. We recorded subjects’ continuous control on the joystick, and their facial 
expression during the task.  

Behaviorally, we want to examine if depressed individuals have different target position 
(where to stop), smoothness in motor control, and movement noise. Computationally, 
we apply inverse optimal control model to recover subjects’ reward-function, target 
position (where to stop), and motor noise (deviation from ‘optimal trajectory’ ). 

Results:

1) Model-free analysis/ behavioral result
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6.3 Models 

We propose to use inverse optimal control model to distinguish sensorimotor 

speed, goal setting and motivational effects in observed behavior (Fig 6.3). To achieve 

that, we first assessed individual’s sensorimotor system by estimating their sensory speed 

(delay in perceiving sensory observation at time t) and motor speed (delay in executing 

motor command at time t) (Task 1: move-and-go). Then we estimated their goal state 

(intended stopping distance) and motivation (the amount effort one is willing to spend to 

achieve the goal state) in the reward function in Task 2 (speed-and-stop), with the 

sensory and motor delay parameters from Task 1.  

              

 

Figure 6.3: Computational Framework of the Inverse Optimal Model 
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We often take for granted the ease with
which we move our bodies. Yet, how our
motor system performs even a simple task
such as picking up a coffee mug remains
a challenging problem scientifically. We
move with considerable trial-to-trial vari-
ability, yet we successfully perform such
tasks with speed and grace. In contrast,
robots possess greater precision and con-
sistency in their motions, but are nothing
short of clumsy and awkward when pick-
ing up objects. Why are body movements
that are so variable consistently success-
ful? In this issue, Todorov and Jordan1

provide a new theory for motor coordi-
nation based on optimal feedback control
that may be a major step forward in devel-
oping a single, cohesive framework for
interpreting motor function.

One important feature captured by
this theory is that motor commands are
corrupted by noise, and that this signal-
dependent noise increases with signal
size2,3. Harris and Wolpert4 recently
demonstrated the importance of consid-
ering noise in control of eye and limb
movements. They were able to predict the
bell-shaped velocity profiles and relative-
ly straight hand trajectories that are
observed experimentally5,6 by using a
model that minimizes noise.

A second key feature in the Todorov and
Jordan1 theory is the idea that the motor
system can be modeled based on the prin-
ciples of optimal feedback control (Fig. 1).
The most important feature of this
approach is that optimization techniques
are used to find the feedback control law
that minimizes errors in task performance.
This control law is specific for each motor
task, so that the CNS must select the appro-
priate control law for each task. If the goal

should depend on fluctuations in both sig-
nals. If both control signals equal 1.1
(assuming no noise in the sensory signals),
then the optimal strategy is that both con-
trol signals should be reduced toward 1. In
contrast, if one control signal is 1.1 and the
other is 0.9, then the optimal strategy is to
not intervene because the goal of the task,
that their sum equals 2, has been attained.
The byproduct of the optimal control
scheme is that the variability of the indi-
vidual control signals becomes greater than
the variability of their sum.

Reducing task variability at the expense
of variability elsewhere in the system is also
a key feature of human and animal motor
coordination. For example, there are many
different arm configurations that a given
subject can use to maintain a steady aim
at a target with a hand-held laser pistol. In
such tasks, variability among these task-
invariant arm configurations over time is
very large compared to variability in joint
configurations that interfere with point-
ing the laser7. That is, variability is toler-
ated as long as it does not interfere with
task performance. The key proposal of
Todorov and Jordan1 is that this differen-
tial management of variability during
motor behavior occurs because it is the
optimal solution for the task.

If the motor system puts such a premi-
um on managing the position of the hand
over the position of the joints during pos-
tural tasks like pistol shooting, it seems rea-
sonable to believe that in a task such as
reaching, the motor system will attempt to
control hand trajectory. Although many
hypotheses assume that the trajectory is
explicitly controlled5,8, such models fail to
capture another important feature of

is to maintain the hand at one location in
space, feedback signals on the state of the
system (joint position, velocity and force)
for motor corrections are optimized specif-
ically to maintain a constant hand position,
and these control laws reflect the physical
properties of the motor periphery. The
authors capture this feature of optimal feed-
back control by using what they call the
minimum intervention principle, which
postulates that deviations from an average
hand trajectory (or position) are only cor-
rected if they interfere with task perfor-
mance. By correcting only task-relevant
errors, the model minimizes the potential
effects of noise.

Todorov and Jordan1 illustrate the
notion of optimal feedback control with a
very simple example, a task whose goal is
that the sum of two control signals equals
two. The nominal strategy to minimize sig-
nal size is to set each signal to one. How-
ever, each of these signals can be corrupted
by noise. A crucial question is how should
the control law respond to such errors? The
optimal strategy is that its adjustments
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Fig. 1. Diagram for implementing optimal feedback control as proposed by Todorov and Jordan1.
The optimal feedback control law is selected by the CNS based on the specific task. An optimal
estimate of the state of the system (positions, velocities and forces) is based on sensory feedback
(which is delayed and noisy), efference copy of prior controls signals and forward internal models
of the limb12. Noise is introduced to both motor and sensory signals.
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Task 1 (move-and-go) was designed to estimate sensory speed γ and motor speed 

β. Subjects’ perceived car position was modeled as a delayed true car position due to the 

limit of sensory processing speed γ (Appendix: Eq.1). The higher the γ, the closer the 

perceived car position is to the true car position. Joystick position is modeled as a delayed 

execution from target joystick position, due to the limit of motor execution speed β 

(Appendix: Eq. 3). The higher the β, the closer joystick action is to the desired target 

position. Thus the minimal time for joystick to reach target joystick position is movement 

time (Appendix: Eq. 4). Reaction time to car motion-set and true car position were used 

to recover γ, and recorded joystick action and movement time were used to recover β, by 

applying Maximum Likelihood Estimation (i.e. optimizing over γ, β between predicted 

reaction time, movement time and observed data.) 

Task 2 (speed-and-stop) was designed to estimate individual’s reward-function. It 

is a function of goal stopping distance (goal) and the ratio between internal reward for 

achieving the goal and the energy expenditure (motivation). Goal measures individual’s 

intended stopping distance from the stop sign. Motivation measures individual’s 

willingness to reach the goal stopping distance. With higher motivation, one will be 

willing to spend more effort to gain internal reward. In a quadratic reward function, goal 

represents the optimal point of the reward function, and motivation represents the hessian 

of the reward function. We formulate the driving task as a Linear Quadratic Gaussian 

(LQG) problem with a linear dynamic system taking into account of the sensorimotor 

speed estimated from Task 1, and a quadratic reward function of goal and motivation.  

Linear dynamic system Assuming the driving task as a linear dynamic system 

(Equation 1) with a partial hidden state Xt and observable feedback Zt, in which Xt is a 
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vector including the (hidden) true car distance to target stopping position at time t, 

joystick action at time t, and perceived car distance to target stopping position at time t. 

Linear dynamic system:               dXt = AXt dt + BUt dt        (1) 

Observation:                                  Zt = CXt +Vt                     (2) 

In which, A is a dynamics matrix (SI: Eq. 7) with motor and perceptual speed 

estimated from Task 1 and parameters of car dynamics (assuming known), B is input 

matrix (SI: Eq. 8) which takes into consideration of subject’s motor speed, C = [0 0 1]’ 

(i.e. perceived car distance), and Vt is Gaussian noise.  

Quadratic reward function We assume the reward function r (Xt, Ut) is a 

quadratic function of current state Xt and action Ut (Equation 3). It evaluates current state 

Xt based on its distance from the goal state (G) and the ratio of the weight on this distance 

over the energy expenditure, which is defined as motivation M in our framework. (Please 

see SI for detail.) 

Reward function:                  r(Xt,Ut) = g(Xt, G, M)−Ut
2        (3) 

In forward LQG problems, the optimal controller generates an optimal control 

policy that maximizes a given reward function. Figure 6.4 shows in a forward model of 

this driving task, the different effects of model parameters (motor speed β, goal stopping 

distance G and motivation M) on car position and joystick control. In inverse LQG 

problems, observed movements are used to infer the underlying reward function that best 

explains the observed behavior. We estimated G (goal stopping position) for each 

individual subject using MLE, and recovered M (Appendix: Eq. 16) from analytical result 

using recorded continuous car position and joystick actions (See Appendix for detail). 
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Figure 6.4: Influences of model parameters. Left (β): higher motor speed lead to faster 
arrival time to target; Middle (G): different goal distances lead to different stopping 
position; Right (M): higher motivational level lead to faster arrival time and closer 
distance to target;  

 

6.4 Results 

Sensorimotor speed 

Model results from Task 1 showed depressed individuals had significantly slower 

sensory speed (Fig 6.5 Left) (** < .01), as well as significantly slower motor speed (Fig 

6.5 Right) than Non-dep group (* < .05, **<= .01). No significant differences of sensory 

speed or motor speed were observed among the three depressive groups (p>.05). Those 

results are consistent with their longer reaction time to car motion-onset (mean reaction 

time across different car speeds: Non-dep: 1.19 s; Mid-dep: 1.33 s; Mod-dep: 1.45 s; Sev-

dep: 1.42 s) and longer movement time to push the joystick from resting to maximum 
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forward position (mean movement time: Non-dep: 0.20 s; Mid-dep: 0.27 s; Mod-dep: 

0.29 s; Sev-dep: 0.32 s).  

 

Figure 6.5:  Sensory and motor speed estimated from Task 1. 

 

Goal stopping distance 

A linear mixed effect model (LMM) was fitted for mean goal stopping distance 

(G) across three blocks (Fig 6.6), with subject model as a random effect and depressive 

groups as fixed effect. We found a significant main effect of depressive groups (chi-

square = 27.586, df = 3, p < .001) on mean goal stopping distance G. More specifically, 

relative to Non-dep individuals, all depressive groups had significant further stopping 

distance (B (Mid-dep) = - 0.11, p = .01; B (Mod-dep) = -.17, p = .006; B (Sev-dep) = -

.38, p <.001). Consistent with grouped results, we also found a significant negative effect 

of BDI on goal stopping distance (B = -.009, p < .001).  
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Figure 6.6: Goal distance estimated from Task 2. Averaged across blocks. 

 

We then examined the effect of experimental blocks (Fig 6.7) on goal stopping 

distance and found a significant block main effect (chi-square = 18.744, df = 3, p < .001), 

and significant interaction between group and block (chi-square = 104.14, df = 5, p < 

.001). More specifically, comparing to each group’s goal stopping distance in Block 1, 

Non-dep individuals had significantly decreasing goal distance in the 2nd block (B = .02, 

p =.003), while Mod-dep individuals had significant increasing goal distance in the 2nd 

block (B = -.07, p < .001), and Sev-dep individuals had significant increasing goal 

distance both in the 2nd block (B = -.18, p =.002) and the 3rd block (B = -.36, p < .001). 

No significant change in Mid-dep group over blocks was observed (p>.1).  
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Figure 6.7: Goal distance estimated from Task 2. Separated by blocks and depressive 
groups. 
 

Motivation to achieve the goal stopping distance 

For motivation factors (Fig 6.8), only severely depressed individuals (BDI>=29) 

were reported to have significantly low motivation to achieve their goals (Fig 8), while 

no significant difference among Non-dep, Mid-dep and Mod-dep groups was observed. 
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               Figure 6.8: Motivation level estimated from Task 2. 

 

Joint Distribution of Goal and Motivation 

We then used mean G (-.2108) and mean M (.4309) to group subjects into four 

regions (Short G-High M, Long G-High M, Short G-Low M, and long G-low M) and 

looked at the distribution of depressed individuals in those regions. As shown in Figure 

6.9, none of the healthy controls were in either of the Long Goal distance regions, but 

their percentage in Low Motivation or High Motivation is not significantly different 

(53% vs. 47%). None of the Mod & Sev-dep individuals was in Short Goal distance - 

High Motivation region. Most of the Sev-dep individuals are in the Long G-Low 

Motivation region (71%).  
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Figure 6.9: Joint distribution of Goal distance and Motivation level among depressive 
groups. 
 

Reward function and action cost  

Next, we explored the optimal accumulative action cost that generated from 

different reward function using a forward model. Model simulation (Fig 6.10 Left) 

suggests action cost increases as the goal stopping distance decreases (closer to stop-

sign), and as motivation increases (willing to spend more effort to achieve goal stopping 

distance). Taking into account of the increased goal distance in depressed groups, and no 

significant motivation difference except for Sev-dep individuals, we can map their action 

cost based on individual reward function estimated from the model (Fig 6.10 Right). It 

indicates depressed individuals used reward function that leads to lower action cost.  
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Figure 6.10: Action cost: model simulation and data. Left: Model Simulation of action 
cost as a function of Goal distance (G) and Motivation (M). Right: Model prediction of 
action cost based on estimated Goal distance and Motivation from behavioral data. 
 
 

6.5 Discussion 

In this paper, we proposed to use inverse optimal control approach to disentangle 

the effects of sensorimotor speed, goal setting, and motivational factors in goal directed 

motor tasks. We tested this framework in a simulated driving task and found that 

depressed individuals have slower sensorimotor speed, different goal setting (e.g. further 

away from stop-sign), and no significant motivation difference except in severely 

depressed individuals (BDI>=29).   

Firstly, the proposed experimental paradigm expands from how we previously 

measure psychomotor disturbance symptoms using discrete actions to continuous actions. 

Thus in addition to reaction time, it can record the entire movement trajectory and 

provides more insights of how action is chosen at each time step at continuous time.  
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Secondly, this framework addressed the issue that observed motor behavior is a 

confounded result from sensorimotor speed, goal setting and motivational factors. It has 

been shown that depressed individuals have impairments of brain reward pathways which 

includes amygdala (Davis et al., 1998), anterior cingulate gyrus (Mayberg et al., 1994), 

etc., as well as impaired sensorimotor pathways which includes basal ganglia and frontal 

cortex (Nestler et al. 2002). Distinguishing those factors can provide insights to locate the 

corresponding neural circuits. Being able to measure those different factors is also of very 

importance in providing more effective measures for psychomotor disturbance in 

depressed individuals. Consistent with past studies that demonstrated the correlation 

between depression severity and psychomotor retardation (Blewett, 1992; Lemke et al., 

1999), we found slower sensorimotor speed in depressed individuals. In addition, taking 

into account of the slower sensorimotor speed in depressed individuals, we showed that 

minimal to moderately depressed individuals do not have significantly less motivation, 

but only differ in where their subjective goal is. With more accurate measure of those 

three factors, more efficient treatment plans can be advised to individuals that need 

specific improvements.  

Thirdly, this approach distinguishes goal setting from motivation in reward 

function, which may provide deeper understanding of anhedonia. As a core symptom in 

depression, anhedonia is considered as reward-motivation related impairment commonly 

observed in depressed individuals. While there have been studies showed that depression 

is associated with reduced hedonic activity, there are also mixed evidence as for if 

anhedonia will lead to reduced pleasure experience (Heller et al. 2009). Clinical diagnosis 

of anhedonia does not discriminate between the lack of interest or pleasure. It is likely for 
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some one to give best effort even though he/she does not enjoy doing it, which is an 

example of low pleasure but still high motivation. For the case that one does not care to 

try if not enjoy it, it is lower pleasure and low motivation. With behavior observation 

showing reward impairment in depressed individuals, it is critical to examine how much 

of the difference in depressive behavior is caused by different goal setting that may be 

due to lack of pleasure, or by less willingness to spend effort to gain pleasure due to lack 

of motivation. If not clearly distinguishing the effects of goal setting and motivation, then 

mixing those two can lead to faulty interpretation of depressed individuals’ reward 

evaluation. Inverse optimal control model provides an analytical way to address this 

problem, by defining goal as the ‘intended state’, while motivation as the ‘amount of 

effort to achieve the goal state’, thus can help to measure those two factors 

independently. We found as depression worsens, subjects had further goal distance from 

stop sign. It might indicate the tendency of risk-averse in depressed individuals, which is 

consistent with their higher sensitivity to avoid punishment (Dickson & MacLeod, 2004; 

Aldao et al. 2010). This finding may provide evidence of the decreased pleasure caused 

by increased depression severity. However, we only found significant lower motivation 

difference in severely depressed individuals (BDI>=29). This suggests that, for minimal-

moderately depressed individuals, the behavioral difference may be mainly from goal 

setting, but not the amount of effort to achieve the goal. But for severely depressed 

individuals, they are different in both goal setting that may be caused by lack of pleasure, 

and in the amount of effort to achieve the goal that is caused by lack of motivation.  
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6. 6 Future work 

Our current result suggests depressed individuals have further goal distance from 

the stop sign. It has several possible explanations. First, due to higher risk-aversion in 

depressed individuals (Smoski et al. 2008), it is likely that they prefer to stay further 

away to minimize the risk of crossing the stop sign. Secondly, as increasing goal distance 

will lead to higher action cost, it is also likely that they prefer a further distance to reduce 

action cost. In the future, we will use facial expressions recorded in the task to investigate 

this issue.  
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6.8 Appendix: 

Sensory speed γ and motor speed β  

Task 1 (move-and-go) was designed to estimate sensory speed γ and motor speed 

β. We model subjects’ perceived car position Yt as a delayed true car position Xt due to 

the limit of sensory processing speed γ (appd: Eq.1). The higher the γ, the closer the 

perceived car position Yt is to the true car position Xt . We assume subjects will decide 

the car starts moving once the perceived car position Yt reaches a position threshold Xthd. 
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Thus the minimal time for the perceived car position Yt to reach the threshold Xthd is 

reaction time RT (Equation 2): 

Perceived car position Yt :      dYt  =  γ(Xt − Yt )dt                 (1)  

Reaction Time:                        RT  = argmin t  {Yt ≥Xthd}     (2) 

We model joystick position Ct as a delayed execution from target joystick 

position Utarget, due to the limit of motor execution speed β (Equation 3). The higher the 

β, the closer joystick action is to the desired target position. Thus the minimal time for Ct 

to reach Utarget is movement time (Equation 4). 

Joystick position Ct :             dCt = β(Utarget −Ct)dt              (3)  

Movement Time:                   MT = argmin t {Ct ≥ Utarget }  (4) 

In above equations, Xt (true car position), RT (reaction time to car motion-onset), 

Ct (recorded joystick position), Utarget (target position) and MT (movement time) are 

known. We use RT and Xt to recover Xthd, γ and Yt, and use Ct and MT to recover β, by 

optimizing over γ, Xthd, and β to give the minimal errors between predicted RT , MT and 

observed data. 

Inverse Linear Quadratic Gaussian Model (LQG)  

We formulate the driving task as a LQG problem with a linear dynamic system 

and a quadratic reward function. In forward LQG problems, the optimal controller 

generates an optimal control policy that maximizes a given reward function. In inverse 

LQG problems, we use observed movements to infer the underlying reward function that 

best explains the observed behavior. 

Linear dynamic system Assuming the driving task as a linear dynamic system (Equation 
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5) with a partial hidden state Xt and observable feedback Zt, in which Xt is a 3x1 vector 

including the (hidden) true car distance to target stopping position at time t, joystick 

action at time t, and perceived car distance to target stopping position at time t. 

Partial observable linear system: dXt = AXt dt + BUt dt        (5) 

Observation:                                  Zt = CXt +Vt                     (6) 

With: 

                       

In which, a, b are car dynamics parameters (assuming known), Vt is Gaussian 

noise, β and γ are motor and perceptual speed that are estimated from Task 1. Note that in 

the state Xt, the hidden true car position and perceived car position are measured as a 

distance to goal stopping position (parameterized as the goal state in the reward function), 

which we will estimate through MLE using observed behavior. 

Quadratic reward function We assume the reward function r (Xt, Ut) is a 

function that evaluates the state Xt based on its distance from the goal state G (through 

g(Xt ,G)), and the action Ut (through Ut
2q). 

reward function:                  r(Xt,Ut) = g(Xt, G)−Ut
2q                (10) 

Without loss of generality, let q = 1 (i.e. optimal action will not change if scaling 

the ratio, the more motivated one is to stop as close as pos-
sible to the target stopping location. In a quadratic reward
function, target distance represents the optimal point of the
reward function, and target accuracy/effort ratio represents
the hessian of the reward function.

Linear Quadratic Gaussian Model (LQG) We formulate
the driving task as a LQG problem with a linear dynamic sys-
tem and a quadratic reward function. In forward LQG prob-
lems, the optimal controller generates an optimal control pol-
icy that maximizes a given reward function. Figure 4 shows
in a forward model of this driving task, how different model
parameters (motor speed β, target accuracy/effort ratio P, and
target stopping distance Xtarget ) can affect optimal car posi-
tion and joystick control. In inverse LQG problems, we use
observed movements to infer the underlying reward function
that best explains the observed behavior.
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Figure 4: Influences of model parameters. β: higher motor
speed lead to faster arrival time to target; P: higher motiva-
tional level lead to faster arrival time and closer distance to
target; Xtarget : different target distances lead to different stop-
ping position; Joint influence of β and P: similar behavior
may have very different underlying causes. Someone with
higher motor speed (β = 2) and lower accuracy/effort ratio
(P = 6) may have similar behavior as someone with lower
motor speed (β = 1) but higher accuracy/effort ratio (P = 10).

Linear dynamic system Assuming the driving task as a lin-
ear dynamic system (Equation 5) with a partial hidden state
Xt and observable feedback Zt , in which Xt is a 3x1 vector
including the (hidden) true car distance to target stopping po-
sition at time t, joystick action at time t, and perceived car
distance to target stopping position at time t.

Partial observable linear system: dXt = AXtdt +BUtdt (5)
Observation: Zt =CXt +Vt (6)

With:

A =

⎡

⎣
a b 0
0 −β 0
γ 0 −γ

⎤

⎦ (7)

B =

⎡

⎣
0
β
0

⎤

⎦ (8)

C = [0,0,1] (9)

In which, a,b are car dynamics parameters (assuming
known), Vt is Gaussian noise, β and γ are motor and per-
ceptual speed that are estimated from Task 1. Note that in
the state Xt , the hidden true car position and perceived car
position are measured as a distance to target stopping posi-
tion (parametrized as the target state in the reward function),
which we will estimate through optimization from this model.

Quadratic reward function We assume the reward func-
tion r(Xt ,Ut) is a function that evaluates the state Xt (through
g(Xt)) and the action Ut (through U2

t q).

reward function: r(Xt ,Ut) = g(Xt)−U2
t q (10)

Without loss of generality, let q = 1 (i.e. optimal action will
not change if scaling the reward function), thus g(Xt) is a
function of target state and target accuracy/effort ratio. We
assume subjects were using a stationary (infinite horizon) pol-
icy and the reward function has a diagonal form (i.e. no joint
influence between state elements in the reward function).

In LQG setting, subjects first estimate true state from ob-
servation using a Kalman filter to convert the problem to a
fully observable system, and then solve it as a LQR (Linear-
Quadratic-Regulator) problem:

dX̂t = AX̂tdt +BUtdt +Lt(Zt −CX̂t)dt (11)

Ut =−KX̂t (12)

In which Lt is Kalman gain. Ut is a linear combination of
the states and K can be estimated from Ut and recorded behav-
ior data through linear regression. This suggests a quadratic
value function:

v(x̂, t) =−1
2

x̂′twx̂t (13)

Then the HJB equation (Bellman, 1957) for this linear sys-
tem will give us g(x̂) as a quadratic form of x̂:

g(x̂) =−1
2

x̂′(−2A′w+ k′k)x̂ (14)

In which we define P as the target accuracy/effort ratio:

g(x̂) =−1
2

x̂′Px̂ (15)

P =−2A′w+ k′k (16)

In which A and k are known from equation (7) and (12),
and w can be solved by using optimal LQR solution.

2390
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the reward function), thus r(Xt,Ut) is a function of goal state G and motivation M,  in 

which M is defined as the ratio of the distance between current state and the goal state 

over the energy expenditure. We assume subjects were using a stationary (infinite 

horizon) policy and the reward function has a diagonal form (i.e. no joint influence 

between state elements in the reward function).  

In LQG setting, subjects first estimate true state from observation using a Kalman 

filter to convert the problem to a fully observable system, and then solve it as a LQR 

(Linear- Quadratic-Regulator) problem: 

  

In which Lt is Kalman gain. Ut is a linear combination of the states and K can be 

estimated from Ut and recorded behavior data through linear regression. This suggests a 

quadratic value function: 

 

Then the HJB equation (Bellman, 1957) for this linear system will give as a 

quadratic reward function in the following form: 

 

In which we define M as motivation: 

 

the ratio, the more motivated one is to stop as close as pos-
sible to the target stopping location. In a quadratic reward
function, target distance represents the optimal point of the
reward function, and target accuracy/effort ratio represents
the hessian of the reward function.

Linear Quadratic Gaussian Model (L QG) We formulate
the driving task as a L Q G problem with a linear dynamic sys-
tem and a quadratic reward function. In forward L Q G prob-
lems, the optimal controller generates an optimal control pol-
icy that maximizes a given reward function. F igure 4 shows
in a forward model of this driving task, how different model
parameters (motor speed β, target accuracy/effort ratio P, and
target stopping distance Xt arget ) can affect optimal car posi-
tion and joystick control. In inverse L Q G problems, we use
observed movements to infer the underlying reward function
that best explains the observed behavior.
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F igure 4: Influences of model parameters. β: higher motor
speed lead to faster arrival time to target; P: higher motiva-
tional level lead to faster arrival time and closer distance to
target; Xt arget : different target distances lead to different stop-
ping position; Joint influence of β and P: similar behavior
may have very different underlying causes. Someone with
higher motor speed (β = 2) and lower accuracy/effort ratio
(P = 6) may have similar behavior as someone with lower
motor speed (β = 1) but higher accuracy/effort ratio (P = 10).

Linear dynamic system A ssuming the driving task as a lin-
ear dynamic system (Equation 5) with a partial hidden state
Xt and observable feedback Zt , in which Xt is a 3x1 vector
including the (hidden) true car distance to target stopping po-
sition at time t , joystick action at time t , and perceived car
distance to target stopping position at time t .

Partial observable linear system: dXt = AXt dt + BUt dt (5)
Observation: Zt = C Xt + Vt (6)

With:

A =

⎡

⎣
a b 0
0 −β 0
γ 0 −γ

⎤

⎦ (7)

B =

⎡

⎣
0
β
0

⎤

⎦ (8)

C = [0, 0, 1] (9)

In which, a, b are car dynamics parameters (assuming
known), Vt is Gaussian noise, β and γ are motor and per-
ceptual speed that are estimated from Task 1. Note that in
the state Xt , the hidden true car position and perceived car
position are measured as a distance to target stopping posi-
tion (parametrized as the target state in the reward function),
which we will estimate through optimization from this model.

Quadratic reward function We assume the reward func-
tion r(Xt , Ut ) is a function that evaluates the state Xt (through
g(Xt )) and the action Ut (through U 2

t q).

reward function: r(Xt , Ut ) = g(Xt )−U 2
t q (10)

Without loss of generality, let q = 1 (i.e. optimal action will
not change if scaling the reward function), thus g(Xt ) is a
function of target state and target accuracy/effort ratio. We
assume subjects were using a stationary (infinite horizon) pol-
icy and the reward function has a diagonal form (i.e. no joint
influence between state elements in the reward function).

In L Q G setting, subjects first estimate true state from ob-
servation using a K alman filter to convert the problem to a
fully observable system, and then solve it as a L Q R (L inear-
Quadratic-Regulator) problem:

dX̂t = AX̂t dt + BUt dt + Lt (Zt −C X̂t )dt (11)

Ut = −K X̂t (12)

In which Lt is K alman gain. Ut is a linear combination of
the states and K can be estimated from Ut and recorded behav-
ior data through linear regression. This suggests a quadratic
value function:

v(x̂, t ) = −1
2

x̂′t wx̂t (13)

Then the HJB equation (Bellman, 1957) for this linear sys-
tem will give us g(x̂) as a quadratic form of x̂:

g(x̂) = −1
2

x̂′(−2A′w + k′k)x̂ (14)

In which we define P as the target accuracy/effort ratio:

g(x̂) = −1
2

x̂′Px̂ (15)

P = −2A′w + k′k (16)

In which A and k are known from equation (7) and (12),
and w can be solved by using optimal L Q R solution.
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the ratio, the more motivated one is to stop as close as pos-
sible to the target stopping location. In a quadratic reward
function, target distance represents the optimal point of the
reward function, and target accuracy/effort ratio represents
the hessian of the reward function.

Linear Quadratic Gaussian Model (L QG) We formulate
the driving task as a L Q G problem with a linear dynamic sys-
tem and a quadratic reward function. In forward L Q G prob-
lems, the optimal controller generates an optimal control pol-
icy that maximizes a given reward function. F igure 4 shows
in a forward model of this driving task, how different model
parameters (motor speed β, target accuracy/effort ratio P, and
target stopping distance Xt arget ) can affect optimal car posi-
tion and joystick control. In inverse L Q G problems, we use
observed movements to infer the underlying reward function
that best explains the observed behavior.
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F igure 4: Influences of model parameters. β: higher motor
speed lead to faster arrival time to target; P: higher motiva-
tional level lead to faster arrival time and closer distance to
target; Xt arget : different target distances lead to different stop-
ping position; Joint influence of β and P: similar behavior
may have very different underlying causes. Someone with
higher motor speed (β = 2) and lower accuracy/effort ratio
(P = 6) may have similar behavior as someone with lower
motor speed (β = 1) but higher accuracy/effort ratio (P = 10).

Linear dynamic system A ssuming the driving task as a lin-
ear dynamic system (Equation 5) with a partial hidden state
Xt and observable feedback Zt , in which Xt is a 3x1 vector
including the (hidden) true car distance to target stopping po-
sition at time t , joystick action at time t , and perceived car
distance to target stopping position at time t .

Partial observable linear system: dXt = AXt dt + BUt dt (5)
Observation: Zt = C Xt + Vt (6)

With:

A =

⎡

⎣
a b 0
0 −β 0
γ 0 −γ

⎤

⎦ (7)

B =

⎡

⎣
0
β
0

⎤

⎦ (8)

C = [0, 0, 1] (9)

In which, a, b are car dynamics parameters (assuming
known), Vt is Gaussian noise, β and γ are motor and per-
ceptual speed that are estimated from Task 1. Note that in
the state Xt , the hidden true car position and perceived car
position are measured as a distance to target stopping posi-
tion (parametrized as the target state in the reward function),
which we will estimate through optimization from this model.

Quadratic reward function We assume the reward func-
tion r(Xt , Ut ) is a function that evaluates the state Xt (through
g(Xt )) and the action Ut (through U 2

t q).

reward function: r(Xt , Ut ) = g(Xt )−U 2
t q (10)

Without loss of generality, let q = 1 (i.e. optimal action will
not change if scaling the reward function), thus g(Xt ) is a
function of target state and target accuracy/effort ratio. We
assume subjects were using a stationary (infinite horizon) pol-
icy and the reward function has a diagonal form (i.e. no joint
influence between state elements in the reward function).

In L Q G setting, subjects first estimate true state from ob-
servation using a K alman filter to convert the problem to a
fully observable system, and then solve it as a L Q R (L inear-
Quadratic-Regulator) problem:

dX̂t = AX̂t dt + BUt dt + Lt (Zt −C X̂t )dt (11)

Ut = −K X̂t (12)

In which Lt is K alman gain. Ut is a linear combination of
the states and K can be estimated from Ut and recorded behav-
ior data through linear regression. This suggests a quadratic
value function:

v(x̂, t ) = −1
2

x̂′t wx̂t (13)

Then the HJB equation (Bellman, 1957) for this linear sys-
tem will give us g(x̂) as a quadratic form of x̂:

g(x̂) = −1
2

x̂′(−2A′w + k′k)x̂ (14)

In which we define P as the target accuracy/effort ratio:

g(x̂) = −1
2

x̂′Px̂ (15)

P = −2A′w + k′k (16)

In which A and k are known from equation (7) and (12),
and w can be solved by using optimal L Q R solution.
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the ratio, the more motivated one is to stop as close as pos-
sible to the target stopping location. In a quadratic reward
function, target distance represents the optimal point of the
reward function, and target accuracy/effort ratio represents
the hessian of the reward function.

Linear Quadratic Gaussian Model (L QG) We formulate
the driving task as a L Q G problem with a linear dynamic sys-
tem and a quadratic reward function. In forward L Q G prob-
lems, the optimal controller generates an optimal control pol-
icy that maximizes a given reward function. F igure 4 shows
in a forward model of this driving task, how different model
parameters (motor speed β, target accuracy/effort ratio P, and
target stopping distance Xt arget ) can affect optimal car posi-
tion and joystick control. In inverse L Q G problems, we use
observed movements to infer the underlying reward function
that best explains the observed behavior.
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speed lead to faster arrival time to target; P: higher motiva-
tional level lead to faster arrival time and closer distance to
target; Xt arget : different target distances lead to different stop-
ping position; Joint influence of β and P: similar behavior
may have very different underlying causes. Someone with
higher motor speed (β = 2) and lower accuracy/effort ratio
(P = 6) may have similar behavior as someone with lower
motor speed (β = 1) but higher accuracy/effort ratio (P = 10).
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In which, a, b are car dynamics parameters (assuming
known), Vt is Gaussian noise, β and γ are motor and per-
ceptual speed that are estimated from Task 1. Note that in
the state Xt , the hidden true car position and perceived car
position are measured as a distance to target stopping posi-
tion (parametrized as the target state in the reward function),
which we will estimate through optimization from this model.

Quadratic reward function We assume the reward func-
tion r(Xt , Ut ) is a function that evaluates the state Xt (through
g(Xt )) and the action Ut (through U 2

t q).

reward function: r(Xt , Ut ) = g(Xt )−U 2
t q (10)

Without loss of generality, let q = 1 (i.e. optimal action will
not change if scaling the reward function), thus g(Xt ) is a
function of target state and target accuracy/effort ratio. We
assume subjects were using a stationary (infinite horizon) pol-
icy and the reward function has a diagonal form (i.e. no joint
influence between state elements in the reward function).

In L Q G setting, subjects first estimate true state from ob-
servation using a K alman filter to convert the problem to a
fully observable system, and then solve it as a L Q R (L inear-
Quadratic-Regulator) problem:

dX̂t = AX̂t dt + BUt dt + Lt (Zt −C X̂t )dt (11)

Ut = −K X̂t (12)

In which Lt is K alman gain. Ut is a linear combination of
the states and K can be estimated from Ut and recorded behav-
ior data through linear regression. This suggests a quadratic
value function:

v(x̂, t ) = −1
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x̂′t wx̂t (13)

Then the HJB equation (Bellman, 1957) for this linear sys-
tem will give us g(x̂) as a quadratic form of x̂:

g(x̂) = −1
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In which we define P as the target accuracy/effort ratio:
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In which A and k are known from equation (7) and (12),
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the ratio, the more motivated one is to stop as close as pos-
sible to the target stopping location. In a quadratic reward
function, target distance represents the optimal point of the
reward function, and target accuracy/effort ratio represents
the hessian of the reward function.

Linear Quadratic Gaussian Model (L QG) We formulate
the driving task as a LQG problem with a linear dynamic sys-
tem and a quadratic reward function. In forward LQG prob-
lems, the optimal controller generates an optimal control pol-
icy that maximizes a given reward function. Figure 4 shows
in a forward model of this driving task, how different model
parameters (motor speed β, target accuracy/effort ratio P, and
target stopping distance Xtarget ) can affect optimal car posi-
tion and joystick control. In inverse LQG problems, we use
observed movements to infer the underlying reward function
that best explains the observed behavior.
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Figure 4: Influences of model parameters. β: higher motor
speed lead to faster arrival time to target; P: higher motiva-
tional level lead to faster arrival time and closer distance to
target; Xtarget : different target distances lead to different stop-
ping position; Joint influence of β and P: similar behavior
may have very different underlying causes. Someone with
higher motor speed (β = 2) and lower accuracy/effort ratio
(P = 6) may have similar behavior as someone with lower
motor speed (β = 1) but higher accuracy/effort ratio (P = 10).

Linear dynamic system Assuming the driving task as a lin-
ear dynamic system (Equation 5) with a partial hidden state
Xt and observable feedback Zt , in which Xt is a 3x1 vector
including the (hidden) true car distance to target stopping po-
sition at time t, joystick action at time t, and perceived car
distance to target stopping position at time t.

Partial observable linear system: dXt = AXtdt + BUtdt (5)
Observation: Zt = CXt + Vt (6)

With:

A =

⎡

⎣
a b 0
0 −β 0
γ 0 −γ

⎤

⎦ (7)

B =

⎡

⎣
0
β
0

⎤

⎦ (8)

C = [0, 0, 1] (9)

In which, a, b are car dynamics parameters (assuming
known), Vt is Gaussian noise, β and γ are motor and per-
ceptual speed that are estimated from Task 1. Note that in
the state Xt , the hidden true car position and perceived car
position are measured as a distance to target stopping posi-
tion (parametrized as the target state in the reward function),
which we will estimate through optimization from this model.

Quadratic reward function We assume the reward func-
tion r(Xt ,Ut ) is a function that evaluates the state Xt (through
g(Xt )) and the action Ut (through U2

t q).

reward function: r(Xt ,Ut ) = g(Xt , G)−U2
t q (10)

Without loss of generality, let q = 1 (i.e. optimal action will
not change if scaling the reward function), thus g(Xt ) is a
function of target state and target accuracy/effort ratio. We
assume subjects were using a stationary (infinite horizon) pol-
icy and the reward function has a diagonal form (i.e. no joint
influence between state elements in the reward function).

In LQG setting, subjects first estimate true state from ob-
servation using a Kalman filter to convert the problem to a
fully observable system, and then solve it as a LQR (Linear-
Quadratic-Regulator) problem:

dX̂t = AX̂tdt + BUtdt + Lt (Zt −CX̂t )dt (11)

Ut = −KX̂t (12)

In which Lt is Kalman gain. Ut is a linear combination of
the states and K can be estimated from Ut and recorded behav-
ior data through linear regression. This suggests a quadratic
value function:

v(x̂, t) = −1
2

x̂′twx̂t (13)

Then the HJB equation (Bellman, 1957) for this linear sys-
tem will give us g(x̂) as a quadratic form of x̂:

g(x̂) = −1
2

x̂′(−2A′w + k′k)x̂ (14)

In which we define P as the target accuracy/effort ratio:

g(x̂) = −1
2

x̂′Mx̂ (15)

M = −2A′w + k′k (16)

In which A and k are known from equation (7) and (12),
and w can be solved by using optimal LQR solution.
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In which A and k are known from equation (7) and (12), and w can be solved by 

using optimal LQR solution. 
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Chapter 7  

Facial Expression of Depressed Individuals 

in a Simulated Driving Task 

 

Abstract- Following last chapter, here we presented some of the preliminary 

analysis of facial expressions recorded in the simulated driving task. The goal of this 

project is to explore the possibility of using facial expression to measure subject’s 

emotional state in the task, with the aim to explain the observed behavior and provide 

insights of the model parameters. Preliminary result suggests, comparing to healthy 

controls (BDI<=5), depressed individuals (BDI>=20) had significantly less joy 

expressions, both in mean evidence reported by FacetSDK (Emotient.com), and 

histogram distribution. They also have significantly more fear expressions in the 

histogram distribution. All together, these results indicate the validity of the hypothesis 

that further goal distance is caused by stronger risk-aversion in depressed individuals. 

More data and further analysis will be needed to test this hypothesis.  

 

7.1 Introduction 

As a mood disorder, emotional dysfunction is a hallmark of Major Depressive 

Disorder (MDD)  (Rottenberg 2005; Morris et al. 2009)  and  it  suggests  that  emotional  
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expression such as facial expression may be used as an effective measure of depression. 

Cohn et al. 2009 proposed to use facial actions in the diagnosis of depression (with the 

use of manual FACS, Ekman et al. 2002). Other studies using facial coding techniques 

found that MDD patients are less likely to react to positive stimuli with facial expressions 

associated with positive emotion (Gehricke & Shapiro 2000; Sloan et al. 2002). Reed et 

al. 2007 recorded MDD patients’ facial expression in response to comedy and found that 

they showed reduced facial response to positive stimuli. Reed’s finding suggests that 

MDD individuals may actively process information to create mood congruent responses. 

However, while past studies have been mainly focused on the detection of facial 

expression on positive or negative stimuli, we have little knowledge of their emotional 

state while performing a goal-directed motor task. For example, it has been shown that 

depressed individuals are more sensitive to punishment than to reward (Trew 2011). But 

so far no studies have provided evidence of the facial expressions to confirm this 

hypothesis. There are also studies shown depressed individuals are more risk-aversion 

(Smoski et al. 2008), which suggests fear expressions may be detected in those tasks, as it 

may drive risk-averse actions (Lerner & Keltner 2001). Thus it is important to assess, 

compared to healthy controls, if depressed individuals will have different emotional 

response based on their own risk assessment of the task. For example, if they will show 

less joy that is caused by depressed mood, and more fear that caused by risk-aversion. 

With advanced facial expression recognition technology (Emotient.com), we can now 

have automated face video analysis that gives reliable results at continuous time. Here, 

we propose to use a simulated driving task, and use the software developed by 

Emtient.com, to analyze the recorded face video. 
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7. 2 Method 

We recorded subjects’ facial expression in a simulated driving task (as described 

in previous chapter) using Logitech HD webcam C615 (30 fps) when subjects attempted 

to control the virtual car with the joystick. There are 19 healthy controls (BDI<=5; mean 

BDI = 2.26, std = 1.73) and 11 depressed subjects (BDI>=20; mean BDI = 27, std = 6.86) 

included in this analysis. Facial expressions were then analyzed from the video (~20 min) 

using FACET SDK (Littlewort et al. 2011; Malmir et al. 2013), developed by Emotient 

(Figure 1). FACET measures the emotional responses of users in continuous time, 

recognizing seven basic emotions: anger, contempt, disgust, fear, joy, sadness and 

surprise, and generating frame-by-frame outputs of those emotions.  

 

Figure 7.1: Example of processing video using Facet SDK  
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7. 3 Results 

We first looked at the mean facial expression between Non-dep and Dep 

individuals (Figure 7.2). Result suggests depressed individuals had significantly less joy 

expressions (p= .006). No significant differences among other expressions were 

observed. Examples of Facet SDK output can be seen in Figure 7.3. 

         

Figure 7.2: Mean facial expression of 7 basic emotions in Non-dep and Dep group. 

 

Figure 7.3 Examples of Facet SDK results for a non-dep individual (BDI =1) and a dep 

individual (BDI = 39). 
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We then looked at this histogram distribution of joy and fear expressions in those 

two groups. As shown in Figure 4, depressed group had significantly less joy expressions 

(p< .001) and more fear expressions (p< .001) than healthy controls in the task.  

 

        

Figure 7.4: Histogram of Joy (Left) and Fear (Right) among Non-dep and Dep group 
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caused by risk-aversion. However, more analysis needs to be performed to test this 

hypothesis. For example, if we can show a correlation between fear intensity and goal 

stopping distance. In addition, we will explore the dynamic of facial expressions at 

continuous time. For example, if depressed subjects show more fear when the car is 

approaching the stop sign.  

 

References 

Cohn, J. F., Kruez, T. S., Matthews, I., Yang, Y., Nguyen, M. H., Padilla, M. T., ... & De 
la Torre, F. (2009, September). Detecting depression from facial actions and vocal 
prosody. In Affective Computing and Intelligent Interaction and Workshops, 2009. ACII 
2009. 3rd International Conference on (pp. 1-7). IEEE. 
 
Ekman, P., Friesen, W. V., & Hager, J. C. (2002). Facs manual. A Human Face. 
 
Gehricke, J. G., & Shapiro, D. (2000). Reduced facial expression and social context in 
major depression: discrepancies between facial muscle activity and self-reported 
emotion. Psychiatry Research, 95(2), 157-167. 
 
Lerner, J. S., & Keltner, D. (2001). Fear, anger, and risk. Journal of personality and 
social psychology, 81(1), 146. 
 
Morris, B. H., Bylsma, L. M., & Rottenberg, J. (2009). Does emotion predict the course 
of major depressive disorder? A review of prospective studies. British Journal of Clinical 
Psychology, 48(3), 255-273. 
 
Reed, L. I., Sayette, M. A., & Cohn, J. F. (2007). Impact of depression on response to 
comedy: a dynamic facial coding analysis. Journal of abnormal psychology, 116(4), 804. 
 
Rottenberg, J. (2005). Mood and emotion in major depression. Current Directions in 
Psychological Science, 14(3), 167-170. 
 
Sloan, D. M., Bradley, M. M., Dimoulas, E., & Lang, P. J. (2002). Looking at facial 
expressions: Dysphoria and facial EMG. Biological Psychology, 60, 79 –90. 
 



! 132 

Smoski, M. J., Lynch, T. R., Rosenthal, M. Z., Cheavens, J. S., Chapman, A. L., & 
Krishnan, R. R. (2008). Decision-making and risk aversion among depressive         
adults. Journal of behavior therapy and experimental psychiatry,39(4), 567-576. 
 
Trew, J. L. (2011). Exploring the roles of approach and avoidance in depression: An 
integrative model. Clinical Psychology Review, 31(7), 1156 - 1168.  



! 133 

Conclusions  

Part I: Inverse learning the underlying decision-process from observed choices in 

perceptual decision tasks. 

In Chapter 2, we investigated if human subjects can learn spatial statistics and use 

this information in optimizing the search strategy in a visual-search task. Experimental 

results showed that subjects did internalize target spatial distribution and utilize them in 

deciding the search sequence. But they showed ‘matching-like’ behavior in their choices 

of 1st fixation, instead of ‘maximizing’, the optimal decision strategy. However, the 

debate between ‘matching’ vs. ‘maximization’ failed to take into account of the 

subjective belief of fluctuations in the underlying stimuli statistics. Thus we proposed to 

use a dynamic belief model (DBM) to capture this subjective belief into the learning 

process. We presented model prediction using DBM and FBM (fixed belief model) 

combined with two decision strategies (maximizing vs. a matching strategy) and a 

melioration strategy based on a limited trial history. Behavioral data with model 

comparisons (DBM + max, DBM + match, FBM + max, FBM + match, melioration) 

indicate that, even though subjects’ choices of their first fixation appear to be matching-

like behavior under a fixed belief model, it is best explained using a dynamic belief 

model with a maximizing decision strategy (DBM + max). First, DBM + maximization 

can explain the choices of 1st fixations cross trials within a block. Second, DBM + 

maximization can also explain how current fixation choices were influenced by recent 

trial history. Taken together, we have showed that, instead of interpreting ‘matching-like’  
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choice behavior using the sub-optimal decision strategy (matching) with a fixed belief 

model, subjects’ decision-process in fact can be better explained using the optimal 

decision strategy (maximization), with a dynamic belief model, which can best describe 

the learning process that is influenced from both long-term statistics and short-term 

statistics. In Chapter 3, we proposed to use DBM, combined with a DDM (Drift 

Diffusion Model) to explain sequential effects in a 2AFC task. We estimated subject-

specific parameters of cross-trial learning from DBM and within-trial decision-making 

from DDM. We showed that comparing to FBM (Fixed Belief Model), DBM can 

produce a stronger sequential effect as observed in the data, and can capture individual 

differences in the belief of non-stationarity of the environment. All together, Chapter 2 

and Chapter 3 showed that Dynamic Belief Model is a viable computational framework 

to explain human decision-making processes under uncertainty.  

Part II: Inverse learning the objective function from movement trajectory in goal-

directed motor tasks. 

In Chapter 4, using optimal control framework, we proposed an Infomax model of 

human oculomotor control, under the assumption that eyes are not only the movement 

executor but also the information collector to achieve the goals. In addition, we should 

take into consideration of the sensory constraints of the eye, in which the observation is 

influenced by both target eccentricity and eye velocity. We showed that this model can 

explain saccadic eye velocity profiles, as well as smooth pursuit and eye movement in a 

rapid reaching task. In Chapter 5-6, we presented an inverse optimal control model to 

study depressive behavior in a simulated task, and showed that the observed behavior 
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difference in depressed individuals were caused by the joint effects from sensorimotor 

speed, goal-setting and motivation. In particular, we showed that for mild-moderately 

depressed individuals, they differ from healthy individuals in sensorimotor speed and 

goal setting, but for severely depressed individuals, in addition to slower sensorimotor 

speed and different goal setting, they also had significantly lower motivation from 

healthy individuals. Taken together, we showed that optimal control theory can be used 

to examine the underlying factors of different movement trajectories, and it can be 

applied to investigate the causes of different behavior observations. 

In conclusion, observations from human behavior, either in the form of discrete 

decisions, or in the form of continuous movement trajectory, both describe how we use 

sensory information to achieve the goals under sensorimotor constraints. Thus to infer the 

underlying principles of observed behavior, we can examine what the goals that one is 

trying to achieve, how is the sensory information being used in decision-making/motor-

control process, and what are the sensorimotor constraints in achieving the goal. We 

proposed to use two computational approaches (Bayesian inference and Optimal control 

theory) in this dissertation to address those issues, and showed that they can be applied in 

a variety of tasks to give insights of human sensory-motor processing.  

 


