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The Faces of Engagement: Automatic
Recognition of Student Engagement from Facial

Expressions
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Abstract—Student engagement is a key concept in contemporary education, where it is valued as a goal in its own right. In this
paper we explore approaches for automatic recognition of engagement from students’ facial expressions. We studied whether human
observers can reliably judge engagement from the face; analyzed the signals observers use to make these judgments; and automated
the process using machine learning. We found that human observers reliably agree when discriminating low versus high degrees of
engagement (Cohen’s κ = 0.96). When fine discrimination is required (4 distinct levels) the reliability decreases, but is still quite high
(κ = 0.56). Furthermore, we found that engagement labels of 10-second video clips can be reliably predicted from the average labels
of their constituent frames (Pearson r = 0.85), suggesting that static expressions contain the bulk of the information used by observers.
We used machine learning to develop automatic engagement detectors and found that for binary classification (e.g., high engagement
versus low engagement), automated engagement detectors perform with comparable accuracy to humans. Finally, we show that both
human and automatic engagement judgments correlate with task performance. In our experiment, student post-test performance was
predicted with comparable accuracy from engagement labels (r = 0.47) as from pre-test scores (r = 0.44).

Index Terms—Student engagement, engagement recognition, facial expression recognition, facial actions, intelligent tutoring systems
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1 INTRODUCTION
“The test of successful education is not the amount of knowl-
edge that pupils take away from school, but their appetite to
know and their capacity to learn.” Sir Richard Livingstone,
1941 [36].

Student engagement has been a key topic in the
education literature since the 1980s. Early interest in
engagement was driven in part by concerns about large
drop-out rates and by statistics indicating that many stu-
dents, estimated between 25% and 60%, reported being
chronically bored and disengaged in the classroom [32],
[51]. Statistics such as these led educational institutions
to treat student engagement not just as a tool for improv-
ing grades but as an independent goal unto itself [16].
Nowadays, fostering student engagement is relevant not
just in traditional classrooms but also in other learning
settings such as educational games, intelligent tutoring
systems (ITS) [43], [4], [52], [30], [4], and massively open
online courses (MOOCs).

The education research community has developed
various taxonomies for describing student engagement.
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Fredricks, et al. [20] analyzed 44 studies and proposed
that there are 3 different forms of engagement: be-
havioral, emotional, and cognitive. Anderson, et al. [3]
organized engagement into behavioral, academic, cogni-
tive, and psychological dimensions. The term behavioral
engagement is typically used to describe the student’s
willingness to participate in the learning process, e.g.,
attend class, stay on task, submit required work, and
follow the teacher’s direction. Emotional engagement de-
scribes a student’s emotional attitude towards learning –
it is possible, for example, for students to perform their
assigned work well, but still dislike or be bored by it.
Such students would have high behavioral engagement
but low emotional engagement. Cognitive engagement
refers to learning in a way that maximizes a person’s
cognitive abilities, including focused attention, memory,
and creative thinking [3].

The goal of increasing student engagement has mo-
tivated the interest in methods to measure it [25]. Cur-
rently the more popular tools for measuring engagement
include: (1) Self-reports, (2) Observational checklists and
ratings scales, and (3) Automated measurements.

Self-reports: Self-reports are questionnaires in which
students report their own level of attention, distraction,
excitement, or boredom [14], [24], [45]. These surveys
need not directly ask the students explicitly how “en-
gaged” they feel but instead can infer engagement as an
explanatory latent variable from the survey responses,
e.g., using factor analysis [41]. Self-reports are undoubt-
edly useful. For example, it is of interest to know that
between 25% and 60% of middle school students report
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to be bored and disengaged [32], [51]. Yet self-reports
also have well-known limitations. For example, some
students may think it is “cool” to say they are non-
engaged; other students may think it is embarrassing
to say so. Self-reports may be biased by primacy and
recency memory effects. Students may also differ dra-
matically in their own sense of what it means to be
engaged.

Observational checklists and rating scales: Another
popular way to measure engagement relies on question-
naires completed by external observers such as teachers.
These questionnaires may ask the teacher’s subjective
opinion of how engaged their students are. They may
also contain checklists for objective measures that are
supposed to indicate engagement. For example, do the
students sit quietly? Do they do their homework? Are
they on time? Do they ask questions? [48]. In some cases,
external observers may rate engagement based on live or
pre-recorded videos of educational activities [46], [29].
Observers may also consider samples of the student’s
work such as essays, projects, and class notes [48].

While both self-reports and observational checklists
and ratings are useful, they are still very primitive:
they lack temporal resolution, they require a great deal
of time and effort from students and observers, and
they are not always clearly related to engagement. For
example, engagement metrics such as “sitting quietly”,
“good behavior”, and “no tardy cards” appear to mea-
sure compliance and willingness to adhere to rules and
regulations rather than engagement per se.

Automated measurements: The intelligent tutoring
systems (ITS) community has pioneered the use of au-
tomated, real-time measures of engagement. A popular
technique for estimating engagement in ITS is based
on the timing and accuracy of students’ responses to
practice problems and test questions. This technique has
been dubbed “engagement tracing” [8] in analogy to the
standard “knowledge tracing” technique used in many
ITS [30]. For instance, chance performance on easy ques-
tions or very short response times might be used as an
indication that the student is not engaged and is simply
giving random answers to questions without any effort.
Probabilistic inference can be used to assess whether the
observed patterns of time/accuracy are more consistent
with an engaged or a disengaged student [8], [26].

Another class of automated engagement measure-
ment is based on physiological and neurological sensor
readings. In the neuroscience literature, engagement is
typically equated with level of arousal or alertness.
Physiological measures such as EEG, blood pressure,
heart rate, or galvanic skin response have been used to
measure engagement and alertness [23], [18], [39], [49],
[9]. However, these measures require specialized sensors
and are difficult to use in large-scale studies.

A third kind of automatic engagement recognition –
which is the subject of this paper – is based on computer
vision. Computer vision offers the prospect of unobtru-
sively estimating a student’s engagement by analyzing

cues from the face [42], [29], [10], [11], body posture
and hand gestures [24], [29]. While vision-based methods
for engagement measurement have been pursued previ-
ously by the ITS community, much work remains to be
done before automatic systems are practical in a wide
variety of settings.

If successful, a real-time student engagement recog-
nition system could have a wide range of applications:
(1) Automatic tutoring systems could use real-time en-
gagement signals to adjust their teaching strategy the
way good teachers do. So-called affect-sensitive ITS are
a hot topic in the ITS research community [13], [59],
[5], [19], [26], [12], and some of the first fully-automated
closed-loop ITS that use affective sensors for feedback
are starting to emerge [59], [12]. (2) Human teachers
in distance-learning environments could get real-time
feedback about the level of engagement of their au-
dience. (3) Audience responses to educational videos
could be used automatically to identify the parts of the
video when the audience becomes disengaged and to
change them appropriately. (4) Educational researchers
could acquire large amounts of data to data-mine the
causes and variables that affect student engagement.
These data would have very high temporal resolution
when compared to self-report and questionnaires. (5) Ed-
ucational institutions could monitor student engagement
and intervene before it is too late.

Contributions: In this paper we document one of the
most thorough studies to-date of computer vision tech-
niques for automatic student engagement recognition.
In particular, we study techniques for data annotation,
including the timescale of labeling; we compare state-
of-the-art computer vision algorithms for automatic en-
gagement detection; and we investigate correlations of
engagement with task performance.

Conceptualization of engagement: Our goal is to
estimate perceived engagement, i.e., student engagement
as judged by an external observer. The underlying logic
is that since teachers rely on perceived engagement
to adapt their teaching behavior, then automating per-
ceived engagement is likely to be useful for a wide
range of educational applications. We hypothesize that a
good deal of the information used by humans to make
engagement judgements is based on the student’s face.

Our paper is organized as follows: First we study
whether human observers reliably agree with each other
when estimating student engagement from facial expres-
sions. Next we use machine learning methods to develop
automatic engagement detectors. We investigate which
signals are used by the automatic detectors and by hu-
mans when making engagement judgments. Finally, we
investigate whether human and automated engagement
judgments correlate with task performance.

2 DATASET COLLECTION AND ANNOTATION
FOR AN AUTOMATIC ENGAGEMENT CLASSIFIER
The data for this study were collected from 34 un-
dergraduate students who participated in a “Cognitive
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Skills Training” experiment that we conducted in 2010-
2011 [58]. The purpose of this experiment was to mea-
sure the importance to teaching of seeing the student’s
face. In the experiment, video and synchronized task
performance data were collected from subjects interact-
ing with cognitive skills training software. Cognitive
skills training has generated substantial interest in recent
years; the goal is to boost students’ academic perfor-
mance by first improving basic skills such as mem-
ory, processing speed, and logic and reasoning. A few
prominent systems include Brainskills (by Learning RX
[1]) and FastForWord (by Scientific Learning [2]). The
Cognitive Skills Training experiment utilized custom-
built cognitive skills training software (reminiscent of
BrainSkills) that we developed at our laboratory and
installed on an Apple iPad. A webcam was used to
videorecord the students; it was placed immediately
behind the iPad and aimed directly at the student’s face.

The game software in the experiment consisted of
three games – Set, Remember, and Sum – that trained
logical, reasoning, perceptual, and memory skills. The
games were designed to be mentally taxing. Hard time
limits were imposed on each round of the games, and the
human trainers who controlled the game software (in ei-
ther the Wizard-of-Oz or 1-on-1 conditions, as described
below) were instructed to “push” students to perform
the task more quickly. In this sense, the cognitive skills
training domain of our experiment might resemble a
setting in which a student is taking a stressful exam.
In terms of physical environment, typical ITS and the
cognitive skills setting in our study are very similar – a
student sits directly in front of a computer or iPad, and
a web camera retrieves frontal video of the student. It is
possible that the appearance of affective states such as
engagement might differ between cognitive skills train-
ing and ITS interactions. Nevertheless, it is likely that
the methodology of labeling and the computer vision
techniques for training automated classifiers could still
generalize to more traditional ITS use cases.

The dependent variables during the 2010-2011 exper-
iment were pre- and post-test performance on the Set
game. The “Set” game in our study (see Figure 1 right)
was very similar to the classic card game: the student is
shown a board of 9 cards, each of which can vary along
three dimensions: size, shape, and color. The objective
is to form as many valid sets of 3 cards in the time
allotted as possible. A set is valid if and only if the three
cards in the set are either all the same or all different
for each dimension. After forming a valid set, the three
cards in that set are removed from the board, and three
new cards are dealt. This process then continues until
the time elapses.

Experimental data for the engagement study in this
paper were taken from 34 subjects from two pools: (a)
the 26 subjects who participated in the Spring 2011
version of the Cognitive Skills Training study at a His-
torically Black College/University (HBCU) in the south-
ern United States. All of these subjects were African-

iPad

Webcam

Subject

Fig. 1. Left: Experimental setup in which the subject
plays cognitive skills training software on an iPad. Behind
the iPad is a web camera that records the session. Right:
The “Set” game in the cognitive skills training experiment
that elicited various levels of engagement.

American, and 20 were female. Additional data were
collected from (b) the 8 subjects who participated in the
Summer 2011 version of the Cognitive Skills Training
study at a university in California (UC), all of whom
were either Asian-American or Caucasian-American,
and 5 of whom were female. The game software used in
the UC dataset was identical to the software used in the
HBCU except for minor differences in game parameters
(e.g., how fast cards are dealt). For the present study,
the HBCU data served as the primary data source for
training and testing the engagement recognizer. The UC
dataset allowed us to assess how well the trained system
would generalize to subjects of a different race – a known
issue in modern computer vision systems.

In the experimental setup, each subject sat in a private
room and played the cognitive skills training software
either alone or together with the experimenter. The iPad
was placed on a stand and horizontally situated ap-
proximately 30 centimeters in front of the subject’s face
and vertically so that the iPad was slightly below eye
level. Behind the iPad pointing towards the subject was
a Logitech web camera that recorded the entire session.
As described in [58], each subject was assigned either
to a Wizard-of-Oz condition or a 1-on-1 condition. In
the Wizard-of-Oz condition, the subject sat alone in the
room while interacting with the game software, which
was controlled remotely by a human wizard who could
watch the student in real time. In the 1-on-1 condition,
the subject played the games alongside a human trainer
who would control the software overtly. In the HBCU
dataset, 20 subjects were in the Wizard-of-Oz condition
and 6 subjects were in the 1-on-1 condition. In the UC
dataset, all subjects were in the Wizard-of-Oz condition.

During each session, the subject gave informed con-
sent and then watched a 3 minute video on the iPad
explaining the objectives of the three games and how
to play them. The subject then took a 3 minute pre-
test on the Set game to measure baseline performance.
Test performance was measured as the number of valid
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“sets” of 3 cards (according to the game rules) that the
student could form within 3 minutes. The particular
cards dealt during testing were the same for all subjects.
After the pre-test, the subject then underwent 35 minutes
of cognitive skills training using the training software.
The trainer’s goal (in both the Wizard-of-Oz and 1-on-1
conditions) was to help the student maximize his/her
test performance on Set. During the training session, the
trainer could change the task difficulty, switch tasks, and
provide motivational prompts. After the training period,
the subject took a post-test on Set and then was done.

2.1 Data annotation
Given the recorded videos of the cognitive training
sessions, the next step was to label them for engagement.
We organized a team of labelers consisting of under-
graduate and graduate students from computer science,
cognitive science, and psychology from the two univer-
sities where data were collected. These labelers viewed
and rated the videos for the appearance of engagement.
Note that not all labelers labeled the exact same sets of
images/videos. Instead, we chose to balance the goals of
obtaining many labels per image/video, and annotating
a large amount of data for developing an automated
detector. When labeling videos, the audio was turned off,
and labelers were instructed to label engagement based
only on appearance.

In contrast to the more thoroughly studied domains of
automatic basic emotion recognition (happy, sad, angry,
disgusted, fearful, surprised, or neutral) [33], [6], [61] or
facial action unit classification [37], [27], [7], [47] (from
the Facial Action Coding System [17]), affective states
that are relevant to learning such as frustration or en-
gagement may be difficult to define clearly [50]. Hence,
arriving at a sufficiently clear definition and devising an
appropriate labeling procedure, including the timescale
at which labeling takes place, is important for ensuring
both the reliability and validity of the training labels
[50]. In pilot experimentation we tried three different
approaches to labeling:

1) Watching video clips (at normal viewing speed)
and giving continuous engagement labels by press-
ing the the Up/Down arrow keys.

2) Watching video clips and giving a single number
to rate the entire video.

3) Viewing static images and giving a single number
to rate each image.

We found approach (1) very difficult to execute in prac-
tice. One problem was the tendency to habituate to each
subject’s recent level of engagement, and to adjust the
current rating relative to that subject’s average engage-
ment level of the recent past. This could yield labels that
are not directly comparable between subjects or even
within subjects. Another problem was how to rate short
events, e.g., brief eye closure or looks to the side: should
these brief moments be labeled as “non-engagement”,
or should they be overlooked as normal behavior if the

subject otherwise appears highly engaged? Finally, it was
difficult to provide continuous labels that were synchro-
nized in time with the video; proper synchronization
would require first scanning the video for interesting
events, and then re-watching it and carefully adjusting
the engagement up or down at each moment in time.
We found the labeling task was easier using approaches
(2) and (3), provided that clear instructions were given
as to what constitutes “engagement”.

2.2 Engagement categories and instructions

Given the approach of giving a single engagement num-
ber to an entire video clip or image, we decided on the
following approximate scale to rate engagement:

1: Not engaged at all – e.g., looking away from com-
puter and obviously not thinking about task, eyes
completely closed.

2: Nominally engaged – e.g., eyes barely open, clearly
not “into” the task.

3: Engaged in task – student requires no admonition
to “stay on task”.

4: Very engaged – student could be “commended” for
his/her level of engagement in task.

X: The clip/frame was very unclear, or contains no
person at all.

Example images for each engagement level are shown
in Figure 2. Note that these guidelines pertain certainly
to “behavioral engagement” [20] but they also contain
elements of cognitive and emotional engagement. For
example, whether or not a student is “into” the task
is related to her attitude towards the learning task.
Also, in our definitions above, the distinction between
engagement levels 3 and 4 is related to the student’s
motivational state.

Labelers were instructed to label clips/images for
“How engaged does the subject appear to be”. The key
here is the word appear – we purposely did not want
labelers to try to infer what was “really” going on
inside the students’ brains because this left the labeling
problem too open-ended. This has the consequence that,
if a subject blinked, then he/she was labeled as very
non-engaged (Engagement = 1) because, at that instant,
he/she appeared to be non-engaged. In practice, we found
that this made the labeling task clearer to the labelers
and still yielded informative engagement labels. If the
engagement scores of multiple frames are averaged over
the course of a video clip (see Section 2.4), momentary
blinks will not greatly affect the average score anyway. In
addition, labelers were told to judge engagement based
on the knowledge that subjects were interacting with
training software on an iPad directly in front of them.
Any gaze around the room or to another person (i.e.,
the experimenter) should be considered non-engagement
(rating of 1) because it implied the subject was not
engaging with the iPad. (Such moments occurred at the
very beginning or very end of each session when the



TRANSACTIONS ON AFFECTIVE COMPUTING 5

Engagement = 1

Engagement = 2

Engagement = 3

Engagement = 4

Fig. 2. Sample faces for each engagement level from
the HBCU subjects. All subjects gave written consent to
publication of their face images.

experimenter was setting up or tearing down the exper-
iment.) The goal here was to help the system generalize
to a variety of settings where students should be looking
directly in front of them.

2.3 Timescale
An important variable in annotating video is the
timescale at which labeling takes place. For approach
(2) (described in Section 2.1), we experimented with
two different time scales: clips of 60 sec and clips of
10 sec. Approach (3) (single images) can be seen as
the lower limit of the length of a video clip. In a pilot
experiment we compared these three timescales for inter-
coder reliability. As performance metric we used Cohen’s
κ (see Appendix for more details). Since the engagement
labels belong to an ordinal scale ({1, 2, 3, 4}) and are not
simply categories, we used a weighted κ with quadratic
weights to penalize label disagreement.

For the 60 sec labeling task, all the video sessions (∼ 45
minutes/subject) from the HBCU subjects were watched
from start to end in 60 sec clips, and 2 labelers entered
a single engagement score after viewing each clip. For
the 10 sec labeling task, 505 video clips of 10 sec each
were extracted at random timepoints from the session
videos and shown to 7 labelers in random order (in terms

of both time and subject). Between the 60 sec clips and
the 10 sec labeling tasks, we found the 10 sec labeling
task more intuitive. When viewing the longer clips, it
was difficult to know what label to give if the subject
appeared non-engaged early on but appeared highly
engaged at the end. The inter-coder reliability of the 60
sec clip labeling task was κ = 0.39 (across 2 labelers); for
the 10 sec clip labeling task κ = 0.68 (across 7 labelers).

For approach (3), we created custom labeling software
in which 7 labelers annotated batches of 100 images each.
The images for each batch were video frames extracted at
random timepoints from the session videos. Each batch
contained a random set of images spanning multiple
timepoints from multiple subjects. Labelers rated each
image individually but could view many images and
their assigned labels simultaneously on the screen. The
labeling software also provided a Sort button to sort the
images in ascending order by their engagement label.
In practice, we found this to be an intuitive and efficient
method of labeling images for the appearance of engage-
ment. The inter-coder reliability for image-based labeling
was κ = 0.56. This reliability can also be increased by
averaging frame-based labels across multiple frames that
are consecutive in time (see Section 2.4).

2.4 Static versus motion information

One interesting question is how much information about
students’ engagement is captured in the static pixels of
the individual video frames compared to the dynamics
of the motion. We conducted a pilot study to examine
this question. In particular, we randomly selected 120
video clips (10 sec each) from the set of all HBCU videos.
The random sample contained clips from 24 subjects.
Each clip was then split into 40 frames spaced 0.25 sec
apart. These frames were then shuffled both in time and
across subjects. A human labeler labeled these image
frames for the appearance of engagement, as described
in “approach (3)” of Section 2.1. Finally, the engagement
values assigned to all the frames for a particular clip
were reassembled and averaged; this average served
as an estimate of the “true” engagement score given
by that same labeler when viewing that video clip as
described in “approach (2)” above. We found that, with
respect to the true engagement scores, the estimated
scores gave a κ = 0.78 and a Pearson correlation r = 0.85.
This accuracy is quite high and suggests that most of
the information about the appearance of engagement is
contained in the static pixels, not the motion per se.

We also examined the video clips in which the re-
constructed engagement scores differed the most from
the true scores. In particular, we ranked the 120 labeled
video clips in decreasing order of absolute deviation of
the estimated label (by averaging the frame-based labels)
from the “true” label given to the video clip viewed as
a whole. We then examined these clips and attempted
to explain the discrepancy: In the first clip (greatest
absolute deviation), the subject was swaying her head
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from side to side as if listening to music (although
she was not). It is likely that the coder treated this as
non-engaged behavior. This behavior may be difficult to
capture from static frame judgments. However, it was
also an anomalous case.

In the second clip, the subject turned his head to the
side to look at the experimenter, who was talking to
him for several seconds. In the frame-level judgments,
this was perceived as off-task, and hence non-engaged
behavior; this corresponds to the instructions given to
the coders that they rate engagement under the assump-
tion that the subject should always be looking towards
the iPad. For the video clip label, however, the coder
judged the student to be highly engaged because he was
intently listening to the experimenter. This is an example
of inconsistency on the part of the coder as to what
constitutes engagement and does not necessarily indicate
a problem with splitting the clips into frames.

Finally, in several clips the subjects sometimes shifted
their eye gaze downward to look at the bottom of
the iPad screen. At a frame level, it was difficult to
distinguish the subject looking at the bottom of the iPad
from the subject looking to his/her own lap or even
closing his/her eyes, both of which would be considered
non-engagement. From video, it was easier to distin-
guish these behaviors from the context. However, these
downward gaze events were rare and can be effectively
filtered out by simple averaging.

In spite of these problems, the relatively high accuracy
of estimating video-based labels from frame-based labels
suggests an approach for how to construct an automatic
classifier of engagement: Instead of analyzing video clips
as video, break them up into their video frames, and
then combine engagement estimates for each frame. We
used this approach to label both the HBCU and the UC
data for engagement. In the next section, we describe
our proposed architecture for automatic engagement
recognition based on this frame-by-frame design.

3 AUTOMATIC RECOGNITION ARCHITECTURES

Based on the finding from Section 2.4 that video clip-
based labels can be estimated with high fidelity simply
by averaging frame-based labels, we focus our study
on frame-by-frame recognition of student engagement.
This means that many techniques developed for emotion
and facial action unit classification can be applied to
the engagement recognition problem. In this paper we
proposed a 3-stage pipeline.

1) Face registration: the face and facial landmark
(eyes, nose, and mouth) positions are localized au-
tomatically in the image; the face box coordinates
are computed; and the face patch is cropped from
the image [35]. We experimented with 36× 36 and
48× 48 pixel face resolution.

2) The cropped face patch is classified by four binary
classifiers, one for each engagement category l ∈
{1, 2, 3, 4}.

3) The outputs of the binary classifiers are fed to a
regressor to estimate the image’s engagement level.

Stage (1) is standard for automatic face analysis, and our
particular approach is described in [35]. Stage (2) is dis-
cussed in the next subsection, and stage (3) is discussed
in Section 3.11. This architecture is reminiscent of an
automated head pose estimation system we developed
previously [57], which combines the outputs of multiple
binary classifiers to form a real-valued judgment.

3.1 Binary classification
We trained 4 binary classifiers of engagement – one for
each of the 4 levels described in Section 2.1. The task of
each of these classifiers is to discriminate an image (or
video frame) that belongs to engagement level l from
an image that belongs to some other engagement level
l′ 6= l. We call these detectors 1-v-other, 2-v-other, etc.
We compared three commonly used and demonstrably
effective feature type + classifier combinations from the
automatic facial expression recognition literature:
• GentleBoost with Box Filter features (Boost(BF)):

this is the approach popularized Viola and Jones in
[53] for face detection.

• Support vector machines with Gabor features
(SVM(Gabor)): this approach has achieved some
of the highest accuracies in the literature for facial
action and basic emotion classification [35].

• Multinomial logistic regression with expression out-
puts from the Computer Expression Recognition
Toolbox [35] (MLR(CERT)): here, we attempt to
harness an existing automated system for facial
expression analysis to train engagement classifiers.

Our goal is not to judge the effectiveness of each feature
type (or each learning method) in isolation, but rather to
assess the effectiveness of these state-of-the-art computer
vision architectures for a novel vision task. As relatively
little research has yet examined how to recognize the
emotional states specific to students in real learning
environments, it is an open question how well these
methods would perform for engagement recognition. We
describe each approach in more detail below.

3.1.1 Boost(BF)
Box Filter (BF) features measure differences in average
pixel intensity between neighboring rectangular regions
of an image. They have been shown to be highly effective
for automatic face detection [53] as well as smile detec-
tion [56]. For example, for detecting faces, a 2-rectangle
Box Filter can capture the fact that the eye region of the
face is typically darker than the upper cheeks. At run-
time, BF features are fast to extract using the “integral
image” technique [53]. At training time, however, the
number of BF features relative to the image resolution is
very high compared to other image representations (e.g.,
a Gabor decomposition), which can lead to overfitting.
BF features are typically combined with a boosted clas-
sifier such as Adaboost [21] or GentleBoost (Boost) [22],
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Fig. 2. Each filter is computed by taking the difference of the sums of the pixels in the white
boxes and grey boxes. Filter types include those in Ref. 24, plus a center-surround type filter.

perform only slightly above chance, the combined system (i.e. the strong classifier)

may achieve very high levels of accuracy.

In Ref. 12, it was shown that boosting methods can be reinterpreted from the

point of view of sequential maximum likelihood estimation, an interpretation that

makes it possible to use these methods within the framework proposed here. Learn-

ing in GentleBoost is accomplished by sequentially choosing weak classifiers and

combining them to minimize a chi-square error function. In our application, each

weak classifier consists of a simple linear filter, selected from a large fixed library

of filters, followed by a nonlinear transfer function.

The pool of filters we use are the same as those used in Ref. 24, with the

addition of a center-surround filter class (see Fig. 2). The main reason for using

these relatively simple features is that they can be computed very efficiently in

general purpose computers without the need of specialized hardware (see Refs. 23

and 24 for detailed explanation). In Ref. 24, the nonlinear transfer function was a

simple threshold function whose output was in the set {−1, +1}. In this paper, we

use a piecewise constant function whose parameters are chosen by the GentleBoost

algorithm. This allows each weak classifier to output arbitrary real values in the

range [−1, +1] rather than simply binary decisions.

3. Database Description

Here we briefly describe some of the most commonly used databases for train-

ing and testing facial feature detectors. FERET (frontal images)22 is a free, pub-

licly available database with 3880 images taken in controlled settings with no

background clutter and little variation in illumination. XM2VTS29 and BANCA-

C/WorldModel1 are commercially available databases. XM2VTS contains 1180

high quality frontal face images. BANCA-C/WorldModel contains 2380 frontal face

images with no background clutter and some variation in illumination. Images in

the aforementioned databases were taken in controlled environments with uniform

background.

The BANCA-D/A and BioID2 databases attempt to simulate real-world condi-

tions. BANCA-D/A contains 4160 frontal face images with cluttered backgrounds,

variable illuminations and head pose variation. The free and publicly available

BioID database contains 1521 frontal face images that vary with respect to illumi-

nation, background, scale and head pose. Based on results from the literature,9, 15, 32

Fig. 3. Box Filter (BF) features, sometimes known as
Haar-like wavelet filters, that were used in the study.

which performs both feature selection during training
and actual classification at run-time. In our GentleBoost
implementation, each weak learner consists of a non-
parametric regressor smoothed with a Gaussian kernel
of bandwidth σ, to estimate the log-likelihood ratio of
the class label given the feature value. Each Gentle-
Boost classifier was trained for 100 boosting rounds.
For the features, we included 6 types of Box Filters in
total, comprising two-, three-, and four-rectangle features
similar to those used in [53], and an additional two-
rectangle “center-surround” feature (see Figure 3). At a
face image resolution of 48×48 pixels, there were 5397601
BF features; at a face resolution of 36 × 36 pixels, there
were 1683109 features.

3.1.2 SVM(Gabor)
Gabor Energy Filters [44] are bandpass filters with a
tunable spatial orientation and frequency. They model
the complex cells of the primate’s visual cortex. When
applied to images, they respond to edges at particular
orientations, e.g., horizontal edges due to wrinkling of
the forehead, or diagonal edges due to “crow’s feet”
around the eyes. Gabor Energy Filters have a proven
record in a wide variety of face processing applications,
including face recognition [31] and facial expression
recognition [35]. In machine learning applications Gabor
features are often classified by a soft-margin linear sup-
port vector machine (SVM) with parameter C specifying
how much misclassified training examples should pe-
nalize the objective function. In our implementation, we
applied a “bank” of 40 Gabor Energy Filters consisting of
8 orientations (spaced at 22.5deg intervals) and 5 spatial
frequencies ranging from 2 to 32 cycles per face. The
total number of Gabor features is N ×N × 8× 5, where
N is the face image width in pixels.

3.1.3 MLR(CERT)
The Facial Action Coding System [17] is a comprehensive
framework for objectively describing facial expression in
terms of Action Units, which measure the intensity of
over 40 distinct facial muscles. Manual FACS coding has
previously been used to study student engagement and
other emotions relevant to automated teaching [28], [42].
In our study, since we are interested in automatic en-
gagement recognition, we employ the Computer Expres-
sion Recognition Toolbox (CERT), which is a software
tool developed by our laboratory to estimate facial action
intensities automatically [35]. Although the accuracies
of the individual facial action classifiers vary, we have
found CERT to be useful for a variety of facial analysis

tasks, including the discrimination of real from faked
pain [34], driver fatigue detection [54], and estimation of
students’ perception of curriculum difficulty [55]. CERT
outputs intensity estimates of 20 facial actions as well
as the 3-D pose of the head (yaw, pitch, and roll). For
engagement recognition we classify the CERT outputs
using multinomial logistic regression (MLR), trained
with an L2 regularizer on the weight vector of strength
α. We use the absolute value of the yaw, pitch, and roll
to provide invariance to the direction of the pose change.
Since we are interested in real-time systems that can
operate without baselining the detector to a particular
subject, we use the raw CERT outputs (i.e., we do not
z-score the outputs) in our experiments.

Internally, CERT uses the SVM(Gabor) approach de-
scribed above. Since CERT was trained on hundreds
to thousands of subjects (depending on the particu-
lar output channel), which is substantially higher than
the number of subjects collected for this study, it is
possible that CERT’s outputs will provide an identity-
independent representation of the students’ faces, which
may boost generalization performance.

3.2 Data selection
We started with a pool of 13584 frames from the HBCU
dataset. We then applied the following procedure to
select training and testing data for each binary classifier
to distinguish l-v-other:

1) If the minimum and maximum label given to an
image differed by more than 1 (e.g., one labeler
assigns a label of 1 and another assigns a label of
3), then the image was discarded. This reduced the
pool from 13584 to 9796 images.

2) If the automatic face detector (from CERT [35])
failed to detect a face, or if the largest detected face
was less than 36 pixels wide (usually indicative of a
erroneous face detection), the image was discarded.
This reduced the pool from 9796 to 7785 images.

3) For each of the labeled images, we considered
the set of all labels given to that image by all
the labelers. If any labeler marked the frame as
X (no face, or very unclear), then the image was
discarded. This reduced the pool from 7785 to 7574
images.

4) Otherwise, the “ground truth” label for each image
was computed by rounding the average label for
that image to the nearest integer (e.g., 2.4 rounds to
2; 2.5 rounds to 3). If the rounded label equalled l,
then that image was considered a positive example
for the l-v-other classifier’s training set; otherwise,
it was considered a negative example.

In total there were 7574 frames from the HBCU dataset
and 16711 from the UC dataset selected using this ap-
proach. The distributions of engagement in HBCU were
6.03%, 9.72%, 46.28%, and 37.97% for engagement levels
1 through 4, respectively. For UC, they were 5.37%,
8.46%, 42.31%, and 43.85%, respectively.
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3.3 Cross-validation
We used 4-fold subject-independent cross-validation to
measure the accuracy of each trained binary classifier.
The set of all labeled frames was partitioned into 4 folds
such that no subject appeared in more than one fold;
hence, the cross-validation estimate of performance gives
a sense of how well the classifier would perform on a
novel subject on which the classifier was not trained.

3.4 Accuracy metrics
We use the 2AFC [60], [40] metric to measure accuracy,
which expresses the probability of correctly discriminat-
ing a positive example from a negative example in a
2-alternative forced choice classification task. The 2AFC
is an unbiased estimate of the area under the Receiver
Operating Characteristics curve, which is commonly
used in the facial expression recognition literature (e.g.,
[37]). A 2AFC value of 1 indicates perfect discrimination,
whereas 0.5 indicates that the classifier is “at chance”.
In addition, we also compute Cohen’s κ with quadratic
weighting. To compare the machine’s accuracy to inter-
human accuracy, we computed the 2AFC and κ for
human labelers as well, using the same image selection
criteria as described in Section 3.2. When computing κ
for the automatic binary classifiers, we optimized κ over
all possible thresholds of the detector’s outputs.

3.5 Hyperparameter selection
Each of the classifiers listed above has a hyperparameter
associated with it (either σ, C, or α). The choice
of hyperparameter can impact the test accuracy
substantially, and it is a common pitfall to give an
overly optimistic estimate of a classifier’s accuracy
by manually tuning the hyperparameter based on the
test set performance. To avoid this pitfall, we instead
optimize the hyperparameters using only the training
set by further dividing each training set into 4 subject-
independent inner cross-validation folds in a double cross-
validation paradigm. We selected hyperparameters from
the following sets of values: σ ∈ {10−2, 10−1.5, . . . , 100},
C ∈ {0.1, 0.5, 2.5, 12.5, 62.5, 312.5}, and α ∈
{10−5, 10−4, . . . , 10+5}.

3.6 Results: Binary Classification
Classification results are shown in Table 1 for cropped
face resolution of 48 × 48 pixels. Each cell reports the
accuracy (2AFC) averaged over 4 cross-validation folds,
along with standard deviation in parentheses. Accuracies
at 36 × 36 pixel resolution were very slightly lower. All
results are for subject-independent classification.

From the upper part of Table 1, we see that the
binary classification accuracy given by the machine clas-
sifiers is very similar to inter-human accuracy. All of
the three architectures tested delivered similar perfor-
mance averaged across the four tasks (1-v-other, 2-v-
other, etc.). However, MLR(CERT) performed worse on

Accuracy 2AFC (and std. dev.) – train on HBCU, test on HBCU
Classifier

Task MLR(CERT) Boost(BF) SVM(Gabor) Human
1-v-other 0.862 (0.061) 0.965 (0.012) 0.914 (0.031) 0.909 (0.021)
2-v-other 0.721 (0.130) 0.709 (0.130) 0.711 (0.038) 0.620 (0.143)
3-v-other 0.574 (0.045) 0.607 (0.065) 0.630 (0.075) 0.606 (0.070)
4-v-other 0.697 (0.076) 0.632 (0.111) 0.660 (0.127) 0.650 (0.068)
Avg 0.714 0.728 0.729 0.696

Accuracy 2AFC (and std. dev.) – train on HBCU, test on UC
Classifier

Task MLR(CERT) Boost(BF) SVM(Gabor)
1-v-other 0.782 (0.120) 0.845 (0.111) 0.831 (0.091)
2-v-other 0.682 (0.095) 0.597 (0.102) 0.668 (0.067)
3-v-other 0.507 (0.058) 0.464 (0.063) 0.570 (0.055)
4-v-other 0.613 (0.108) 0.469 (0.153) 0.697 (0.041)
Avg 0.646 0.594 0.691

TABLE 1
Top: Subject-independent, within-dataset (HBCU)

engagement recognition accuracy (2AFC metric) for
each engagement level l ∈ {1, 2, 3, 4} using each of the
three classification architectures, along with inter-human
classification accuracy. Bottom: Engagement recognition
accuracy on a different dataset (UC) not used for training.

Cohen’s κ (and std. dev.) – train on HBCU, test on HBCU
Classifier

Task MLR(CERT) Boost(BF) SVM(Gabor) Human
1-v-other 0.393 (0.094) 0.662 (0.060) 0.528 (0.167) 0.629 (0.245)
2-v-other 0.254 (0.209) 0.246 (0.164) 0.222 (0.132) 0.272 (0.260)
3-v-other 0.154 (0.063) 0.193 (0.090) 0.213 (0.109) 0.209 (0.154)
4-v-other 0.301 (0.098) 0.214 (0.119) 0.261 (0.135) 0.256 (0.109)
Avg 0.275 0.329 0.306 0.341

Cohen’s κ (and std. dev.) – train on HBCU, test on UC
Classifier

Task MLR(CERT) Boost(BF) SVM(Gabor)
1-v-other 0.329 (0.236) 0.400 (0.258) 0.414 (0.261)
2-v-other 0.123 (0.100) 0.068 (0.040) 0.154 (0.134)
3-v-other 0.078 (0.049) 0.027 (0.022) 0.096 (0.054)
4-v-other 0.137 (0.123) 0.063 (0.058) 0.260 (0.125)
Avg 0.167 0.140 0.231

TABLE 2
Similar to Table 1, but shows Cohen’s κ instead of 2AFC.

Top: HBCU test set. Bottom: UC generalization set.

1-v-other than the other classifiers. As we discuss in
Section 4, many images labeled as Engagement = 1
exhibit eye closure. It is possible that CERT’s eye closure
detector is relatively inaccurate, and in comparison the
Boost(BF) and SVM(Gabor) approaches are able to learn
an accurate eye closure detector from the training data
themselves. On the other hand, CERT performs better
than the other approaches for 4-v-other. As described in
Section 4, Engagement = 4 can be discriminated using
pose information. Here, CERT may have an advantage
because CERT’s pose detector was trained on tens of
thousands of subjects.

Since inter-coder reliability is commonly reported us-
ing Cohen’s κ, we report those values as well, both for
HBCU and UC datasets, in Table 2. The “Avg” κ is the
mean of the κ values for the 4 binary classifiers. As in
Table 1, both the SVM(Gabor) and BF(Boost) classifiers
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demonstrate performance that is close to inter-human
accuracy.

Overall we find the results encouraging that machine
classification of engagement can reach inter-human lev-
els of accuracy.

3.7 Generalization to a different dataset
A well-known issue for contemporary face classifiers is
to generalize to people of a different race from the people
in the training set; in particular, modern face detectors
often have difficulty detecting people with dark skin
[56]. For our study, we collected data both at HBCU,
where all the subjects were African-American, as well as
UC, where all the subjects were either Asian-American
or Caucasian-American. This gives us the opportunity to
assess how well a classifier trained on one dataset gen-
eralizes to the other. Here, we measure performance of
the binary classifiers described above that were trained
on HBCU when classifying subjects from UC.

Results are shown in Tables 1 and 2 (bottom) for each
classification method. The most robust classifier was
SVM(Gabor): average 2AFC fell only slightly from 0.729
to 0.691, and average κ fell from 0.306 to 0.231. Interest-
ingly, the MLR(CERT) architecture was not particularly
robust to the change in population, despite being trained
on a much larger number of subjects. It is possible that
the head pose features that are measured by CERT and
are useful for the HBCU dataset do not generalize to
the UC dataset. Between the Boost(BF) and SVM(Gabor)
approaches, it is possible that the larger number of BF
features compared to Gabor features led to overfitting
– the Boost(BF) classifiers generalized well to subjects
within the same population, but not to subjects of a
different population.

3.8 Discrimination of extreme emotion states
In addition to the l-v-rest classification results described
above, we also assess the accuracy of the SVM(Gabor)
classifier on the task of discriminating between a student
who is very engaged (i.e., Engagement = 4) from a
student who is very non-engaged (i.e., Engagement = 1).
On this binary task, the accuracy (2AFC) on the HBCU
test set was 0.9280. On the UC generalization set, it was
0.7979.

3.9 Effect of data selection procedures
As described in Section 3.2, we excluded images on
which there is large label disagreement (step 1). It is
conceivable that this could bias the results to be too
optimistic because the “harder” images might be ones
on which labelers tend to disagree. In a supplemen-
tary analysis using just the first training/testing fold
for evaluation, we compared SVM(Gabor) classifiers on
image sets created without excluding images with high
disagreement (which resulted in 10409 images in which
the face was detected, instead of 7574), to SVM(Gabor)

Confusion matrix for binary classifiers (HBCU)
E = 1 E = 2 E = 3 E = 4

1-v-other 0.8434 0.3780 0.1014 0.1281
2-v-other 0.4096 0.6525 0.2852 0.2277
3-v-other 0.3849 0.4802 0.7038 0.5028
4-v-other 0.2857 0.3658 0.4961 0.7365

Confusion matrix for binary classifiers (UC)
E = 1 E = 2 E = 3 E = 4

1-v-other 0.7780 0.4729 0.2386 0.2643
2-v-other 0.3603 0.6054 0.3650 0.2646
3-v-other 0.3878 0.4303 0.5482 0.3829
4-v-other 0.2786 0.3674 0.4448 0.7323

TABLE 3
Confusion matrices for the binary SVM(Gabor)

classifiers. Each cell is the probability that the classifier
l-v-other will classify an image, whose “true” engagement

is given by E = l′, as engagement l. Top: results for
HBCU test set. Bottom: results for UC generalization set.

classifiers trained with excluding those images. Results
were very similar: the average accuracy (2AFC) over all 4
binary engagement classifiers was 0.7632 after excluding
the images with high disagreement, and just slightly
lower at 0.7570 without those images. This suggests that
the larger number of images available for training can
compensate for the noisier labels.

3.10 Confusion matrices
An important question when developing automated
classifiers is what kinds of mistakes the system makes.
For example, does the 1-v-rest classifier ever believe that
an image, whose true engagement label is 4, is actually
a 1? To answer this question, we must first select a
threshold on the real-valued output of each classifier
so that it can make a binary decision. Here, we choose
the threshold τ to maximize the balanced error rate on
each test fold, which we define as the average of the
false positive rate and the false negative rate. If the
l-v-rest classifier’s real-valued output on an image is
greater than τ , then the classifier decides the image has
engagement level l; otherwise, it decides the image has
some engagement level not l. Using this threshold selec-
tion procedure, and averaging results across folds, we
computed the confusion matrices on both the HBCU and
UC datasets of the SVM(Gabor) engagement classifiers;
the matrices are shown in Table 3. Each cell gives the
probability that the binary classifier l-v-other will clas-
sify an image, whose “true” engagement (the rounded
average label over all labels given to a particular image)
is given by E = l′, as engagement l. Note that neither the
rows nor the columns sum to 1 – this is natural because
the classifiers are binary, not 4-way.

As expected, the matrix diagonals dominate over all
other values in the rows, which means that each l-v-rest
classifier is most likely to respond to an image whose
true engagement level is l. However, we also observe
that the binary classifiers sometimes make “egregious
mistakes”. For example, the 3-v-other classifier on the
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Confusion matrix of MLR regressor (HBCU)
D = 1 D = 2 D = 3 D = 4

E = 1 0.5961 0.1735 0.1258 0.1047
E = 2 0.2039 0.3634 0.3521 0.0807
E = 3 0.0313 0.1511 0.4669 0.3507
E = 4 0.0379 0.0621 0.3971 0.5029

Confusion matrix of MLR regressor (UC)
D = 1 D = 2 D = 3 D = 4

E = 1 0.5351 0.1225 0.1963 0.1461
E = 2 0.2588 0.2218 0.2552 0.2642
E = 3 0.1525 0.1382 0.3950 0.3143
E = 4 0.1254 0.0603 0.3898 0.4244

Confusion matrix of human labelers (HBCU)
D = 1 D = 2 D = 3 D = 4

E = 1 0.5943 0.2509 0.1445 0.0103
E = 2 0.0274 0.4230 0.4910 0.0586
E = 3 0.0029 0.1108 0.6924 0.1939
E = 4 0.0011 0.0299 0.5456 0.4234

TABLE 4
Confusion matrices specifying the conditional probability

P (D = l | E = l′) of the automatic MLR-based
engagement regressor’s output D given the “true”

engagement label E. Top: results on HBCU test set.
Middle: results on UC generalization set. Bottom:

results for human labelers on HBCU test set.

HBCU dataset responded positively on 38.49% of images
whose true engagement level was 1.

3.11 Regression

After performing binary classification of the input image
for each engagement level l ∈ {1, 2, 3, 4}, the final
stage of the pipeline is to combine the binary classifiers’
outputs into a final engagement estimate. For the binary
classifiers, we chose the SVM(Gabor) architecture and
used two alternative strategies: (1) linear regression for
real-valued engagement regression, and (2) multinomial
logistic regression (MLR) for 4-way discrete engagement
level classification.

3.12 Results

3.12.1 Linear regression
Subject-independent 4-fold cross-validation accuracy,
measured using Pearson’s correlation r, was 0.50 on the
HBCU test set. For comparison, inter-human accuracy
on the same task was 0.71. On the UC generalization
set, the mean Pearson correlation (over 4 folds) of the
regressor was 0.36.

3.12.2 Multinomial logistic regression (MLR)
As an alternative to linear regression, we used multi-
nomial logistic regression (MLR) to obtain discrete-
valued engagement outputs in {1, 2, 3, 4}. The average
Cohen’s κ (over all 4 folds) of the MLR, when compared
with human labels on the HBCU dataset, was 0.42
(std. dev. = 0.13); on the UC generalization set, it was
0.23 (std. dev. = 0.13).

Table 4 shows confusion matrices both on the HBCU
test set and the UC generalization set using MLR as the
regressor. The table shows the conditional probability
(averaged over 4 folds) that the detector’s output D
equals l, given that the “true” engagement E (defined
as the rounded average engagement label over all hu-
man labelers who labeled that image) equals l′. For
example, on the HBCU dataset, the probability that the
engagement regressor outputs D = 1, given that the true
engagement was E = 1, is 0.5961. The bottom of the
table shows the analogous confusion matrix for human
labelers. Overall, the confusion matrix of the automated
MLR regressor and the matrix for humans are similar.
Note, however, that the automated regressor sometimes
makes “egregious” mistakes, e.g., mis-classifying images
whose true engagement is 1 as belonging to engagement
category 4 (P (D = 4 | E = 1) = 0.1047 for HBCU).

Finally, on the task of discriminating E = 1 from E = 4
(similar to Section 3.8), the accuracy of the MLR was
κ = 0.72; for human labelers on this task, κ = 0.96.

4 REVERSE-ENGINEERING THE LABELERS

Given that our goal in this project is to recognize student
engagement as perceived by an external observer, it is
instructive to analyze how the human labelers formed
their judgments. We can use the weights assigned to the
CERT features that were learned by the MLR(CERT) clas-
sifiers to assess quantitatively how the human labelers
judged engagement – if the MLR weight assigned to AU
45 (eye closure) had a large magnitude, for example, then
that would suggest that eye closure was an important
factor in how humans labeled the dataset on which that
MLR classifier was trained. In particular, we examined
the MLR weights of the 4-v-other MLR(CERT) classifier.
Prior to training, the training dataset was first normal-
ized to have unit variance for each feature so that all
features had the same scale. After training the MLR, we
selected the 5 MLR weights with the highest magnitude;
results are shown in Figure 4.

The most discriminating feature was the absolute
value of roll (in-plane rotation of the face), with which
Engagement = 4 was negatively associated (weight of
−0.5659). It is possible that the hand-resting-on-hand
that is prominent for Engagement = 2 also induces
roll in the head, and that the MLR(CERT) classifier
learned this trend. The second most discriminating facial
action was Action Unit 10 (upper lip raiser), which was
positively correlated with Engagement = 4. However,
this correlation could potentially be spurious, as there
were many moments when the learners exhibited hand-
on-mouth gestures that may have corrupted the AU 10
estimates. Such gestures have been recognized as an
important occlusion in automated teaching settings [38].

AU 1 (inner brow raiser), AU 45 (eye closure), and the
absolute value of pitch (tilting of the head up and down)
were also negatively correlated with Engagement = 4.
AU 1 has previously been reported to correlate with
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AU 1 AU 10 AU 10 (from HBCU)

CERT feature Weight
abs(Roll) −0.5659
AU 10 +0.5089
AU 1 −0.4430
AU 45 (eye closure) −0.2851
abs(Pitch) −0.2644

Fig. 4. Weights associated with different Action Units
(AUs) and head pose coordinates to discriminate
Engagement = 4 from Engagement 6= 4, along with
examples of AUs 1 and 10. Pictures courtesy of Carnegie
Mellon University’s Automatic Face Analysis group, http:
//www.cs.cmu.edu/∼face/facs.htm.

Correlations of Engagement with Test Scores
Pre-test Post-test

Human labelers
Mean engagement label 0.52∗ 0.37
P (Engagement = 1) −0.39 −0.22
P (Engagement = 2) −0.32 −0.18
P (Engagement = 3) −0.34 −0.40
P (Engagement = 4) 0.57∗ 0.47∗

Automatic classifier
P (Engagement = 4) 0.64∗ 0.27

TABLE 5
Engagement statistics that correlated with either pre-test
or post-test performance. P (Engagement = l) denotes

the fraction of video frames in which a subject’s
engagement level was estimated to be l. Correlations
with a * are statistically significant (p < 0.05, 2-tailed).

students’ self-report of frustration [10], but not engage-
ment. The negative correlations with AU 45 and pitch
are intuitive – they are suggestive that the student has
tuned out (or even fallen asleep), or is looking down
away from the screen.

5 CORRELATION WITH TEST SCORES

In this section we investigate the correlation between
human and automatic perceptions of engagement with
student test performance and learning. We show results for
Pearson correlation. Results for Spearman rank correla-
tion were generally lower and are not reported.

5.1 Test performance

5.1.1 Human labels
We first compared human judgments of engagement with
test performance by computing the mean engagement la-
bel over all labeled frames for each subject in the HBCU
dataset, and then correlating these mean engagement
labels with pre-test and post-test scores (see Table 5).
The Pearson correlation between engagement and pre-
test was r = 0.52 (p = 0.0167, 2-tailed) and between

engagement and post-test was r = 0.37 (p = 0.1027,
dof=19, 2-tailed).

We also examined which of the 4 engagement levels
was most predictive of task performance by correlating
the fraction of frames labeled as Engagement = 1,
Engagement = 2, etc., with student test performance.
Only Engagement = 4 was positively correlated with
pre-test (r = 0.57, p = 0.0066, dof=19, 2-tailed) and post-
test (r = 0.47, p = 0.0324, dof=19, 2-tailed) performance.
In fact, the fraction of frames for which a student ap-
peared to be in engagement level 4 (which we denote
as P (Engagement = 4)) was a better predictor than
the mean engagement predictor described above. All the
other engagement levels l < 4 were negatively (though
non-significantly) correlated with test performance, sug-
gesting that Engagement = 4 is the only “positive”
engagement state.

For comparison, the correlation between students’ pre-
test and post-test scores was r = 0.44 (p = 0.0471,
dof=19, 2-tailed), which is slightly (though not statis-
tically significantly) less than the correlation between
P (Engagement = 4) and post-test. In other words,
human perceptions of student engagement were just
as good of a predictor of post-test performance as the
student’s pre-test score. A partial correlation between
P (Engagement = 4) and post-test, given pre-test score,
gave r = 0.29 (p = 0.2073, dof=19, 2-tailed).

Finally, it is worth noting that another interpretation of
the correlation between engagement and pre-test is that
a student’s pre-test score is predictive of his/her engage-
ment level during the subsequent learning session.

5.1.2 Automatic estimates
We also computed the correlation between automatic
judgments of engagement and student pre- and post-test
performance. Since the best predictor of test performance
from human judgments was from the fraction of frames
labeled as Engagement = 4, we focused on the output
of the 4-v-other classifier. In particular, we correlated
the fraction of frames over each subject’s entire video
session that the 4-v-other detector predicted to be a
“positive” frame by thresholding with τ , where τ is
the median detector output over all subjects’ frames.
In other words, frames on which the detector’s output
exceeded τ was considered to be a “positive” frame for
engagement level 4. The correlation with this automatic
P (Engagement = 4) predictor and pre-test performance
was 0.64 (p = 0.0023, dof=19, 2-tailed); for post-test
performance, it was r = 0.27 (p = 0.2436, dof=19, 2-
tailed). This is the same pattern of correlations as in
Section 5.1.1 – engagement was more predictive of pre-
test than of post-test.

5.2 Learning
In addition to raw test performance, we also examined
correlations between engagement and learning. The av-
erage difference between the post-test and pre-test scores
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(across 21 subjects) was 2.81 sets, which was statistically
significant (t(20) = 4.3746, p = 0.0002, 2-tailed), and
which suggests that students were learning. However,
we did not find significant correlations between en-
gagement and learning, either using human labels or
automatically estimated engagement labels.

5.3 Discussion
The correlation between engagement and pre-and post-
test scores is of interest. Particularly telling is that post-
test performance can be predicted just as accurately by
looking at students’ faces during learning (r = 0.47) as
by looking at their pre-test scores (0.44). These results are
consistent with [15], who found a positive correlation
between “student energy” (valence) and math pre-test
score as well as a positive correlation between a student
being “on-task” and math post-test scores,

The lack of correlation between engagement and learn-
ing was somewhat disappointing but we believe it is an
important clue for planning future research. The more
engaged students have higher pre-test scores, which
suggests there may be ceiling effects. It is possible,
for example, that improving a test score from 10 to
11 is more difficult than improving from 1 to 2. We
explored this hypothesis by optimizing the correlation
between engagement and learning gains over different
monotonic transformations both of engagement and of
test scores. In particular, by searching over all monotonic
mappings from {1, . . . , 4} into {0, . . . , 4} for engage-
ment, and from {0, . . . , 12} (the range of test scores
observed in our experiment) into {0, . . . , 20} for test
scores, we identified a transformation that gave mod-
erate (r = 0.44, p = 0.0458, dof=19, 2-tailed) but sta-
tistically significant correlations between learning and
engagement. This non-linear monotonic transformation
was effectively “undoing” the ceiling effect, weighting
learning gains more heavily that started from larger
pre-test baselines. However, we tried a large number
of monotonic transformations, and thus the statistical
significance of this analysis should be taken with a
grain of salt. We also note that the correlation between
engagement and learning might become significant if the
number of subjects were increased.

Finally, and most importantly, in short term laboratory
studies such as ours, most students are quite motivated
and engaged. Indeed, while examining the videos, we
rarely found periods of prolonged non-engagement. This
is obviously different from classroom situations in which
some students are consistently engaged and some stu-
dents consistently disengaged across days, months, and
years. Future work would benefit from focusing on long-
term learning situations where variance in engagement is
more likely to be observed and the effect of engagement
on learning is more likely to become apparent.

6 CONCLUSIONS
Increasing student engagement has emerged as a key
challenge for teachers, researchers, and educational in-

stitutions. Many of the current tools used to measure
engagement – such as self-reports, teacher introspective
evaluations, and checklists – are cumbersome, lack the
temporal resolution needed to understand the interplay
between engagement and learning, and in some cases
capture student compliance rather than engagement.

In this paper we explored the development of real-
time automated recognition of engagement from stu-
dents’ facial expressions. The motivating intuition was
that teachers constantly evaluate the level of their stu-
dents’ engagement, and facial expressions play a key role
in such evaluations. Thus, understanding and automat-
ing the process of how people judge student engagement
from the face could have important applications.

Our work extends prior research on engagement
recognition using computer vision [42], [29], [10], [11]
and is arguably the most thorough study on this topic
to date: We collected a dataset of student facial ex-
pressions while performing a cognitive training task.
We experimented with multiple approaches for human
observers to assess student engagement. We found that
interobserver reliability is maximized when the length of
the observed clips is approximately 10 seconds. Shorter
clips do not provide enough context and reliability suf-
fers. Longer clips tend to be harder to evaluate because
they often mix different levels of engagement. When
discriminating low v. high levels of engagement, inter-
observer reliability was high (Cohen’s κ = 0.96). We also
found that the engagement judgments of 10-second clips
could be reliably approximated (Pearson r = 0.85) by
averaging single frame judgments over the 10 seconds.
This indicates that static expressions contain the bulk of
the information observers use to assess student engage-
ment. We found that observers rely on head pose, and
elementary facial actions like brow raise, eye closure, and
upper lip raise to make their judgments.

Our results suggest that machine learning methods
could be used to develop a real-time automatic en-
gagement detector with comparable accuracy to that of
human observers. We showed that both human and au-
tomatic engagement judgments correlate with task per-
formance. In particular, student post-test performance
was predicted just as accurately (and statistically signifi-
cantly) by observing the face of the student during learn-
ing (r = 0.47) as from the pre-test scores (r = 0.44). We
failed to find significant correlations between perceived
engagement and learning. However, a-posteriori statis-
tical analysis suggests this may be due to ceiling effects
and a fundamental limitation of short-term laboratory
studies such as ours. In such studies, most students tend
usually to be quite engaged, which is quite different from
the long-term engagement or disengagement found in
classrooms. This points to the importance of long-term
studies that approximate the classroom ecology in which
some students are engaged and others are chronically
disengaged for days, months, and years.

While the progress made here is modest, it reinforces
the idea that automatic recognition of student engage-
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ment is possible and could potentially revolutionize
education as we know it. For example, using computer
vision systems, a set of low-cost, high-resolution cam-
eras could monitor engagement levels of entire class-
rooms, without the need for self-report or questionnaires.
The temporal resolution of the technology could help
understand when and why students get disengaged,
and perhaps to take action before it is too late. Web-
based teachers could obtain real-time statistics of the
level of engagement of their students across the globe.
Educational videos could be improved based on the
aggregate engagement signals provided by the viewers.
Such signals would indicate not only whether a video
induces high or low engagement, but most importantly,
which parts of the videos do so. Our work underlines
the importance of focusing on long-term field studies
in real-life classroom environments. Collecting data in
such environments is critical to train more reliable and
ecologically valid engagement recognition systems. More
importantly, sustained, long-term studies in actual class-
rooms are needed to gain a better understanding of the
interplay between engagement and learning in real life.

APPENDIX: INTER-HUMAN ACCURACY
The classifiers in this paper were trained and evaluated
on the average label, across all human labelers, given
to each image. To enable a fair comparison between
inter-human accuracy and machine-human accuracy, we
assess accuracy (using Cohen’s κ, Pearson’s r, or 2AFC)
of each human labeler by comparing his/her labels to
the average label, over all other labelers, given to each
image. We then average the individual accuracy scores
over all labelers and report this as the inter-human reli-
ability. Note that this “leave-one-labeler-out” agreement
is typically higher than the average pair-wise agreement.
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