
stochastic automata with variable structure,” Automat. Remote
Contr., vol. 24, pp. 327-333, 1963.

[31 D. E. Koditscheck and K. S. Narendra, “Fixed structure automata
in multiteacher environment,” IEEE Trans. Syst. Man Cybern., vol.

[41 M. A. L. Thathachar and R. Bhaktavatsalam, “Learning automata
working in parallel environments,” J . Cybern. Inform. Sci., vol. I,

[51 K. R. Ramakrishnan, “Hierarchical systems and cooperative games
of learning automata,” Dept. Engineering, Indian Institute of Sci-
ence, Bangalore, India, Ph.D. dissertation, 1982.

[61 N. Baba, New Topics in Learning Automata Theory and Applications.
New York: Springer-Verlag, 1984.

171 K. S. Narendra and M. A. L. Thathachar, “On the behavior of
learning automata in a changing environment with application to
telephone traffic routing,” IEEE Trans. Syst. Man Cybern., vol.

[81 P. R. Srikantakumar and K. S. Narendra, “A learning model for
routing telephone networks,” SIAM J . Contr. Optimization, vol. 20,

191 K. S. Narendra and R. M. Wheeler, “An N player sequential
stochastic game with identical payoffs,” IEEE Trans. Syst. Man
Cybern., vol. SMC-13, pp. 1154-1158, 1983.

[lo] M. A. L. Thathachar and K. R. Ramakrishnan, “A cooperative
game of a pair of learning automata,” Automatica, vol. 20, pp.

[l l] K. S. Narendra and M. A. L. Thathachar, Learning Automata- An
Introduction. Englewood Cliffs, NJ: Prentice Hall, 1989.

[12] M. A. L. Thathachar and K. R. Ramakrishnan, “A hierarchical
system of learning automata,” IEEE Trans. Syst. Man Cybern., vol.

SMC-7, pp. 616-624, 1977.

pp. 121-127, 1978.

SMC-10, pp. 262-269, 1980.

pp. 34-57, 1982.

797-801, 1984.

SMC-11, pp. 236-241, 1981.

Benefits of Gain: Speeded Learning and Minimal
Hidden Layers in Back-Propagation Networks

John K. Kruschke and Javier R. Movellan

Abstracf -The gain of a node in a connectionist network is a multi-
plicative constant that amplifies or attenuates the net input to the node.
The objective of the work is to explore the benefits of adaptive gains in
back propagation networks. First it is shown that gradient descent with
respect to gain greatly increases learning speed by amplifying those
directions in weight space that are successfully chosen by gradient
descent on weights. Adaptive gains also allow normalization of weight
vectors without loss of computational capacity, and we suggest a simple
modification of the learning rule that automatically achieves weight
normalization. Finally, a method for creating small hidden layers by
making hidden node gains compete according to similarities between
nodes, with the goal of improved generalization performance, is de-
scribed. Simulations show that this competition method is more effective
than the special case of gain decay.

I. THE GAIN PARAMETER I N BACK PROPAGATION
The back propagation learning algorithm [1]-[5] has become a

very popular method for training connectionist networks. Two of
the appealing properties of back propagation are its tolerable
learning speed and its ability to generalize to novel inputs.
Unfortunately back propagation is sometimes too slow, and

Manuscript received December 10, 1988; revised June 30, 1990.
J. K. Kruschke was with the Department of Psychology, University of

California, at Berkeley, Berkeley, CA. He is now with the Department
of Psychology, Indiana University, Bloomington, IN 47405.

J. R. Movellan was with the Department of Psychology, University of
California at Berkeley, Berkeley, CA. He is now with the Department of
Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213.

IEEE Log Number 9039978.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 1 , JANUARY/FEBRUARY 1991 273

,

0018-9472/91/0100-0273$01.00 01991 IEEE

generalization is not always good. In this article we introduce a
new parameter, gain, into back propagation networks and show
that it can yield benefits for learning speed and generalization.

Consider a multilayer feed-forward network, as in standard
back propagation. Let af be the activation of the ith node of
layer s, and let as = [a i . . . ai]‘ be the column vector of activa-
tion values in layer s. The input layer is layer 0. Let wc be the
weight on the connection from the j t h node in layer s - 1 to the
i th node in layer s, and let wf = [wfl * . . wfnIT be the column
vector of weights from layer s - 1 to the i th node of layer s. The
net input to the ith node of layer s is defined as nets=
(w f , a s - ’) = Zkwlskai-’, and let netS =[nets . . . be the
column vector of net input values in layer s. The activation of a
node is given by a function of its net input,

where f is any function with a bounded derivative, and g; is a
real number called the gain of the node.

Suppose that for a particular input pattern, a’, the desired
output is the teacher pattern t = [t l . . . tn]’, and the actual
output is aL, where L denotes the output layer. Define an error
function on that pattern, E = (1 / 2) Z j (t j - a;)’. The overall
error on the training set is simply the sum, across patterns, of
the pattern error E. We then perform gradient descent on E
with respect to W;. The chain rule yields

where Sf = - aE/d net:. In particular, the first three factors of
(2) indicate that

(3)
‘ k J

The recursive formula (3) for Sf is the same as in standard back
propagation [l], [2] except for the appearance of the gain param-
eter. Combining (2) and (3) yields the learning rule for weights:

(4)

where E , is a small positive constant called the “step size” of
gradient descent with respect to weights.

Gradient descent on error with respect to the gains can also be
computed. Using the chain rule as previously, it is easy to
compute that

Then

where eg is the step size of the gains. The learning rule for gains
(6) is easily incorporated into standard back propagation pro-
grams. In particular, all the quantities that appear in (6) are
locally available to the affected gain gf .

An equivalent method was first introduced by Movellan [6]
and independently proposed by Tawel [7]. Other authors (e.g.,

I I

274 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO.l, JANUARY/FEBRUARY 1991

TABLE I
RATIOS OF AVERAGE LEARNING TIMES (IN SWEEPS) FOR BP RELATIVE TO BPG”

Number
Hidden
Nodes

2
4
8

16
32

Number
Hidden
Nodes

2
4
8

16
32

Number
Hidden
Nodes

2
4
8

16
32

Criterion = 0.20
Weight Step Size, E,

0.25 0.5 1.0 2.0 4.0

1.9 1.7 2.1(1/1) 1.3(1/2) 2.3(8/11)
1.3 1.4 1.8 1.8 5.3
1.5 1.4 1.5 1.3 1.4
1.5 1.4 1.3 1.3 1.2
1.6 1.4 1.3 1.3 1.2

Criterion = 0.10
Weight Step Size, E,

0.25 0.5 1 .o 2.0 4.0

3.0 2.4 2.4(1/1) 1.4(1/3) 3.5(8/11)
1.9 1.8 2.0 1.9 4.9
1.9 1.5 1.7 1.4 1.3
2.0 1.6 1.4 1.4 1.2
2.2 1.7 1.5 1.3 1.2

Criterion = 0.05
Weight Step Size, E,

0.25 0.5 1.0 2.0 4.0

5.7 5.1 4.3(1/1) 1.6(1/3) 3.5(8/11)
4.2 3.7 2.9 2.2 4.7
4.1 2.6 2.2 1.5 1.4
4.2 2.8 1.7 1.5 1.3
4.6 3.3 1.8 1.4 1.3

a When applied to the 4-4 encoder problem. Numbers in parentheses indicate the
number of times (out of 15) that BP or BPG failed to reach criterion in 1000 sweeps.

[81-[10]) have also use- a gain parameter, with different pur-
poses and different architectures. These are discussed later.

Throughout this article, we will refer to back propagation wifh
adaptive gains as BPG, and to standard back propagation, for
which gf = 1 for all i , s and eg = 0.0, as BP.

11. SPEEDED LEARNING FROM GRADIENT
DESCENT WITH GAIN

Learning time in BPG is remarkably faster than standard BP.
In this section we discuss some criteria for comparing learning
times of different algorithms, and then report our simulation
procedure and results.

Comparing Learning Speeds

Comparing the speeds of variants of back propagation can be
tricky. One must control all of the following variables: updating
procedure (every trial vs. periodic), solution criteria, initializa-
tion procedure, learning rates, number of hidden nodes, and
error function. In our comparisons of BP and BPG, we per-
formed gradient descent on the sum of squared errors, weight
and gain changes were accumulated after each pattern presenta-
tion but only executed at the end of a full sweep (or “epoch”)
through the training set, and learning time was measured as the
number of sweeps until I t i -u f I <ecr i t , for a pre-set criteria1
value ecrit, across all patterns and output nodes i .

Since the initial values of the weights may affect convergence,
it is common practice to run several simulations with different
starting weights and to combine the results with appropriate
statistics. The choice of these statistics is not straightforward.
Arithmetic averages are excessively influenced by the occasions
when the network fails to reach criterion in the allotted time,
but robust statistics, like the median, do not reflect those
occasions at all. In our simulations we characterized speed with
two statistics: the arithmetic average of the number of sweeps
when the solution was achieved in less than 1000 sweeps; and,

the number of simulations when the system neec-d more than
1000 sweeps.

Combining the results for different step sizes is also tricky.
One possibility is to compare learning times for optimal step-
sizes, However, it is often preferable to learn moderately fast
over a wide range of step sizes than to learn exceptionally fast
over a very limited range. In this article we report learning times
for a variety of parameter combinations. We also report aver-
ages of the different combinations to give an estimate of the
relative efficiencies of the algorithms.

Procedure

We compared BP and BPG on two standard benchmark
problems, the exclusive-or (XOR) and the 4-4 encoder problem
[l]. We tested learning times of BP and BPG on all combina-
tions of the following independent variables.

Number of hidden nodes: 2,4,8,16,32.
Step size E , for weight change: 0.25,0.5,1,2,4.
Criteria1 value (ecrit) for solution: 0.20,0.10,0.05.

There was a single hidden layer, in which all nodes used the
logistic activation function a = 1/(1+ exp(- g net)). In each
condition 15 different initializations for weights were used, with
weights assigned according to a uniform random distribution
from - 1 to + 1 , such that the fan-in weight vector (including
bias) of each node was normalized to Euclidean length 1. The
step sizes for weights in the output layer were scaled according
to the the standard fan-in correction formula (Plaut et al., [lo]).

In BPG, gains were modified according to (6) with eg = 0.20.
In the XOR problem, gain was restricted such that 0.75 < g <
3.50, so that gains would be neither too small, making the node
ineffective, nor too large, producing excessive change. Momen-
tum (see [l]) was set to 0.9 for both weights and gains. To assure
that our program was correct, its performance, with eg = 0.0 and
g = 1, was compared to McClelland and Rumelhart’s [l l] back-
propagation software. The programs behaved identically to the
fifth decimal place.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 1, JANUARY/FEBRUARY 1991 275

TABLE I1
RATIOS OF AVERAGE LEARNING TIMES (IN SWEEPS) FOR BP RELATIVE TO BPGa

Number
Hidden
Nodes

2
4
8

16
32

Number
Hidden
Nodes

2
4
8

16
32

Number
Hidden
Nodes

2
4
8

16
32

Criterion = 0.20
Weight Step Size, E ,

0.25 0.5 1.0 2.0 4.0

1.2(2/2) 2.0 3.8 2.7 1.4
1.6(2/2) 1.5 2.3 3.1 1.6
1.4(4/1) 1.3(1/0) 1.8 3.0 3.0
1.3(8/2) 1.4 1.4 1.9 3.6

1.2(7/3) 1.4(0/2) 3.2(0/1) 1.8(0/2) 1.2

Criterioq = 0.10
Weight Step Size, E ,

0.25 0.5 1 .o 2.0 4.0

1.3(7/3) 1.5(0/2) 3.3(0/1) 1.8(0/2) 1.3(0/1)
1.3(4/2) 2.1 3.9 2.8 1.4
1.7(3/2) 1.6 2.5 3.1 1.6
1.5(6/1) 1 .31 /O) 2.0 3.1 3.1
1.2(11/3) 1.6(2/0) 1.6 2.2 3.7

Criterion = 0.05
Weight Step Size, E ,

0.25 0.5 1 .o 2.0 4.0

1.5(8/3) 1.9(0/2) 3.5(0/1) 1.8(0/2) 1.3(0/1)
1.5(8/2) 2.5(1/0) 4.5 3.0 1.5
1.8(10/2) 2.0(2/0) 3.2 3.5 1.7

1.3(15/7) 1.6(9/0) 2.3 3.0 4.2
1.4(4/3) 1.8(4/0) 2.6 3.8 3.4

"When applied to the XOR problem. Numbers in parentheses indicate the number of times,
out of 15, that BP/BPG failed to reach criterion within 1000 sweeps.

TABLE 111
RATIOS OF LEARNING TIMES FOR BP AND BPG a

scent. Adaptive gains also provide a variety of other benefits
that we will discuss in later sections.

Criterion Encoder XOR Average

0.05 2.9 2.4 2.7
0.1 1.9 2.1 2.0
0.2 1.7 2.0 1.8

Average 2.2 2.2 2.2

aSummarized from Tables I1 and 111.

Results

Tables I and I1 show the learning times of BP relative to BPG
for the 4-4 encoder problem and the XOR problem. Average
results are summarized in Table 111. For all trials when criteria1
error was reached, BPG was faster than BP. The learning time
ratios vary from 1.1 to 5.7, with an average of 2.2. In terms of
the number of times that criterial error was not reached in 1000
sweeps, BPG also performed better than BP except when two
hidden nodes were used. In that case BPG could not solve the
problem 13% of the time, as opposed to BP that did not solve it
11% of the time. Table I11 shows the average speed ratio as a
function of the learning criteria and the type of problem. The
average learning time ratio is 1.83 for a criterion of 0.2, and 2.68
for a criterion of 0.05. In a previous study [6] it was shown that
for smaller criteria, BPG is more than 6 times faster than BP.

111. DISCUSSION
Speeded Leaming by Other Methods

There have been many other back propagation speed-up
methods described in the literature, e.g., Fahlman's [12] Quick-
Prop, or Jacob's [131 learning-rate adjustment heuristics. We do
not claim that BPG is faster or incompatible with these meth-
ods. An advantage of adaptive gain is that it is easy to introduce
into back propagation programs, and that it accelerates learning
without the need to invoke principles other than gradient de-

Relation of Gain Change and Weight Change

In this section we explore the relationship between gain and
weight change. We then analyze why BPG speeds up learning
relative to BP.

Lemma 1: Suppose weights are changed by gradient descent
on the error E , and gains are also changed by gradient descent
on E. Then, for a given node, the magnitude of its gain in-
creases if and only if the length of its weight vector increases.

Proof: Gradient descent on the error E with respect to
weights and gains can be expressed as follows (cf. (2)-(6):

Awf = E , aE s s - 1

a (g ; nets) g i a

A g f = E aE (w f , a s - ' > a(g: nets)

Solving (7) for a s p and substituting into (8) yields

(7)

where 0 is the angle between wf and Awf. Note also that

Case I: cos 8 0. From (91, As,!. gf > 0. Therefore, the signs
of gf and Ag,! are the same, so Alg,!I > 0. From (101, Allw,!112 > 0.
In this case, then, the signs of Algfl and Allw:ll agree: They both
are positive.

276 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO.l, JANUARY/FEBRUARY 1991

Case 11: cos 0 < 0. From (9), Algfl < 0, by argument analogous
to that used in Case I. From Equation 10, we can see that
AIIW,!~~~ < llAwf1lZ. For arbitrarily small’ step sizes, IlAwSll’ + 0,
so that A l l ~ f 1 1 ~ < 0. Again the signs of Algfl and Allwfll agree:
They both are negative.

Adaptive gain has a catalytic effect in the learning process by
modifying the magnitude, not the direction, of the weight change.
Empirical observations show that in the early phases of learning,
when a successful direction has not yet been found, weight
vectors change direction from trial to trial and both gain and
weight-vector length shrink. As successful directions are found,
weights and gains grow larger. From (3) and (41, gain can be
seen as modulating the stepsize E , of the weight change, ampli-
fying learning in nodes that find successful directions in weight
space. This may help to explain why BPG does not necessarily
provide a big advantage with very small networks: Larger net-
works provide a larger pool of candidate directions, so that the
benefits of gain are more likely to be utilized.

Gain and Weight Normalization

By including the gain parameter in back propagation, one can
also normalize weight vectors without loss of computational
power. One advantage of normalization is that it maintains the
weight values within bounds [14], [15]. Normalization can also be
used to facilitate comparison between nodes [161. Weight vec-
tors can be factored into length and direction, with direction
indicated by the normalized weight vector, and length indicated
by the gain of the node. By performing gradient descent on gain,
and by implication from Lemma 1, the effects of back propaga-
tion on the lengths of the weight vectors will be reflected by the
gains, even with the weight vectors themselves normalized.

Several approaches might be used to normalize the weight
vectors. One possibility is to let the weights change via back
propagation and then to normalize the weights directly, dividing
them by the length of the weight vector. Such an approach was
taken by Kruschke [161. Another possibility, used by Oja 1151 in
the context of a Hebbian rule, is to generate a Taylor series
approximation to the normalization process. Movellan [171 de-
rived a Taylor series approximation to normalization for back
propagation:

where Aw; is the modified weight change. Notice that the
normalized rule of (11) is nearly the same as the standard weight
update rule of (4) but with a corrected activation from the layer
below. An advantage of the Taylor approximation over “brute-
force” normalization is that the length of the weight vector need
not be computed. We have applied the normalization rule of
(11) in conjunction with BPG, with good results [17].

IV. MINIMAL HIDDEN LAYERS FROM GAIN COMPETITION

We have shown that the gain parameter is useful for speeding
up learning and for allowing weight vector normalization. We
will now show that it can also be used to create hidden layer
bottlenecks; i.e., hidden layers with relatively few participating

’For non-infinitesimal changes, suppose that IlAwJl= pllwfll, for some
0 < p < 1. Then we must have cos 0 < - p / 2 for the conclusion to hold.
For small p , that condition is virtually the same as cos0 < 0. In other
words, for non-infinitesimal changes, the conclusion of the lemma can
be violated when the change vector Awf is at an angle just slightly
obtuse to the weight vector (- p / 2 d cos 0 < 0) or when it happens to
be huge relative to the weight vector (p > 1). Empirically, such condi-
tions occur so ephemerally as to be negligible.

nodes. Small hidden layers have been shown to improve the
generalization performance of back-propagation networks in
some applications.

Gain Indicates Participation in Representation and Learning

We say that a given hidden node participates in representing
the input if and only if its activation changes for some change of
input. The gain of a node indicates how much the node partici-
pates in representing the input. When the gain of a node is zero,
its activation is constant: If g , = 0, then a , = f (g , net,) = f(0) for
all net,, and as the magnitude of the gain grows, the variance of
activation values from f(0) increases for monotonic f.

The gain of a node also indicates the extent to which the node
participates in learning. When the gain of a node is zero, the
error propagated to its weights is also zero, and hence its
weights cannot learn. When the magnitude of the gain grows,
the learning by weights also increases. That can be seen explic-
itly from (3), in which gain acts as a continuous modulator of the
magnitude of error propagated to the weights.

The gain parameter is not just a passive indicator like the
pointer of a speedometer. If one tries to go faster by moving the
pointer of a speedometer t o a higher value, one only succeeds in
breaking the speedometer. On the contrary, if we adjust the gain
of a node, we actually change its activation variance and its
weight learning rate. It is the causal efficacy of the gain parame-
ter that makes it an attractive device for introducing constraints
into back propagation.

Improred Generalization from Small Hidden Layers

There is empirical evidence that generalization to novel input
patterns is improved by using hidden layers with a small number
of nodes (e.g. [18]-[20]). In these cases, generalization from the
training set to novel inputs was better when the number of
hidden nodes was relatively small.’ The reason for improved
generalization is intuitively clear: A small hidden layer forces
the input patterns to be mapped through a low-dimensional
space, enforcing proximities between hidden-layer representa-
tions that were not necessarily present in the input-pattern
representations. Only the differences between patterns that are
most important for decreasing error will be preserved as large
distances between hidden layer patterns. Differences between
input patterns that are not preserved in the hidden layer repre-
sentation are thereby generalized over completely. A more
detailed discussion can be found in Kruschke [16], [22], [23].
Theoretical and empirical results regarding learnability, general-
ization, and network size can be found in, e.g., [24]-[26].

Given the desirability of small hidden layers, why not just
build a network with an arbitrarily small number of nodes?
First, for most learning applications it is not known what the
minimal number of hidden nodes is. If one uses too few nodes,
then the network has insufficient computational power to learn
the training set to criteria1 accuracy, regardless of learning
algorithm used. Second, back-propagation learning is slower,
and more likely to encounter local minima or extensive plateaus
on the error surface, when small hidden layers are used. $or
example, the minimal number of hidden nodes required to learn
the XOR is two, but when only two nodes are built into the
network, extended learning times are often encountered. In
general, back-propagation learning is faster when larger hidden
layers are used [lo]. We try to satisfy these two competing
constraints on hidden layer size by building a network with a

2There are also cases for which reducing the number of hidden nodes
did not improve generalization (e.g., [21]). It is beyond the scope of this
article to analyze in detail which particular applications will benefit from
hidden layer bottlenecks. The premise is that at least some applications
do benefit from bottlenecks.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 1, JANUARY/FEBRUARY 1991 277

large number of hidden nodes and dynamically reducing them as
learning progresses. Our previous observations regarding the
gain parameter suggest that a judicious manipulation of gains
could accomplish this goal.

Generalized Cost Function for Gain Competition

We can use the gain parameter to make the hidden nodes
compete for the right to participate in the representation and in
learning. The idea is to start with a large hidden layer of
candidate nodes, and to impose a cost on nodes that are similar.
In general, the cost of similar nodes can be expressed as

c = Ch(g ,)h (g ,) s , , (12)
1 , J

where h is a nondecreasing function of gain, and s,, is some
measure of the similarity of nodes i and j . The sum is taken
over all nodes in the hidden layer. Thus if two nodes are similar
and both have large gains, they make a large contribution to the
cost. We can perform gradient descent on the cost C with
respect to gain in order to decrease the gains of redundant
nodes. (One might also perform gradient descent on C with
respect to connection weights.) We desire the derivative to be
locally computable in a network architecture compatible with
back propagation. Thus, the gain of a node is adjusted simulta-
neously by gradient descent on error and by gradient descent on
the cost C (12).

The Special Case of Gain Decay: One special case of the cost
function defines h to be the identity function, and defines s,, to
be 1 if i = j and 0 otherwise. Then the cost function reduces to
C = Elg,?, and gradient descent on C with respect to g, yields
Ag, a - g,. That is simply gain decay, analogous to weight
decay, which has often been used in applications of back propa-
gation (e.g., [18], [27]).

Another special case defines h(g,) = g, /(1+ g,), with s,, again
equal to 1 if i = j and 0 otherwise, so that C = C , g ? / (l + g,)*.
This is also a form of gain decay, in which the decay rate
increases to a maximum of some small value of gain, and then
decreases as gain gets larger. It is anaiogous to a cost function
used by Rumelhart [191, [20l, [281.

Those special cases of the cost function are particularly sim-
ple and easy to implement in a back propagation network.
Unfortunately, gain decay alone does not take full advantage of
the potential captured by the genecalized cost function. We
suggest now, and provide empirical evidence later, that gain
decay excises slow-learning nodes rather than redundant nodes.

Specific Cost Function for Gain Competition: The measure of
similarity used in the special cases of gain decay is really a
degenerate case. We seek instead some measure of similarity
which rises continuously from zero. Moreover, the measure must
allow gradient descent on the cost of gains to be locally com-
putable in a network compatible with back propagation. One
such function is as follows:

where the sum is taken over all patterns, p , in a training sweep.
The notation net,, denotes the net input to node i when pattern
p is input. The similarity in (13) is a measure of the squared
correlation of the net input values of nodes i and j across
patterns. (It is not the usual definition of correlation because we
have not subtracted the mean net input values.) It is always
between zero and one, varies continuously, and it has a particu-
larly simple derivative with respect to gain: zero. If we choose
the identity function for h (g) in the generalized cost function C ,

then gradient descent on C with respect to gain yields the
competition rule:

where y > 0 is a constant of proportionality, called the competi-
tion rate. A variant of (14) was first introduced by Kruschke 1161,
who used a slightly different definition for s,,.

Local Computation: The value of Agl can be computed lo-
cally in a back propagation network if lateral connections be-
tween hidden layer nodes are allowed, that do not propagate
activation or errors, but gain values. The strength on the lateral
connection from node i to node j is s,,, which can be computed
with information available locally at the two nodes. Then E,g,s,,
is easily computed by summing across the lateral connection^.^

Simulation Procedure

The encoder problem [l] is an especially appropriate test for
the gain competition scheme. In the encoder problem, a net-
work with N input nodes and N output nodes is trained to map
the N canonical basis vectors to themselves; i.e., (1,0, . . .) c*
(1,0, . . . 1, (0,1, . . .) - (0 , l . . . 1, etc. "Good" solutions to the
encoder problem use log, N hidden nodes that together act as a
binary encoder of the input. In that case, the hidden nodes are
completely uncorrelated with each other. That is exactly the sort
of situation that the gain competition scheme is supposed to
encourage.

We used a network with eight input nodes, 16 hidden nodes
and eight output nodes. To initialize the network, the weights
on each node were chosen at random and then the weight vector
of each node, including its bias weight, was normalized to
Euclidean length one. The gain of each node was also initially
set to one. Standard back propagation was performed; i.e.,
gradient descent on error with respect to weights, with a learn-
ing rate of 0.20 and a momentum of 0.85. Gradient descent on
error with respect to gains was also performed on both the
hidden and output layers, with the learning rate set to 0.20, and
zero momentum. The learning was run until the maximum
absolute error for every output node was less than 0.15.

Gain competition was simultaneously performed on the hid-
den layer. We wanted to impose as much competition as pos-
sible without extinguishing learning (error reduction), so we
dynamically modulated the competition rate as learning pro-
gressed, in the following simple way. If learning was proceeding
well, with the square root of the mean squared error (RMSE)
falling rapidly, then competition was increased. If learning was
slow, competition decreased. Specifically, the competition rate y
of (14) was a constant multiple of an exponential average of the
change in RMSE over previous trials, divided by the RMSE of
the present trial:

ii y (~) = - K w'ARMSE(T - t) RMSE(7) (15)

where Y (T) is the competition rate on trial T , where K is a
non-negative constant of proportionality called the competition
rate modulator, where the sum is taken over all previous trials t ,
and where w is a positive constant governing the weighting of
the exponential average. In our simulations we set w = 0.70, and
tested the competition rate modulator K at several values be-
tween zero and two. Note that if the network is in fact learning,
then ARMSE should be negative, and so the competition rate y

K"

'One can also easily derive dC/dw,, , but computing the change in
weight is not any simple variant of the feed-fonvard network for back
propagation. One goal for future research is to construct a function s,,,
which yields gradient descent on C with respect to weights that is locally
computable.

-

I i; -1

I I1 I

278 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO.l, JANUARY/FEBRUARY 1991

TABLE IV
NUMBER OF PARTICIPATING HIDDEN NODES (NODES WITH

NONZERO GAIN)=

K 0.0 0.5 1 .0 2.0

Mean 16.0 5.33 3.93 3.20
Range 16-16 4-6 3-5 3-4

SD 0 0.70 0.57 0.40

aAfter learning with competition, for different values of K .

should be positive. However, gradient descent algorithms like
back-propagation can sometimes “overshoot” a local descent
and cause ARMSE to be greater than zero, consequently caus-
ing y to be less than zero. To deal with that possibility, the
value of the competition rate y was actually set to the maximum
of zero and the value computed in (15). Gain competition was
not actually executed until the fifth sweep, so that the value of y
would reflect the smooth behavior of RMSE rather than the
initial turbulence often seen in back propagation. Finally, gain
was restricted to be non-negative so that competition could
never “explode,” driving some gains to large negative values and
others to large positive values.

It was found that gain decay contributed almost nothing to
the excision of hidden nodes (these results are reported later),
and added significantly to learning time. We therefore did not
include the diagonal terms of (12) in the computation of gain
cost, C. Thus the change in gain due to competition was

Ag, = - Y c g,s,, (16)
J # 1

(cf. (14)). Every factor in the right hand side of (16) is a
non-negative number. Hence competition could only decrease
the gains, never increase them.

Results

The results showed a large decrease in the number of partici-
pating hidden nodes as a function of the competition rate
modulator, K . Results are summarized in Table IV. Fifteen trials
were run at each value of K , each trial starting with a different
set of random weights. (The same fifteen initializations were
used for each of the values of K .)

When there was no gain competition (K = O.O), all 16 of the
hidden nodes built into the network ended up participating in
the representation. In fact, all 16 nodes had gains greater than 1
on every trial. From these results it is clear that back propaga-
tion alone does nothing to excise redundant nodes, but instead
utilizes all the nodes available to it.

When only a small amount of competition was used (K = 0.51,
the number of participating hidden nodes dropped to an aver-
age of only 5.33. All the other hidden nodes had gains of zero
(to more than six decimal places). The number of participating
hidden nodes did not vary much from trial to trial, as can be
seen from Table IV.

As the gain competition was increased to K = 2.0, usually (in
12 of 15 trials) only three hidden nodes remained. That is
exactly the “good” solution, using log, 8 hidden nodes, that the
competition scheme was meant to encourage.

The benefits of gain competition do not come without some
cost. As might be expected, learning time increased as the
competition rate modulator K increased. Table V shows that for
K = 2.0, learning time is almost three times that for K = 0.0. It is
important to notice that learning time is a negatively accelerat-
ing function of K . Thus gain competition does not cause an
explosive growth in learning time.

For comparison, an 8-3-8 network was tested on the encoder
problem with fifteen random weight initializations, using the
same procedure but without competition. The network reached

TABLE V
LEARNING TIME IN SWEEPS FOR VARIOUS AMOUNTS OF COMPETITION

K 0.0 0.5 1.0 2.0

Mean 218 403 497 600
Range 105-303 203-722 274-169 353-824

SD 55.3 129.9 162.3 145.0

TABLE VI
EFFECTS OF GAIN DECAY ALONE

K 0.5 1 .o
Mean hidden nodes 16 16
Mean hidden gain 0.343 0.234
Mean learning time 346 430

criterion in an average of 328 sweeps, with a range of 195 to 455
sweeps, and a standard deviation of 66.8 sweeps. Thus adding
competition takes less than twice as long as back propagation
with gain. Since back propagation with gain was shown to be
about twice as fast as standard back propagation, the competi-
tion scheme ends up taking no longer than standard back
propagation.

The results reported so far have described the retirement of
nodes from participation. On the other hand, if the competition
rate modulator K is set to much larger values, some interesting
behavior occurs. The high competition initially suppresses all
but one or two nodes. The network will reduce the error as best
it can, but as the rate of error reduction slows, the competition
rate y gets smaller (by (15)). This allows new nodes to be
recruited from the pool of retired nodes. One or more previ-
ously suppressed nodes grows to have positive gain, as a result
of gradient descent on error with respect to gain. The newly
recruited node is dissimilar to the previously participating nodes
(otherwise competition would have continued to suppress it),
and error can be reduced further (otherwise it would not have
been recruited).

As suggested earlier, gain decay alone should not specifically
excise redundant nodes, but only those that learn slowly. Here
we present empirical support for that claim. Gain decay alone
(Agl = - yg ,) was applied using the same procedure as for
competition without decay. Table VI shows the results for the
same fifteen initializations as used in Tables IV and V, with K

equal to 0.5 and 1.0. In this context, K is the “decay” rate
modulator, rather than a “competition” rate m o d ~ l a t o r . ~ All the
hidden nodes had gains greater than zero after learning; that is,
none were excised at all. Gain decay had two significant effects:
It increased the learning time; and, it reduced the mean hidden
node gain. Clearly this form of gain decay is counterproductive,
and so we have good evidence that competition is an improve-
ment over decay alone.

Other Minimization Techniques

Several researchers have introduced other hidden layer mini-
mization techniques, e.g., [161, [191, [20], [22], [231, [28]-[34]. No
direct comparisons have been made of the relative performance
of the alternative methods, in terms of learning speed and
generalization improvement for particular applications. Each
method introduces its own bias upon the type of representation
learned by the network, and hence upon the generalization
made by the network. For example, the gain competition method
described here biases the network toward hidden layer repre-
sentations that have uncorrelated node activations. That bias

4Not shown are results for K = 2.0, which led to unstable oscillations
even for very small learning step sizes.

IEEE TRANSACTIONS O N SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 1, JANUARY/FEBRUARY 1991 279

might be appropriate for some applications, and not for others.
Fortunately, the generalized cost function for gains (12) allows
other definitions of similarity that might be more appropriate
for specific applications.

In some applications it might be known in advance that
specific kinds of bias are desired, and they might have nothing
to do with minimization of hidden layers. For example, in visual
pattern recognition, the system should generalize over spatial
translations, and so the constraint of translational symmetry can
be built in from the start [l]. Hidden layer minimization tech-
niques, on the other hand, are usually intended for applications
in which the appropriate domain-specific constraints are not
known in advance.

V. GENERAL DISCUSSION
Gain and Temperature

Both Boltzmann-type networks [181, [351 and back-propa-
gation networks use sigmoidal activation functions. The “tem-
perature” parameter used in Boltzmann machines can be
thought of as the reciprocal of gain [61, [7]. In view of this
apparent similarity it is important to point out the following
differences.

Boltzmann machines are stochastic and activation values are
binary. In these networks, temperature connotes stochasticity of
the activation values. On the other hand, BPG is a deterministic
network and therefore, gain (or its reciprocal, temperature)
cannot connote randomness. But BPG activation functions may
be interpreted as mean field approximations to binary stochastic
nodes (e.g., [36]-[38]). The stochastic interpretation of tempera-
ture in Boltzmann machines corresponds to discriminating power
in deterministic systems.

In Boltzmann and mean field networks, all nodes have the
same temperature and are subject to a global “cooling” or
“annealing” schedule (but cf. [39]). In Boltzmann machines,
sufficiently slow cooling rates guarantee that the activation
values for a given fixed set of weights will settle in a global
energy minimum [401. No corresponding claim is being made for
BPG; there is no externally imposed annealing schedule for
gains, and changing the gains by gradient descent does nothing
to avoid local minima on the error surface.

Gain and Natural Networks

There is evidence suggesting that the nervous system has
mechanisms that modulate the neural response function in a
manner similar to gain. Servan-Schreiber, Printz, and Cohen [41]
proposed that a gain parameter helps explain the effect of
biogenic monoamines, a type of neurotransmiter associated with
neural responsiveness modulation. They used the gain parame-
ter in back-propagation networks to simulate phenomena associ-
ated with catecholamine manipulations. There is also evidence
that these amines play an important role in the modulation of
learning [42].

VI. CONCLUSION
We have introduced a gain parameter into the standard back

propagation algorithm and shown it to be beneficial for speed-
ing up learning and creating hidden layer bottlenecks for the
goal of improved generalizations. It was shown that the gain of a
node is a handle on its participation in representing the input,
and on the node’s ability to learn. Simulations confirmed that
adaptive gains significantly accelerated standard back propaga-
tion. Other simulations showed that gain competition very effec-
tively created hidden layer bottlenecks in the case of the en-
coder problem.

Not all applications will benefit equally from the techniques
we have introduced. BPG speeds up learning when there are
nodes which are learning successfully. When very few hidden
nodes are included, there might be no successful nodes, and
hence BPG might not significantly improve learning. The com-
petition scheme is designed to favor solutions with uncorrelated
hidden nodes. Our simulations showed that it works very well
for the encoder problem, but if a “good” solution to some other
particular problem uses highly correlated nodes, then the com-
petition scheme might be counter-productive. The general cost
function for gains allows other definitions of similarity that
might solve this difficulty.

REFERENCES

[l] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by back-propagating errors,” in Parallel
Distributed Processing, vol. 1, D. E. Rumelhart and J. L. McClel-
land, Eds.

[2] ~, “Learning representations by back-propagating errors,” Na-
ture, vol. 323, pp. 533-536, 1986.

[3] Y. LeCun, “A learning scheme for asymmetric threshold networks,”
Proc. Cognitioa, vol. 85, pp. 599-604, Paris, France, 1985.

[4] D. B. Parker, “Learning-logic,” invention rep., S81-64, File 1,
Office Tech. Licensing, Stanford Univ., 1982.

[5] P. J. Werbos, “Beyond regression: New tools for prediction and
analysis in the behavioral sciences,” Ph.D. dissertation, Harvard
Univ., 1974.

[6] J. R. Movellan, “Self-regulated temperature in back propagation
networks,” paper presented at the Ninth Annu. Berkeley-Stanford
Conf., 1987, Berkeley, CA.

[7] R. Tawel, “Does the neuron ‘learn’ like the synapse?” inAduances in
Neural Information Processing Systems, D. S . Touretzky, Ed. San
Mateo, CA: Morgan Kaufmann, 1989, pp. 169-176.

[8] J. J. Hopfield, “Neurons with graded response have collective
computational properties like those of two-state neurons,” Proc.
Nut. Acad. Sci. USA, vol. 81, pp. 3888-3092, May 1984.

[9] S. Nowlan, “Gain variation in recurrent error propagation net-
works,” Tech. rep. CRG-TR-88-1, Dept. Comp. Sci., Univ. Toronto,
June 1988.

[lo] D. Plaut, S. Nowlan, and G . Hinton, “Experiments on learning by
back propagation,” Carnegie-Mellon Univ. Comput. Sci. Dept.
Tech. Rep. CMU-CS-86-126, 1986.

[l l] J. L. McClelland and D. E. Rumelhart, Explorations in Parallel
Distributed Processing.

[12] S. E. Fahlman, “Faster-learning variations on back-propagation:
An empirical study,” in Proc. 1988 Connectionist Models Summer
School, D. Touretzky, G. Hinton, and T. Sejnowski, Eds. San
Mateo, CA: Morgan Kaufmann, 1989, pp. 38-51. See also: S. E.
Fahlman, “An empirical study of learning speed in back-propa-
gation networks,” Tech. Rep. CMU-CS-88-162, Comp. Sci. Dept.,
Carnegie-Mellon Univ., June 1988.

[13] R. A. Jacobs, “Increased rates of convergence through learning
rate adaptation,” Neural Networks, vol. 1, pp. 295-307, 1988.

[14] R. S. Sutton and A. G. Barto, “Toward a modern theory of
adaptive networks: Expectation and prediction,” Psych. Reu., vol.

[15] E. Oja, “A simplified neuron model as a principal component
analyzer,” J . Math. Biol., vol. 15, pp. 267-273, 1982.

[16] J. K. Kruschke, “Creating local and distributed bottlenecks in
hidden layers of back propagation networks,” in Proc. 1988 Connec-
tionist Models Summer School, D. Touretzky, G. Hinton, and
T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann, 1989, pp.

[171 J. R. Movellan, “Computational aspects of contingency detection:
New options from connectionism, Ph.D. dissertation, Dept. Psych.,
Univ. California Berkeley, 1989.

[181 G. Hinton, “Learning translation invariant recognition in a mas-
sively parallel network,” in Lecture Notes in Computer Science,
Volume I: Parallel Architectures and Languages Europe, G. Goos and
J. Hartmanis, Eds.

[191 D. E. Rumelhart, “Learning and generalization,” Plenary Address,
IEEE International Conference on Neural Networks, San Diego,
1988.

Cambridge, MA: MIT Press, 1986, ch. 8.

Cambridge, MA: MIT Press, 1989.

88, pp. 135-170, 1981.

120- 126.

New York: Springer-Verlag, 1987.

280 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO.l, JANUARY/FEBRUARY 1991

[20] A. S. Weigend, B. A. Huberman, and D. E. Rumelhart, “Predicting
the future: A connectionist approach,” Tech. Rep. Stanford-PDP-
90-01, Dept. Psych., Stanford Univ., 1990; also in Int. J . Neural
Syst., vol. 1, no. 3, 1990.

[21] M. A. Franzini, “Learning to recognize spoken words: A study in
connectionist speech recognition,” in Proc. 1988 Connectionist
Models Summer School, D. Touretzky, G. Hinton, and T. Sejnowski,
Eds. San Mateo, C A Morgan Kaufmann, 1989, pp. 407-416.

[22] J. K. Kruschke, “Improving generalization in back-propagation
networks with distributed bottlenecks.” Int. Joint Conf. Neural
Networks, New York: IEEE, 1989, vol. I, pp. 443-447.

[23] -, “Distributed bottlenecks for improving generalization in
back-propagation networks,” Int. J . Neural Networks Res. and
Appl., vol. 1, 187-193, 1989.

[24] E. B. Baum and D. Haussler, “What size net gives valid generaliza-
tion?” Neural Computation, vol. 1, pp. 151-160, 1989.

[25] J. Denker, D. Schwartz, B. Wittner, S. Solla, J. Hopfield,
R. Howard, and L. Jackel, “Automatic learning, rule extraction,
and generalization,” Complex Systems, vol. 1, pp. 877-922, 1987.

[26] M. A. Gluck, M. Pavel, and V. Henkle, “Constraints on adaptive
networks for modeling human generalization,” in Advances in
Neural Information Processing Systems, I , D. S. Touretzky, Ed.
San Mateo, CA: Morgan Kaufmann, 1989, pp. 2-10.

[27] G. Hinton, “Connectionist learning procedures,” Artificial Intell.,

[28] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal
network construction with back-propagation,’’ in Adcances in Neu-
ral Information Processing Systems, I , D. S. Touretzky, Ed. San
Mateo, CA: Morgan Kaufmann, 1989, pp. 177-185.

[29] T. Ash, “Dynamic node creation in back-propagation networks
(abstract),” in Int. Joint Conf. Neural Networks. New York: IEEE,
1989, p. 11-623. See also Tech. Rep. 8901, Institute for Cognitive
Science, U. C. San Diego.

[30] Y. Chauvin, “A back-propagation algorithm with optimal use of
hidden units,” in Advances in Neural Information Processing Sys-
tems, I , D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann,

[31] M. C. Mozer and P. Smolensky, “Skeletonization: A technique for
trimming the fat from a network via relevance assessment,”
in Advances in Neural Information Processing Systems, I , D. S .
Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp.
107-115.

1321 D. Psaltis and M. Neifeld, “The emergence of generalization in
networks with constrained representations,” in Proc. IEEE Int.
Conf. Neural Networks, San Diego, CA, 24-27 July 1988. Piscat-
away, NJ: IEEE Service Center, vol. I, pp. 371-381.

[331 P. A. Sandon and L. M. Uhr, “A local interaction heuristic for
adaptive networks,” Proc. IEEE Int. Conf. Neural Networks, San
Diego, CA, 24-27 July 1988. Piscataway NJ: IEEE Service Center,
vol. I, pp. 317-324.

[34] J. Sietsma and R. J. F. Dow, “Neural net pruning-Why and
How,” Proc. IEEE Inr. Conf. Neural Networks, vol. I, San Diego,
CA, July 24-27, 1988. Piscataway, NJ: IEEE Service Center, pp.

[35] G. E. Hinton and T. J. Sejnowski, “Learning and relearning in
Boltzmann machines,” in Parallel Distributed Processing; Explo-
rations in the Microstructure of Cognition: Vol. 1, D. Rumelhart and
J. McClelland, Eds. Cambridge, MA, MIT Press, 1986.

[361 G. Hinton, “Deterministic Boltzmann learning performs steepest
descent in weight-space,” Neural Computation, vol. 1, pp. 143-150,
1989.

[371 C. Peterson and J. R. Anderson, “A mean field theory learning
algorithm for neural networks,” Complex Systems, vol. 1, pp.
995-1019, 1987.

[381 C. Peterson and E. Hartman, “Explorations of the mean field
theory learning algorithm,” Neural Networks, vol. 2, pp. 475-494,
1989.

[391 J. Leinbach, “Automatic local annealing,” in Adi,ances in Neural
Information Processing Systems, I , D. S. Touretzky, Ed. San Ma-
teo, CA: Morgan Kaufmann, 1989, pp. 602-609.

[401 S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images,” IEEE Trans. Pat-
tern Anal. Machine Intell., vol. 6, pp. 721-741, 1984.

[411 C. Servan-Schreiber, H. Printz, and J. D. Cohen, “A network model

vol. 40, pp. 185-234, 1989.

1989, pp. 519-526.

325-333.

of neuromodulatory effects: Gain, signal-to-noise ratio, and behav-
ior,’’ Science, vol. 249, pp. 892-895, 1990.

[42] T. Kamatsu and J. D. Pettigrew, “Depletion of brain catheco-
lamines: Failure of ocular dominance shift after neurocular occlu-
sion in kittens,” Science, vol. 194, pp. 206-208, 1976.

Motion Analysis of Multiple Moving Objects
Using Hartley Transform

Sabri A. Mahmoud

Abstract -A new technique for motion estimation of moving objects is
presented. The analysis of the Hartley spectrum indicates that the
velocities of moving objects are related to the locations of the spectral
peaks. The presented formulations and simulations demonstrate the
applicability of this technique. This method is simple, fast, and compu-
tationally efficient.

I. INTRODUCTION

The estimation of the velocity of moving objects is required in
many applications. Biomedical cell motion analysis, tracking
dust storms and clouds, and industrial and military applications
are a few important examples. Some researchers have used
segment and match technique to acquire velocity information
[1]-[3]. Static images are segmented and then feature points are
matched to establish correspondence between objects in succes-
sive frames. This technique is sensitive to segmentation errors.
The success of the algorithm is based on accurate segmentation
of static frames, which is rarely satisfied in real world scenes,
especially in a noisy environment.

Other researchers [4]-[6] have used differencing techniques to
extract moving objects in a sequence. In their techniques two
frames are subtracted and the resulting frame yields the differ-
ence between the two frames. This method has limitations as it
requires 1) images to be exactly registered; 2) illumination to be
invariant; and 3) the moving objects to be totally displaced. The
temporal-spatial gradient techniques [7], [8] that utilize low-level
estimation of frames, give best results only when the moving
objects have smooth edges and the surfaces contain prominent
texture. Their algorithm requires registered image sequences
and the velocity estimate is approximate (it is close to accurate
velocity at objects’ boundaries, while this is not the case at the
objects’ surfaces). The above techniques have other limitations
when multiple moving objects are in the sequence, the corre-
spondence and occlusion problems are more severe.

Most researchers of time-varying image analysis use only two
or three frames of a sequence. The analysis based on only a few
frames does not take into account the complete information
about the motion of objects. It has been shown [9], 1101 that the
human visual system requires an extended frame sequence in
order to recover the structure of moving patterns. A longer
sequence of frames allows the use of velocity information in
analyzing the problem. Sethi and Jain [l l] used a sequence of
frames for finding the trajectories of feature points in an image
sequence, and they used tokens to solve the correspondence
problem, assuming smoothness of velocity. Selecting interesting

Manuscript received June 24, 1989; revised December 2, 1989 and

The author is with the Computer Engineering Department, CCIS,

IEEE Log Number 9039005.

May 25, 1990.

King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia.

0018-9472/91/0100-0280$01.00 01991 IEEE

