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Benefits of Gain: Speeded Learning and Minimal 
Hidden Layers in Back-Propagation Networks 

John K. Kruschke and Javier R. Movellan 

Abstracf -The gain of a node in a connectionist network is a multi- 
plicative constant that amplifies or attenuates the net input to the node. 
The objective of the work is to explore the benefits of adaptive gains in 
back propagation networks. First it is shown that gradient descent with 
respect to gain greatly increases learning speed by amplifying those 
directions in weight space that are successfully chosen by gradient 
descent on weights. Adaptive gains also allow normalization of weight 
vectors without loss of computational capacity, and we suggest a simple 
modification of the learning rule that automatically achieves weight 
normalization. Finally, a method for creating small hidden layers by 
making hidden node gains compete according to similarities between 
nodes, with the goal of improved generalization performance, is de- 
scribed. Simulations show that this competition method is more effective 
than the special case of gain decay. 

I. THE GAIN PARAMETER I N  BACK PROPAGATION 
The back propagation learning algorithm [1]-[5] has become a 

very popular method for training connectionist networks. Two of 
the appealing properties of back propagation are its tolerable 
learning speed and its ability to generalize to  novel inputs. 
Unfortunately back propagation is sometimes too slow, and 
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generalization is not always good. In this article we introduce a 
new parameter, gain, into back propagation networks and show 
that it can yield benefits for learning speed and generalization. 

Consider a multilayer feed-forward network, as in standard 
back propagation. Let af be the activation of the ith node of 
layer s, and let as = [ a i  . . . ai]‘ be the column vector of activa- 
tion values in layer s. The input layer is layer 0. Let wc be the 
weight on the connection from the j t h  node in layer s - 1 to the 
i th  node in layer s, and let wf = [wfl * . . wfnIT be the column 
vector of weights from layer s - 1 to the i th  node of layer s. The 
net input to the ith node of layer s is defined as nets= 
( w f , a s - ’ )  = Zkwlskai-’, and let netS =[nets . . . be the 
column vector of net input values in layer s. The activation of a 
node is given by a function of its net input, 

where f is any function with a bounded derivative, and g; is a 
real number called the gain of the node. 

Suppose that for a particular input pattern, a’, the desired 
output is the teacher pattern t = [ t l  . . . tn]’, and the actual 
output is aL, where L denotes the output layer. Define an error 
function on that pattern, E = ( 1 / 2 ) Z j ( t j  - a;)’. The overall 
error on the training set is simply the sum, across patterns, of 
the pattern error E. We then perform gradient descent on E 
with respect to W;. The chain rule yields 

where Sf = - aE/d net:. In particular, the first three factors of 
(2 )  indicate that 

( 3 )  
‘ k  J 

The recursive formula (3 )  for Sf is the same as in standard back 
propagation [l], [2] except for the appearance of the gain param- 
eter. Combining (2) and ( 3 )  yields the learning rule for weights: 

(4) 

where E ,  is a small positive constant called the “step size” of 
gradient descent with respect to weights. 

Gradient descent on error with respect to the gains can also be 
computed. Using the chain rule as previously, it is easy to 
compute that 

Then 

where eg is the step size of the gains. The learning rule for gains 
(6) is easily incorporated into standard back propagation pro- 
grams. In particular, all the quantities that appear in ( 6 )  are 
locally available to the affected gain gf .  

An equivalent method was first introduced by Movellan [6]  
and independently proposed by Tawel [7]. Other authors (e.g., 
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TABLE I 
RATIOS OF AVERAGE LEARNING TIMES (IN SWEEPS) FOR BP RELATIVE TO BPG” 

Number 
Hidden 
Nodes 

2 
4 
8 

16 
32 

Number 
Hidden 
Nodes 

2 
4 
8 

16 
32 

Number 
Hidden 
Nodes 

2 
4 
8 

16 
32 

Criterion = 0.20 
Weight Step Size, E, 

0.25 0.5 1.0 2.0 4.0 

1.9 1.7 2.1(1/1) 1.3(1/2) 2.3(8/11) 
1.3 1.4 1.8 1.8 5.3 
1.5 1.4 1.5 1.3 1.4 
1.5 1.4 1.3 1.3 1.2 
1.6 1.4 1.3 1.3 1.2 

Criterion = 0.10 
Weight Step Size, E, 

0.25 0.5 1 .o 2.0 4.0 

3.0 2.4 2.4(1/1) 1.4(1/3) 3.5(8/11) 
1.9 1.8 2.0 1.9 4.9 
1.9 1.5 1.7 1.4 1.3 
2.0 1.6 1.4 1.4 1.2 
2.2 1.7 1.5 1.3 1.2 

Criterion = 0.05 
Weight Step Size, E, 

0.25 0.5 1.0 2.0 4.0 

5.7 5.1 4.3(1/1) 1.6(1/3) 3.5(8/11) 
4.2 3.7 2.9 2.2 4.7 
4.1 2.6 2.2 1.5 1.4 
4.2 2.8 1.7 1.5 1.3 
4.6 3.3 1.8 1.4 1.3 

a When applied to the 4-4 encoder problem. Numbers in parentheses indicate the 
number of times (out of 15) that BP or BPG failed to reach criterion in 1000 sweeps. 

[81-[10]) have also use- a gain parameter, with different pur- 
poses and different architectures. These are discussed later. 

Throughout this article, we will refer to back propagation wifh 
adaptive gains as BPG, and to standard back propagation, for 
which gf = 1 for all i ,  s and eg = 0.0, as BP. 

11. SPEEDED LEARNING FROM GRADIENT 
DESCENT WITH GAIN 

Learning time in BPG is remarkably faster than standard BP. 
In this section we discuss some criteria for comparing learning 
times of different algorithms, and then report our simulation 
procedure and results. 

Comparing Learning Speeds 

Comparing the speeds of variants of back propagation can be 
tricky. One must control all of the following variables: updating 
procedure (every trial vs. periodic), solution criteria, initializa- 
tion procedure, learning rates, number of hidden nodes, and 
error function. In our comparisons of BP and BPG, we per- 
formed gradient descent on the sum of squared errors, weight 
and gain changes were accumulated after each pattern presenta- 
tion but only executed at the end of a full sweep (or “epoch”) 
through the training set, and learning time was measured as the 
number of sweeps until I t i -u f I  <ecr i t ,  for a pre-set criteria1 
value ecrit, across all patterns and output nodes i .  

Since the initial values of the weights may affect convergence, 
it is common practice to run several simulations with different 
starting weights and to combine the results with appropriate 
statistics. The choice of these statistics is not straightforward. 
Arithmetic averages are excessively influenced by the occasions 
when the network fails to reach criterion in the allotted time, 
but robust statistics, like the median, do not reflect those 
occasions at all. In our simulations we characterized speed with 
two statistics: the arithmetic average of the number of sweeps 
when the solution was achieved in less than 1000 sweeps; and, 

the number of simulations when the system neec-d more than 
1000 sweeps. 

Combining the results for different step sizes is also tricky. 
One possibility is to compare learning times for optimal step- 
sizes, However, it is often preferable to learn moderately fast 
over a wide range of step sizes than to learn exceptionally fast 
over a very limited range. In this article we report learning times 
for a variety of parameter combinations. We also report aver- 
ages of the different combinations to give an estimate of the 
relative efficiencies of the algorithms. 

Procedure 

We compared BP and BPG on two standard benchmark 
problems, the exclusive-or (XOR) and the 4-4 encoder problem 
[l]. We tested learning times of BP and BPG on all combina- 
tions of the following independent variables. 

Number of hidden nodes: 2,4,8,16,32. 
Step size E ,  for weight change: 0.25,0.5,1,2,4. 
Criteria1 value (ecrit)  for solution: 0.20,0.10,0.05. 

There was a single hidden layer, in which all nodes used the 
logistic activation function a = 1/(1+ exp( - g net)). In each 
condition 15 different initializations for weights were used, with 
weights assigned according to a uniform random distribution 
from - 1  to + 1 ,  such that the fan-in weight vector (including 
bias) of each node was normalized to Euclidean length 1. The 
step sizes for weights in the output layer were scaled according 
to the the standard fan-in correction formula (Plaut et al., [lo]). 

In BPG, gains were modified according to (6) with eg = 0.20. 
In the XOR problem, gain was restricted such that 0.75 < g < 
3.50, so that gains would be neither too small, making the node 
ineffective, nor too large, producing excessive change. Momen- 
tum (see [l]) was set to 0.9 for both weights and gains. To assure 
that our program was correct, its performance, with eg = 0.0 and 
g = 1, was compared to McClelland and Rumelhart’s [ l l ]  back- 
propagation software. The programs behaved identically to the 
fifth decimal place. 



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 1, JANUARY/FEBRUARY 1991 275 

TABLE I1 
RATIOS OF AVERAGE LEARNING TIMES (IN SWEEPS) FOR BP RELATIVE TO BPGa 

Number 
Hidden 
Nodes 

2 
4 
8 

16 
32 

Number 
Hidden 
Nodes 

2 
4 
8 

16 
32 

Number 
Hidden 
Nodes 

2 
4 
8 

16 
32 

Criterion = 0.20 
Weight Step Size, E ,  

0.25 0.5 1.0 2.0 4.0 

1.2(2/2) 2.0 3.8 2.7 1.4 
1.6(2/2) 1.5 2.3 3.1 1.6 
1.4(4/1) 1.3(1/0) 1.8 3.0 3.0 
1.3(8/2) 1.4 1.4 1.9 3.6 

1.2(7/3) 1.4(0/2) 3.2(0/1) 1.8(0/2) 1.2 

Criterioq = 0.10 
Weight Step Size, E ,  

0.25 0.5 1 .o 2.0 4.0 

1.3(7/3) 1.5(0/2) 3.3(0/1) 1.8(0/2) 1.3(0/1) 
1.3(4/2) 2.1 3.9 2.8 1.4 
1.7(3/2) 1.6 2.5 3.1 1.6 
1.5(6/1) 1 .31  /O) 2.0 3.1 3.1 
1.2(11/3) 1.6(2/0) 1.6 2.2 3.7 

Criterion = 0.05 
Weight Step Size, E ,  

0.25 0.5 1 .o 2.0 4.0 

1.5(8/3) 1.9(0/2) 3.5(0/1) 1.8(0/2) 1.3(0/1) 
1.5(8/2) 2.5(1/0) 4.5 3.0 1.5 
1.8(10/2) 2.0(2/0) 3.2 3.5 1.7 

1.3(15/7) 1.6(9/0) 2.3 3.0 4.2 
1.4(4/3) 1.8(4/0) 2.6 3.8 3.4 

"When applied to the XOR problem. Numbers in parentheses indicate the number of times, 
out of 15, that BP/BPG failed to reach criterion within 1000 sweeps. 

TABLE 111 
RATIOS OF LEARNING TIMES FOR BP AND BPG a 

scent. Adaptive gains also provide a variety of other benefits 
that we will discuss in later sections. 

Criterion Encoder XOR Average 

0.05 2.9 2.4 2.7 
0.1 1.9 2.1 2.0 
0.2 1.7 2.0 1.8 

Average 2.2 2.2 2.2 

aSummarized from Tables I1 and 111. 

Results 

Tables I and I1 show the learning times of BP relative to BPG 
for the 4-4 encoder problem and the XOR problem. Average 
results are summarized in Table 111. For all trials when criteria1 
error was reached, BPG was faster than BP. The learning time 
ratios vary from 1.1 to 5.7, with an average of 2.2. In terms of 
the number of times that criterial error was not reached in 1000 
sweeps, BPG also performed better than BP except when two 
hidden nodes were used. In that case BPG could not solve the 
problem 13% of the time, as opposed to BP that did not solve it 
11% of the time. Table I11 shows the average speed ratio as a 
function of the learning criteria and the type of problem. The 
average learning time ratio is 1.83 for a criterion of 0.2, and 2.68 
for a criterion of 0.05. In a previous study [6] it was shown that 
for smaller criteria, BPG is more than 6 times faster than BP. 

111. DISCUSSION 
Speeded Leaming by Other Methods 

There have been many other back propagation speed-up 
methods described in the literature, e.g., Fahlman's [12] Quick- 
Prop, or Jacob's [ 131 learning-rate adjustment heuristics. We do 
not claim that BPG is faster or incompatible with these meth- 
ods. An advantage of adaptive gain is that it is easy to introduce 
into back propagation programs, and that it accelerates learning 
without the need to invoke principles other than gradient de- 

Relation of Gain Change and Weight Change 

In this section we explore the relationship between gain and 
weight change. We then analyze why BPG speeds up learning 
relative to BP. 

Lemma 1: Suppose weights are changed by gradient descent 
on the error E ,  and gains are also changed by gradient descent 
on E.  Then, for a given node, the magnitude of its gain in- 
creases if and only if the length of its weight vector increases. 

Proof: Gradient descent on the error E with respect to 
weights and gains can be expressed as follows (cf. (2)-(6): 

Awf = E ,  aE s s - 1  

a ( g ;  nets) g i a  

A g f  = E  aE ( w f , a s - ' >  a( g: nets) 

Solving (7) for a s p  and substituting into (8) yields 

(7) 

where 0 is the angle between wf and Awf. Note also that 

Case I: cos 8 0. From (91, As,!. gf > 0. Therefore, the signs 
of gf and Ag,! are the same, so Alg,!I > 0. From (101, Allw,!112 > 0. 
In this case, then, the signs of Algfl and Allw:ll agree: They both 
are positive. 
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Case 11: cos 0 < 0. From (9), Algfl < 0, by argument analogous 
to that used in Case I. From Equation 10, we can see that 
AIIW,!~~~ < llAwf1lZ. For arbitrarily small’ step sizes, IlAwSll’ + 0, 
so that A l l ~ f 1 1 ~  < 0. Again the signs of Algfl and Allwfll agree: 
They both are negative. 

Adaptive gain has a catalytic effect in the learning process by 
modifying the magnitude, not the direction, of the weight change. 
Empirical observations show that in the early phases of learning, 
when a successful direction has not yet been found, weight 
vectors change direction from trial to trial and both gain and 
weight-vector length shrink. As successful directions are found, 
weights and gains grow larger. From (3) and (41, gain can be 
seen as modulating the stepsize E ,  of the weight change, ampli- 
fying learning in nodes that find successful directions in weight 
space. This may help to explain why BPG does not necessarily 
provide a big advantage with very small networks: Larger net- 
works provide a larger pool of candidate directions, so that the 
benefits of gain are more likely to be utilized. 

Gain and Weight Normalization 

By including the gain parameter in back propagation, one can 
also normalize weight vectors without loss of computational 
power. One advantage of normalization is that it maintains the 
weight values within bounds [14], [15]. Normalization can also be 
used to facilitate comparison between nodes [ 161. Weight vec- 
tors can be factored into length and direction, with direction 
indicated by the normalized weight vector, and length indicated 
by the gain of the node. By performing gradient descent on gain, 
and by implication from Lemma 1, the effects of back propaga- 
tion on the lengths of the weight vectors will be reflected by the 
gains, even with the weight vectors themselves normalized. 

Several approaches might be used to normalize the weight 
vectors. One possibility is to let the weights change via back 
propagation and then to normalize the weights directly, dividing 
them by the length of the weight vector. Such an approach was 
taken by Kruschke [161. Another possibility, used by Oja 1151 in 
the context of a Hebbian rule, is to generate a Taylor series 
approximation to the normalization process. Movellan [ 171 de- 
rived a Taylor series approximation to normalization for back 
propagation: 

where Aw; is the modified weight change. Notice that the 
normalized rule of (11) is nearly the same as the standard weight 
update rule of (4) but with a corrected activation from the layer 
below. An advantage of the Taylor approximation over “brute- 
force” normalization is that the length of the weight vector need 
not be computed. We have applied the normalization rule of 
(11) in conjunction with BPG, with good results [17]. 

IV. MINIMAL HIDDEN LAYERS FROM GAIN COMPETITION 

We have shown that the gain parameter is useful for speeding 
up learning and for allowing weight vector normalization. We 
will now show that it can also be used to create hidden layer 
bottlenecks; i.e., hidden layers with relatively few participating 

’For non-infinitesimal changes, suppose that IlAwJl= pllwfll, for some 
0 < p < 1. Then we must have cos 0 < - p / 2  for the conclusion to hold. 
For small p ,  that condition is virtually the same as cos0 < 0. In other 
words, for non-infinitesimal changes, the conclusion of the lemma can 
be violated when the change vector Awf is at an angle just slightly 
obtuse to the weight vector (- p / 2  d cos 0 < 0) or when it happens to 
be huge relative to the weight vector ( p  > 1). Empirically, such condi- 
tions occur so ephemerally as to be negligible. 

nodes. Small hidden layers have been shown to improve the 
generalization performance of back-propagation networks in 
some applications. 

Gain Indicates Participation in Representation and Learning 

We say that a given hidden node participates in representing 
the input if and only if its activation changes for some change of 
input. The gain of a node indicates how much the node partici- 
pates in representing the input. When the gain of a node is zero, 
its activation is constant: If g ,  = 0, then a ,  = f ( g ,  net,) = f(0) for 
all net,, and as the magnitude of the gain grows, the variance of 
activation values from f(0) increases for monotonic f. 

The gain of a node also indicates the extent to which the node 
participates in learning. When the gain of a node is zero, the 
error propagated to its weights is also zero, and hence its 
weights cannot learn. When the magnitude of the gain grows, 
the learning by weights also increases. That can be seen explic- 
itly from (3), in which gain acts as a continuous modulator of the 
magnitude of error propagated to the weights. 

The gain parameter is not just a passive indicator like the 
pointer of a speedometer. If one tries to go faster by moving the 
pointer of a speedometer t o  a higher value, one only succeeds in 
breaking the speedometer. On the contrary, if we adjust the gain 
of a node, we actually change its activation variance and its 
weight learning rate. It is the causal efficacy of the gain parame- 
ter that makes it an attractive device for introducing constraints 
into back propagation. 

Improred Generalization from Small Hidden Layers 

There is empirical evidence that generalization to novel input 
patterns is improved by using hidden layers with a small number 
of nodes (e.g. [ 18]-[20]). In these cases, generalization from the 
training set to novel inputs was better when the number of 
hidden nodes was relatively small.’ The reason for improved 
generalization is intuitively clear: A small hidden layer forces 
the input patterns to be mapped through a low-dimensional 
space, enforcing proximities between hidden-layer representa- 
tions that were not necessarily present in the input-pattern 
representations. Only the differences between patterns that are 
most important for decreasing error will be preserved as large 
distances between hidden layer patterns. Differences between 
input patterns that are not preserved in the hidden layer repre- 
sentation are thereby generalized over completely. A more 
detailed discussion can be found in Kruschke [16], [22], [23]. 
Theoretical and empirical results regarding learnability, general- 
ization, and network size can be found in, e.g., [24]-[26]. 

Given the desirability of small hidden layers, why not just 
build a network with an arbitrarily small number of nodes? 
First, for most learning applications it is not known what the 
minimal number of hidden nodes is. If one uses too few nodes, 
then the network has insufficient computational power to learn 
the training set to criteria1 accuracy, regardless of learning 
algorithm used. Second, back-propagation learning is slower, 
and more likely to  encounter local minima or extensive plateaus 
on the error surface, when small hidden layers are used. $or 
example, the minimal number of hidden nodes required to learn 
the XOR is two, but when only two nodes are built into the 
network, extended learning times are often encountered. In 
general, back-propagation learning is faster when larger hidden 
layers are used [lo]. We try to satisfy these two competing 
constraints on hidden layer size by building a network with a 

2There are also cases for which reducing the number of hidden nodes 
did not improve generalization (e.g., [21]). It is beyond the scope of this 
article to analyze in detail which particular applications will benefit from 
hidden layer bottlenecks. The premise is that at least some applications 
do benefit from bottlenecks. 
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large number of hidden nodes and dynamically reducing them as 
learning progresses. Our previous observations regarding the 
gain parameter suggest that a judicious manipulation of gains 
could accomplish this goal. 

Generalized Cost Function for Gain Competition 

We can use the gain parameter to make the hidden nodes 
compete for the right to participate in the representation and in 
learning. The idea is to start with a large hidden layer of 
candidate nodes, and to impose a cost on nodes that are similar. 
In general, the cost of similar nodes can be expressed as 

c = Ch(g , )h (g , ) s , ,  (12) 
1 , J  

where h is a nondecreasing function of gain, and s,, is some 
measure of the similarity of nodes i and j .  The sum is taken 
over all nodes in the hidden layer. Thus if two nodes are similar 
and both have large gains, they make a large contribution to the 
cost. We  can perform gradient descent on the cost C with 
respect to gain in order to  decrease the gains of redundant 
nodes. (One might also perform gradient descent on C with 
respect to connection weights.) We  desire the derivative to be 
locally computable in a network architecture compatible with 
back propagation. Thus, the gain of a node is adjusted simulta- 
neously by gradient descent on error and by gradient descent on 
the cost C (12). 

The Special Case of Gain Decay: One special case of the cost 
function defines h  to  be the identity function, and defines s,, to 
be 1 if i = j and 0 otherwise. Then the cost function reduces to 
C = Elg,?, and gradient descent on C with respect to  g, yields 
Ag, a - g,. That is simply gain decay, analogous to weight 
decay, which has often been used in applications of back propa- 
gation (e.g., [18], [27]). 

Another special case defines h(g,) = g, /(1+ g,), with s,, again 
equal to 1 if i = j and 0 otherwise, so that C = C , g ? / ( l +  g,)*. 
This is also a form of gain decay, in which the decay rate 
increases to a maximum of some small value of gain, and then 
decreases as gain gets larger. It is anaiogous to a cost function 
used by Rumelhart [191, [20l, [281. 

Those special cases of the cost function are particularly sim- 
ple and easy to implement in a back propagation network. 
Unfortunately, gain decay alone does not take full advantage of 
the potential captured by the genecalized cost function. We 
suggest now, and provide empirical evidence later, that gain 
decay excises slow-learning nodes rather than redundant nodes. 

Specific Cost Function for Gain Competition: The measure of 
similarity used in the special cases of gain decay is really a 
degenerate case. We seek instead some measure of similarity 
which rises continuously from zero. Moreover, the measure must 
allow gradient descent on the cost of gains to be locally com- 
putable in a network compatible with back propagation. One 
such function is as follows: 

where the sum is taken over all patterns, p ,  in a training sweep. 
The notation net,, denotes the net input to node i when pattern 
p is input. The similarity in (13) is a measure of the squared 
correlation of the net input values of nodes i and j across 
patterns. (It is not the usual definition of correlation because we 
have not subtracted the mean net input values.) It is always 
between zero and one, varies continuously, and it has a particu- 
larly simple derivative with respect to gain: zero. If we choose 
the identity function for h ( g )  in the generalized cost function C ,  

then gradient descent on C with respect to gain yields the 
competition rule: 

where y > 0 is a constant of proportionality, called the competi- 
tion rate. A variant of (14) was first introduced by Kruschke 1161, 
who used a slightly different definition for s,,. 

Local Computation: The value of Agl can be computed lo- 
cally in a back propagation network if lateral connections be- 
tween hidden layer nodes are allowed, that do not propagate 
activation or errors, but gain values. The strength on the lateral 
connection from node i to node j is s,,, which can be computed 
with information available locally at the two nodes. Then E,g,s,, 
is easily computed by summing across the lateral  connection^.^ 

Simulation Procedure 

The encoder problem [l] is an especially appropriate test for 
the gain competition scheme. In the encoder problem, a net- 
work with N input nodes and N output nodes is trained to map 
the N canonical basis vectors to themselves; i.e., (1,0, . . . ) c* 
(1,0, . . . 1, (0,1, . . . ) - (0 , l  . . . 1, etc. "Good" solutions to the 
encoder problem use log, N hidden nodes that together act as a 
binary encoder of the input. In that case, the hidden nodes are 
completely uncorrelated with each other. That is exactly the sort 
of situation that the gain competition scheme is supposed to 
encourage. 

We used a network with eight input nodes, 16 hidden nodes 
and eight output nodes. To  initialize the network, the weights 
on each node were chosen at random and then the weight vector 
of each node, including its bias weight, was normalized to 
Euclidean length one. The gain of each node was also initially 
set to one. Standard back propagation was performed; i.e., 
gradient descent on error with respect to weights, with a learn- 
ing rate of 0.20 and a momentum of 0.85. Gradient descent on 
error with respect to gains was also performed on both the 
hidden and output layers, with the learning rate set to 0.20, and 
zero momentum. The learning was run until the maximum 
absolute error for every output node was less than 0.15. 

Gain competition was simultaneously performed on the hid- 
den layer. We wanted to impose as much competition as pos- 
sible without extinguishing learning (error reduction), so we 
dynamically modulated the competition rate as learning pro- 
gressed, in the following simple way. If learning was proceeding 
well, with the square root of the mean squared error (RMSE) 
falling rapidly, then competition was increased. If learning was 
slow, competition decreased. Specifically, the competition rate y 
of (14) was a constant multiple of an exponential average of the 
change in RMSE over previous trials, divided by the RMSE of 
the present trial: 

ii y ( ~ )  = - K w'ARMSE(T - t )  RMSE(7)  (15) 

where Y ( T )  is the competition rate on trial T ,  where K is a 
non-negative constant of proportionality called the competition 
rate modulator, where the sum is taken over all previous trials t ,  
and where w is a positive constant governing the weighting of 
the exponential average. In our simulations we set w = 0.70, and 
tested the competition rate modulator K at several values be- 
tween zero and two. Note that if the network is in fact learning, 
then ARMSE should be negative, and so the competition rate y  

K" 

'One can also easily derive dC/dw,, , but computing the change in 
weight is not any simple variant of the feed-fonvard network for back 
propagation. One goal for future research is to construct a function s,,, 
which yields gradient descent on C with respect to weights that is locally 
computable. 

- 

I i; -1 
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TABLE IV 
NUMBER OF PARTICIPATING HIDDEN NODES (NODES WITH 

NONZERO GAIN)= 

K 0.0 0.5 1 .0 2.0 

Mean 16.0 5.33 3.93 3.20 
Range 16-16 4-6 3-5 3-4 

SD 0 0.70 0.57 0.40 

aAfter learning with competition, for different values of K .  

should be positive. However, gradient descent algorithms like 
back-propagation can sometimes “overshoot” a local descent 
and cause ARMSE to be greater than zero, consequently caus- 
ing y to be less than zero. To deal with that possibility, the 
value of the competition rate y was actually set to the maximum 
of zero and the value computed in (15). Gain competition was 
not actually executed until the fifth sweep, so that the value of y 
would reflect the smooth behavior of RMSE rather than the 
initial turbulence often seen in back propagation. Finally, gain 
was restricted to be non-negative so that competition could 
never “explode,” driving some gains to large negative values and 
others to large positive values. 

It was found that gain decay contributed almost nothing to 
the excision of hidden nodes (these results are reported later), 
and added significantly to learning time. We therefore did not 
include the diagonal terms of (12) in the computation of gain 
cost, C. Thus the change in gain due to competition was 

Ag, = - Y c g,s,, (16) 
J # 1  

(cf. (14)). Every factor in the right hand side of (16) is a 
non-negative number. Hence competition could only decrease 
the gains, never increase them. 

Results 

The results showed a large decrease in the number of partici- 
pating hidden nodes as a function of the competition rate 
modulator, K .  Results are summarized in Table IV. Fifteen trials 
were run at each value of K ,  each trial starting with a different 
set of random weights. (The same fifteen initializations were 
used for each of the values of K . )  

When there was no gain competition ( K  = O.O), all 16 of the 
hidden nodes built into the network ended up participating in 
the representation. In fact, all 16 nodes had gains greater than 1 
on every trial. From these results it is clear that back propaga- 
tion alone does nothing to excise redundant nodes, but instead 
utilizes all the nodes available to it. 

When only a small amount of competition was used ( K  = 0.51, 
the number of participating hidden nodes dropped to an aver- 
age of only 5.33. All the other hidden nodes had gains of zero 
(to more than six decimal places). The number of participating 
hidden nodes did not vary much from trial to trial, as can be 
seen from Table IV. 

As the gain competition was increased to K = 2.0, usually (in 
12 of 15 trials) only three hidden nodes remained. That is 
exactly the “good” solution, using log, 8 hidden nodes, that the 
competition scheme was meant to encourage. 

The benefits of gain competition do not come without some 
cost. As might be expected, learning time increased as the 
competition rate modulator K increased. Table V shows that for 
K = 2.0, learning time is almost three times that for K = 0.0. It is 
important to notice that learning time is a negatively accelerat- 
ing function of K .  Thus gain competition does not cause an 
explosive growth in learning time. 

For comparison, an 8-3-8 network was tested on the encoder 
problem with fifteen random weight initializations, using the 
same procedure but without competition. The network reached 

TABLE V 
LEARNING TIME IN SWEEPS FOR VARIOUS AMOUNTS OF COMPETITION 

K 0.0 0.5 1.0 2.0 

Mean 218 403 497 600 
Range 105-303 203-722 274-169 353-824 

SD 55.3 129.9 162.3 145.0 

TABLE VI 
EFFECTS OF GAIN DECAY ALONE 

K 0.5 1 .o 
Mean hidden nodes 16 16 
Mean hidden gain 0.343 0.234 
Mean learning time 346 430 

criterion in an average of 328 sweeps, with a range of 195 to 455 
sweeps, and a standard deviation of 66.8 sweeps. Thus adding 
competition takes less than twice as long  as back propagation 
with gain. Since back propagation with gain was shown to be 
about twice as fast as standard back propagation, the competi- 
tion scheme ends up taking no longer than standard back 
propagation. 

The results reported so far have described the retirement of 
nodes from participation. On the other hand, if the competition 
rate modulator K is set to much larger values, some interesting 
behavior occurs. The high competition initially suppresses all 
but one or two nodes. The network will reduce the error as best 
it can, but as the rate of error reduction slows, the competition 
rate y gets smaller (by (15)). This allows new nodes to be 
recruited from the pool of retired nodes. One or more previ- 
ously suppressed nodes grows to have positive gain, as a result 
of gradient descent on error with respect to gain. The newly 
recruited node is dissimilar to the previously participating nodes 
(otherwise competition would have continued to suppress it), 
and error can be reduced further (otherwise it would not have 
been recruited). 

As suggested earlier, gain decay alone should not specifically 
excise redundant nodes, but only those that learn slowly. Here 
we present empirical support for that claim. Gain decay alone 
(Agl = - yg , )  was applied using the same procedure as for 
competition without decay. Table VI shows the results for the 
same fifteen initializations as used in Tables IV and V, with K 

equal to 0.5 and 1.0. In this context, K is the “decay” rate 
modulator, rather than a “competition” rate m o d ~ l a t o r . ~  All the 
hidden nodes had gains greater than zero after learning; that is, 
none were excised at all. Gain decay had two significant effects: 
It increased the learning time; and, it reduced the mean hidden 
node gain. Clearly this form of gain decay is counterproductive, 
and so we have good evidence that competition is an improve- 
ment over decay alone. 

Other Minimization Techniques 

Several researchers have introduced other hidden layer mini- 
mization techniques, e.g., [ 161, [ 191, [20], [22], [231, [28]-[34]. No 
direct comparisons have been made of the relative performance 
of the alternative methods, in terms of learning speed and 
generalization improvement for particular applications. Each 
method introduces its own bias upon the type of representation 
learned by the network, and hence upon the generalization 
made by the network. For example, the gain competition method 
described here biases the network toward hidden layer repre- 
sentations that have uncorrelated node activations. That bias 

4Not shown are results for K = 2.0, which led to unstable oscillations 
even for very small learning step sizes. 
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might be appropriate for some applications, and not for others. 
Fortunately, the generalized cost function for gains (12) allows 
other definitions of similarity that might be more appropriate 
for specific applications. 

In some applications it might be known in advance that 
specific kinds of bias are desired, and they might have nothing 
to do with minimization of hidden layers. For example, in visual 
pattern recognition, the system should generalize over spatial 
translations, and so the constraint of translational symmetry can 
be built in from the start [l]. Hidden layer minimization tech- 
niques, on the other hand, are usually intended for applications 
in which the appropriate domain-specific constraints are not 
known in advance. 

V. GENERAL DISCUSSION 
Gain and Temperature 

Both Boltzmann-type networks [181, [351 and back-propa- 
gation networks use sigmoidal activation functions. The “tem- 
perature” parameter used in Boltzmann machines can be 
thought of as the reciprocal of gain [61, [7].  In view of this 
apparent similarity it is important to point out the following 
differences. 

Boltzmann machines are stochastic and activation values are 
binary. In these networks, temperature connotes stochasticity of 
the activation values. On  the other hand, BPG is a deterministic 
network and therefore, gain (or its reciprocal, temperature) 
cannot connote randomness. But BPG activation functions may 
be interpreted as mean field approximations to binary stochastic 
nodes (e.g., [36]-[38]). The stochastic interpretation of tempera- 
ture in Boltzmann machines corresponds to discriminating power 
in deterministic systems. 

In Boltzmann and mean field networks, all nodes have the 
same temperature and are subject to a global “cooling” or 
“annealing” schedule (but cf. [39]). In Boltzmann machines, 
sufficiently slow cooling rates guarantee that the activation 
values for a given fixed set of weights will settle in a global 
energy minimum [401. No corresponding claim is being made for 
BPG; there is no externally imposed annealing schedule for 
gains, and changing the gains by gradient descent does nothing 
to avoid local minima on the error surface. 

Gain and Natural Networks 

There is evidence suggesting that the nervous system has 
mechanisms that modulate the neural response function in a 
manner similar to gain. Servan-Schreiber, Printz, and Cohen [41] 
proposed that a gain parameter helps explain the effect of 
biogenic monoamines, a type of neurotransmiter associated with 
neural responsiveness modulation. They used the gain parame- 
ter in back-propagation networks to simulate phenomena associ- 
ated with catecholamine manipulations. There is also evidence 
that these amines play an important role in the modulation of 
learning [42]. 

VI. CONCLUSION 
We have introduced a gain parameter into the standard back 

propagation algorithm and shown it to be beneficial for speed- 
ing up learning and creating hidden layer bottlenecks for the 
goal of improved generalizations. It was shown that the gain of a 
node is a handle on its participation in representing the input, 
and on the node’s ability to learn. Simulations confirmed that 
adaptive gains significantly accelerated standard back propaga- 
tion. Other simulations showed that gain competition very effec- 
tively created hidden layer bottlenecks in the case of the en- 
coder problem. 

Not all applications will benefit equally from the techniques 
we have introduced. BPG speeds up learning when there are 
nodes which are learning successfully. When very few hidden 
nodes are included, there might be no successful nodes, and 
hence BPG might not significantly improve learning. The com- 
petition scheme is designed to favor solutions with uncorrelated 
hidden nodes. Our simulations showed that it works very well 
for the encoder problem, but if a “good” solution to some other 
particular problem uses highly correlated nodes, then the com- 
petition scheme might be counter-productive. The general cost 
function for gains allows other definitions of similarity that 
might solve this difficulty. 
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Motion Analysis of Multiple Moving Objects 
Using Hartley Transform 

Sabri A. Mahmoud 

Abstract -A new technique for motion estimation of moving objects is 
presented. The analysis of the Hartley spectrum indicates that the 
velocities of moving objects are related to the locations of the spectral 
peaks. The presented formulations and simulations demonstrate the 
applicability of this technique. This method is simple, fast, and compu- 
tationally efficient. 

I. INTRODUCTION 

The estimation of the velocity of moving objects is required in 
many applications. Biomedical cell motion analysis, tracking 
dust storms and clouds, and industrial and military applications 
are a few important examples. Some researchers have used 
segment and match technique to acquire velocity information 
[1]-[3]. Static images are segmented and then feature points are 
matched to establish correspondence between objects in succes- 
sive frames. This technique is sensitive to segmentation errors. 
The success of the algorithm is based on accurate segmentation 
of static frames, which is rarely satisfied in real world scenes, 
especially in a noisy environment. 

Other researchers [4]-[6] have used differencing techniques to 
extract moving objects in a sequence. In their techniques two 
frames are subtracted and the resulting frame yields the differ- 
ence between the two frames. This method has limitations as it 
requires 1) images to be exactly registered; 2 )  illumination to be 
invariant; and 3) the moving objects to be totally displaced. The 
temporal-spatial gradient techniques [7], [8] that utilize low-level 
estimation of frames, give best results only when the moving 
objects have smooth edges and the surfaces contain prominent 
texture. Their algorithm requires registered image sequences 
and the velocity estimate is approximate (it is close to accurate 
velocity at objects’ boundaries, while this is not the case at the 
objects’ surfaces). The above techniques have other limitations 
when multiple moving objects are in the sequence, the corre- 
spondence and occlusion problems are more severe. 

Most researchers of time-varying image analysis use only two 
or three frames of a sequence. The analysis based on only a few 
frames does not take into account the complete information 
about the motion of objects. It has been shown [9], 1101 that the 
human visual system requires an extended frame sequence in 
order to recover the structure of moving patterns. A longer 
sequence of frames allows the use of velocity information in 
analyzing the problem. Sethi and Jain [ l l ]  used a sequence of 
frames for finding the trajectories of feature points in an image 
sequence, and they used tokens to solve the correspondence 
problem, assuming smoothness of velocity. Selecting interesting 
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