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Abstract

We investigate the problem of computer recognition of ” Duchenne”
vs. non-Duchenne smiles. Duchenne smiles include the contraction
of the orbicularis oculi, the sphincter muscles that circle the eyes.
Genuine, happy smiles can be differentiated from posed, or so-
cial smiles by the contraction of this muscle (Ekman, Friesen, and
O’Sullivan, 1988). This is a difficult visual discrimination task.
Previously published performance of computer vision systems on
this task is in the low 80%’s for a two-alternative forced choice. Ga-
bor wavelet representations have been found to be highly effective
for image recognition, including facial identity recognition (Lades
et al., 1993), and facial expression analysis (Bartlett, 2000). Here
we investigate the performance of Gabor wavelet representations in
combination with support vector machines (SVM’s) on the task of
discriminating Duchenne from non-Duchenne smiles. A multiscale
Gabor representation defined by Lades et al. (1993) comprised the
inputs to support vector machines. The SVMs performed signifi-
cantly better on this task than previously published systems. We
analyze the reasons underlying the success of our approach. Lin-
ear SVM kernels did not perform as well as polynomial or Gaus-
sian kernels, suggesting that the classes are not linearly separable,
despite the high dimensionality of the Gabor vectors. SVM’s on
unfiltered difference images did not perform as well as the SVM’s
on the Gabor filtered images, demonstrating that the Gabor filters
did contribute to overall classification performance.

1 Choice of classifier and task

Why use Support Vector Machines on Duchenne Smiles? Support vector
machines, introduced by V. Vapnik,(Boser et al, 1992) are good classifiers for dis-
tinguishing between two classes of vectors. The theory can be extended in various
ways to cope with multiclass tasks for later applications (e.g. Lee, Lin, and Wahba,
2001). Since the core of the SVM algorithm entails a quadratic optimization, it is
usually quick and easy to use.



By effectively embedding vectors in a higher dimensional space, where they may be
linearly separable, SVM’s can solve highly non-linear problems. The computational
complexity of the problem depends on the number of training examples, not on the
dimension of the embedding space. This is ideal for many face emotion recognition
problems, which tend to involve a relatively small set of training examples (order
hundred), with each vector representation vector being very long (order million
dimensions).

In this paper we investigate the problem of computer recognition of “Duchenne” vs.
“non-Duchenne” smiles. Duchenne smiles involve the contraction of the orbicularis
oculi, the sphincter muscles that circle the eyes. In Ekman’s facial action coding
system (Ekman et al 1988) , contraction of this muscle is coded as facial action
unit 6 (FACS-6). Figure 1 shows examples of smiles in which FACS-6 is present
(left side image) and absent (right side image). The presence of this action unit can
differentiate genuine, happy smiles from posed, or social smiles (Ekman, Friesen,
and O’Sullivan, 1988). Automatic recognition of this action unit is difficult, with
previously published performance of computer vision systems on this task is in the
low 80%’s for a two-alternative forced choice (e.g. Cohn et al. 1999).

a.

Figure 1: Example images. a. Duchenne b. Non-Duchenne.

2 Overview of SVMs

For a full introduction, see, for example, the book ”Support Vector Machines” by
Cristianini and Shawe-Taylor. The objective in SVMs is to find a hyperplane that

separates the data points (training vectors X;) correctly into two groups (training
classes y; = £1) with as much distance as possible between the data points on either
side. To begin with, consider the case where the two groups are linearly separable
and the plane lies in the training vector space.

The margin m is the distance from the hyperplane to the closest points either side,
that is, to the (parallel) marginal hyperplanes. Weights W and threshold b specify
the hyperplane WX+b=0 you wish to find. For point X, on the marginal
hyperplane W.X+b=1and point X in the hyperplane,
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Thus maximizing the margin is equivalent to minimizing the weight vector length
subject to the following constraints

when y; =1 W-Xi+b>1
when y; = —1 W-X;+b< -1

Written together:
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All vectors are correctly classified and none lie inside the margin. This motivates
the cost function .5W?2 — &@.C with Lagrange multipliers o
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Minimizing with respect to W and b yields an optimal weight vector W* that is a
linear combination of certain of the training vectors X;’s called support vectors
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Inserting optimal weights W*, the Dual Lagrangian is a function of the multipliers,
and can be optimized numerically to find the a’s which in turn determine the
support vectors.
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In this last form of the objective function, only the SVkernel matrix K;; = X,f jis
needed, not the original vectors. Since testing the SVM classifier on new data can
also be formulated in terms of the SVkernels (because the test output Xp,eq, . W* is a
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known linear combination of Kpeqy,sv), SVM’s can be generalized to non-linearly sep-
arable problems by defining SVkernels which are non-linear (positive semi-definite)
functions of covariance or distance for each pair of vectors. For more on the possible
types and restrictions of kernel functions see Chapter 3 of Cristianini et al.

When the dual Lagrangian is optimized (maximized) numerically, most of the mul-
tipliers « are zero. Further analysis of this type of problem leads to Karush-Kuhn-
Tucker conditions which clarify how to interpret the numerical solutions.

KKT : a;[y;(>_ WiXip +b) —1] =0 (7)

These conditions imply that either @ = 0, or «; is non-zero and the original in-
equality constraints above C; are satisfied with equality (points in the marginal
hyperplanes). The support vectors which make up the optimal weight vector W
have coefficients «;, so only those training vectors with non-zero a contribute, thus
all support vectors must lie in one of the two parallel marginal hyperplanes. It is
precisely those vectors which are hardest to classify, being closest to the opposite
side in the projected hyperspace, which determine the dividing hyperplane.

In cases where there are outliers in the wrong camp, or where some training vectors
may be incorrectly labeled, it is useful to use soft margins. This allows some support
vectors in the training set to be on the wrong side of the appropriate marginal
hyperplane. This effectively puts an upper limit on the a’s. For the particular task
in this paper, soft margins have not proved useful.

3 Data Sources

Duchenne and non-Duchenne face images were collected by J. Cohn at Pittsburgh
(Pitts) and by P. Ekman and J. Hager at UCSF (Ekman-Hager). The Pittsburgh
data was collected by asking naive subjects to pose a smile. The facial behavior,
including the presence or absence of FACS-6, was then scored by two certified
FACS coders. The Ekman-Hager dataset was collected by directing expert subjects
to contract specific facial muscles. The facial actions were then verified by three
certified FACS coders . A set of genuine/posed smiles were collected by C. Riley
of the BBC. Twenty actors were videotaped while watching a segment of “Faulty
Towers” and again when asked to demonstrate their best smile. Two smile intensity
levels and a neutral were digitized for each subject.

3.1 Preprocessing of images

The centers of the eyes and mouth were manually located in each frame. The faces
were linearly warped and rotated so that the center of the eyes and mouth occupied
the same pixel position across the entire database. The images were then cropped
to 66 x 96 for the upper face and then the pixel values where linearly rescaled
to minimum and maximum values of 0 and 255. Difference images were obtained
by subtracting the neutral expression in the first image of each sequence from the
subsequent images in the sequence.

Gabor functions are sine wave gratings modulated by a Gaussian. Banks of Gabor
filters at multiple scales and orientations model the response properties of primary
visual cortical cells in primates (Daugman 1988). Gabor representations of the smile
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images were obtained by convolving difference images with a family of Gabor filters
at 5 spatial scales and 8 orientations, increasing the dimensionality of each vector
by a factor of 40 (Lades et al. 1993; Donato et al., 1999).

3.2 Constructing SVkernels

Support vector kernels were constructed for the Gabor filter representations of the
images as well as for the plain gray scale images and the difference images. All
kernels were constructed using either the matrix of covariance between images C
or the squared distance matrix d?, thus dispensing with the high dimensionality of
the filtered images. Functions applied (component-wise) to these matrices included
polynomials of form (C' + 1)*, Gaussian radial basis functions of d?, exponentials,
Laplacians, reciprocals of the form zl=.

3.3 SVM training: leave-’one’-out validation

The data was divided into test sets, which were omitted, one at a time, from the
kernel matrix during training. The support vector coefficients a calculated in the
numerical optimization were then used to classify the members of the test set.

4 Performance on classifying smiles

4.1 BBC data

The top row of Figure 2 illustrates 'genuine’ smiles from the BBC set, in which while
subjects responded to an episode of Faulty Towers. The bottom row illustrates
’posed’ smiles in which the actors were told to look happy. In pilot studies, human
subjects including delegates to the Joint Conference on Neural Computation scored
about 60 percent correct on guessing which people were which. Using a linear SVM
on normalized Gabor filter outputs, 75 percent of the 40 test images (low and high
intensity) were correctly classified.

Figure 3 shows the upper face difference images for 3 examples from each class using
images correctly classified by the SVM (top and bottom rows). These are the same
images as Figure 2. The two extra images are examples of support vectors from
each class respectively.

4.2 Pittsburgh data

Performance of leave-one-out validation on medium amplitude smiles from 90 se-
quences containing AU 6,12 (Duchenne) or AU 12 only (non-Duchenne) was 87%
for a Gaussian SVkernel (¢ = 0.9) on gray-scale distance, and 90% for a linear
combination of SVM outputs of plain Gray and Gabor filtered SVM’s.
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Figure 2: Examples from the BBC data set. Row 1: Genuine, Row 2: Posed.

-

Figure 3: Difference images from the BBC data set. Row 1: Genuine, Rows 2 and
3: Support Vectors, Row 4: Posed




E+ P+ E- P-
E+ 1.00 064 0.42 0.38
P+ 064 1.00 0.33 0.59
E- 042 033 1.00 0.32
P- 038 0.59 0.32 1.00

Table 1: Correlations between difference image vectors for the Ekman-Hager (E)
and Pittsburgh (P) datasets. Duchenne and non-Duchenne classes are indicated by
+ and — respectively.

4.3 Ekman-Pittsburgh combined data

Two data sources were combined, resulting in 100 Ekman-Hager Duchennes, 57
Pittsburgh Duchennes, 40 Ekman-Hager non-Duchennes and 32 Pittsburgh non-
Duchennes.

Correlations between difference image vectors from these four sets (Table 1) show
that while there is some correlation between Duchennes from different sources, the
non-Duchennes are more closely correlated with their own Duchennes than with
other non-Duchennes from a different source. This illustrates the difficulty of the
task.

Correct Support Error

Figure 4: Ekman-Pittsburg Upper Face Difference Images. Top row: Duchenne,
Bottom Row: Non-Duchenne, Left: SVM correct, Right: SVM in error, Middle: a
Support Vector

Classification performance was 84% for the best individual SVM, and 87% for a
linear combination of experts.

For a larger data set of 319 images including low and high intensities for each

subject, the best SVM was m which obtained 86% accuracy.
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The support vectors (middle column, Figure 4) are similar to one another, since
they are closest to the margin. The erroneous Duchenne example (top right) and
the correct non Duchenne example (lower left) look similar.The SVM classified them
both as non Duchenne.

5 Gabors and SVM’s

Gabor filter representations of images have been found to be highly effective for
face recognition (e.g. Lades et al., 1993) and expression analysis (e.g. Donato et
al. 1999). See Fasel, Movellan, and Bartlett (2001) for an analysis of Gabor filter
methods for face image processing. Aside from the similarity to visual cortical cell
responses, the reason for the success of this representation is unclear. One hypoth-
esis is that the bank of Gabor filters projects the images in to a high dimensional
space where the classes are linearly separable in a manner analogous to SVM ker-
nels. If that is the case, then a linear classifier should perform as well as a nonlinear
classifier, each taking Gabor representations as input. In addition, if the action of
the Gabor projection is equivalent to an SVM, then SVM’s applied to the original
images should perform as well as SVM’s applied to Gabors, given that the correct
kernel can be found.

For all Duchenne versus non-Duchenne discriminations (The Ekman-Hager, Pitts-
burgh, and combined datasets), linear kernels performed 5-10 percentage points
lower than nonlinear kernels applied to the Gabor outputs. SVM’s on unfiltered
difference images typically performed only a few percentage points lower than SVM’s
on the Gabors, but required more complex kernels and a more extensive search for
the right kernel.

Gabor filters also appeared to minimize the need for taking difference images.
SVM’s applied directly to the original grayelvel images were near chance, whereas
SVM’s applied to Gabor representations performed similarly, whether the Gabors
were applied to the original graylevel images, or to the difference images. The dif-
ference images did augment the performance with Gabors, but typically by only a
few percentage points.

6 Conclusions

The SVMs performed significantly better on this task than previously published
systems. Linear SVM kernels did not perform as well as polynomial or Gaussian
kernels, suggesting that the classes are not linearly separable, despite the high
dimensionality of the Gabor vectors. SVM’s on unfiltered difference images did
not perform as well as the SVM’s on the Gabor filtered images, demonstrating
that the Gabor filters did contribute to overall classification performance. Using
Gabor representations allows the use of simpler SVkernel functions, but the best
performing SVkernel is sometimes a function of distance between difference images.
Linear combinations of several experts can perform better than individual SVMs,
provided that kernels from both plain gray-scaled images and Gabor filtered images
are used.
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