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Abstract

We present a generative model and stochastic filtering algorithm for si-
multaneous tracking of 3D position and orientation, non-rigid motion,
object texture, and background texture using a single camera. We show
that the solution to this problem is formally equivalent to stochastic fil-
tering of conditionally Gaussian processes, a problem for which well
known approaches exist [3, 8]. We propose an approach based on Monte
Carlo sampling of the nonlinear component of the process (object mo-
tion) and exact filtering of the object and background textures given the
sampled motion. The smoothness of image sequences in time and space
is exploited by using Laplace’s method to generate proposal distributions
for importance sampling [7]. The resulting inference algorithm encom-
passes both optic flow and template-based tracking as special cases, and
elucidates the conditions under which these methods are optimal. We
demonstrate an application of the system to 3D non-rigid face tracking.

1 Background

Recent algorithms track morphable objects by solving optic flow equations, subject to the
constraint that the tracked points belong to an object whose non-rigid deformations are
linear combinations of a set of basic shapes [10, 2, 11]. These algorithms require precise
initialization of the object pose and tend to drift out of alignment on long video sequences.
We presentG-flow, a generative model and stochastic filtering formulation of tracking that
address the problems of initialization and error recovery in a principled manner.

We define a non-rigid object by the 3D locations ofn vertices. The object is a linear com-
bination ofk fixed morph bases, with coefficientsc = [c1, c2, · · · , ck]T . The fixed3 × k
matrix hi contains the position of theith vertex in allk morph bases. The transformation
from object-centered to image coordinates consists of a rotation, weak perspective projec-
tion, and translation. Thusxi, the 2D location of theith vertex on the image plane, is

xi = grhic + l, (1)
wherer is the3× 3 rotation matrix,l is the2× 1 translation vector, andg =

[
1 0 0
0 1 0

]
is the

projection matrix. The objectpose, ut, comprises both the rigid motion parameters and the
morph parameters at timet:

ut = {r(t), l(t), c(t)}. (2)



1.1 Optic flow

Let yt represent the current image, and letxi(ut) index the image pixel that is rendered by
the ith object vertex when the object assumes poseut. Suppose that we knowut−1, the
pose at timet − 1, and we want to findut, the pose at timet. This problem can be solved
by minimizing the following form with respect tout:

ût = argmin
ut

1
2

n∑
i=1

[yt(xi(ut))− yt−1(xi(ut−1))]
2
. (3)

In the special case in which thexi(ut) are neighboring points that move with the same
2D displacement, this reduces to the standard Lucas-Kanade optic flow algorithm [9, 1].
Recent work [10, 2, 11] has shown that in the general case, this optimization problem can
be solved efficiently using the Gauss-Newton method. We will take advantage of this fact
to develop an efficient stochastic inference algorithm within the framework of G-flow.

Notational conventions Unless otherwise stated, capital letters are used for random vari-
ables, small letters for specific values taken by random variables, and Greek letters for fixed
model parameters. Subscripted colons indicate sequences: e.g.,X1:t = X1 · · ·Xt. The
termIn stands for then× n identity matrix,E for expected value,V ar for the covariance
matrix, andV ar−1 for the inverse of the covariance matrix (precision matrix).

2 The Generative Model for G-Flow
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Figure 1:Left: a(Ut) determines which texel (color at a vertex of the object model or a pixel of the
background model) is responsible for rendering each image pixel.Right: G-flow video generation
model: At timet, the object’s 3D pose,Ut, is used to project the object texture,Vt, into 2D. This
projection is combined with the background texture,Bt, to generate the observed image,Yt.

We model the image sequenceY as a stochastic process generated by three hidden causes,
U , V , andB, as shown in the graphical model (Figure 1, right). Them× 1 random vector
Yt represents them-pixel image at timet. Then × 1 random vectorVt and them × 1
random vectorBt represent then-texel object texture and them-texel background texture,
respectively. As illustrated in Figure 1, left, the object pose,Ut, determines onto which
image pixels the object and background texels project at timet. This is formulated using
the projection functiona(Ut). For a given pose,ut, the projectiona(ut) is a block matrix,

a(ut)
def=
[

av(ut) ab(ut)
]
. Hereav(ut), the object projection function, is anm × n

matrix of 0s and 1s that tells onto which image pixel each object vertex projects; e.g., a 1
at rowj, columni it means that theith object point projects onto image pixelj. Matrix ab

plays the same role for background pixels. Assuming the foreground mapping is one-to-
one, we letab = Im−av(ut)av(ut)T , expressing the simple occlusion constraint that every



image pixel is rendered by object or background, but not both. In the G-flow generative
model:

Yt = a(Ut)
(

Vt

Bt

)
+ Wt Wt ∼ N(0, σwIm), σw > 0

Ut ∼ p(ut | ut−1)
Vt = Vt−1 + Zv

t−1 Zv
t−1 ∼ N(0,Ψv), Ψv is diagonal

Bt = Bt−1 + Zb
t−1 Zb

t−1 ∼ N(0,Ψb), Ψb is diagonal

(4)

wherep(ut | ut−1) is the pose transition distribution, andZv, Zb,W are independent of
each other, of the initial conditions, and over time. The form of the pose distribution is left
unspecified since the algorithm proposed here does not require the pose distribution or the
pose dynamics to be Gaussian. For the initial conditions, we require that the variance ofV1

and the variance ofB1 are both diagonal.

Non-rigid 3D tracking is a difficult nonlinear filtering problem because changing the pose
has a nonlinear effect on the image pixels. Fortunately, the problem has a rich structure
that we can exploit: under the G-flow model, video generation is a conditionally Gaussian
process [3, 6, 4, 5]. If the specific values taken by the pose sequence,u1:t, were known,
then the texture processes,V andB, and the image process,Y , would be jointly Gaussian.
This suggests the following scheme: we could use particle filtering to obtain a distribution
of pose experts (each expert corresponds to a highly probable sample of pose,u1:t). For
each expert we could then use Kalman filtering equations to infer the posterior distribution
of texture given the observed images. This method is known in the statistics community as
a Monte Carlo filtering solution for conditionally Gaussian processes [3, 4], and in the ma-
chine learning community as Rao-Blackwellized particle filtering [6, 5]. We found that in
addition to Rao-Blackwellization, it was also critical to use Laplace’s method to generate
the proposal distributions for importance sampling [7]. In the context of G-flow, we ac-
complished this by performing an optic flow-like optimization, using an efficient algorithm
similar to those in [10, 2].

3 Inference

Our goal is to find an expression for the filtering distribution,p(ut, vt, bt | y1:t). Using the
law of total probability, we have the following equation for the filtering distribution:

p(ut, vt, bt | y1:t) =
∫

p(ut, vt, bt | u1:t−1, y1:t)︸ ︷︷ ︸
Opinion
of expert

p(u1:t−1 | y1:t)︸ ︷︷ ︸
Credibility

of expert

du1:t−1 (5)

We can think of the integral in (5) as a sum over a distribution of experts, where each expert
corresponds to a single pose history,u1:t−1. Based on its hypothesis about pose history,
each expert has anopinionabout the current pose of the object,Ut, and the texture maps
of the object and background,Vt andBt. Each expert also has acredibility, a scalar that
measures how well the expert’s opinion matches the observed imageyt. Thus, (5) can be
interpreted as follows: The filtering distribution at timet is obtained by integrating over the
entire ensemble of experts the opinion of each expert weighted by that expert’s credibility.
The opinion distribution of expertu1:t−1 can be factorized into the expert’s opinion about
the poseUt times the conditional distribution of textureVt, Bt given pose:

p(ut, vt, bt | u1:t−1, y1:t)︸ ︷︷ ︸
Opinion
of expert

= p(ut | u1:t−1, y1:t)︸ ︷︷ ︸
Pose Opinion

p(vt, bt | u1:t, y1:t)︸ ︷︷ ︸
Texture Opinion

given pose

(6)

The rest of this section explains how we evaluate each term in (5) and (6). We cover the
distribution of texture given pose in 3.1, pose opinion in 3.2, and credibility in 3.3.



3.1 Texture opinion given pose

The distribution ofVt andBt given the pose historyu1:t is Gaussian with mean and covari-
ance that can be obtained using the Kalman filter estimation equations:

V ar−1(Vt, Bt | u1:t, y1:t) = V ar−1(Vt, Bt | u1:t−1, y1:t−1) + a(ut)T σ−1
w a(ut) (7)

E(Vt, Bt | u1:t, y1:t) = V ar(Vt, Bt | u1:t, y1:t)

×
[
V ar−1(Vt, Bt | u1:t−1, y1:t−1)E(Vt, Bt | u1:t−1, y1:t−1) + a(ut)T σ−1

w yt

]
(8)

This requiresp(Vt, Bt|u1:t−1, y1:t−1), which we get from the Kalman prediction equations:

E(Vt, Bt | u1:t−1, y1:t−1) = E(Vt−1, Bt−1 | u1:t−1, y1:t−1) (9)

V ar(Vt, Bt | u1:t−1, y1:t−1) = V ar(Vt−1, Bt−1 | u1:t−1, y1:t−1) +
(

Ψv 0
0 Ψb

)
(10)

In (9), the expected valueE(Vt, Bt | u1:t−1, y1:t−1) consists of texture maps (templates)
for the object and background. In (10),V ar(Vt, Bt | u1:t−1, y1:t−1) represents the degree
of uncertainty about each texel in these texture maps. Since this is a diagonal matrix, we
can refer to the mean and variance of each texel individually. For theith texel in the object
texture map, we use the following notation:

µv
t (i) def= ith element ofE(Vt | u1:t−1, y1:t−1)

σv
t (i) def= (i, i)th element ofV ar(Vt | u1:t−1, y1:t−1)

Similarly, defineµb
t(j) andσb

t (j) as the mean and variance of thejth texel in the back-
ground texture map. (This notation leaves the dependency onu1:t−1 andy1:t−1 implicit.)

3.2 Pose opinion

Based on its current texture template (derived from the history of poses and images up to
timet−1) and the new imageyt, each expertu1:t−1 has apose opinion, p(ut|u1:t−1, y1:t), a
probability distribution representing that expert’s beliefs about the pose at timet. Since the
effect ofut on the likelihood function is nonlinear, we will not attempt to find an analytical
solution for the pose opinion distribution. However, due to the spatio-temporal smoothness
of video signals, it is possible to estimate the peak and variance of an expert’s pose opinion.

3.2.1 Estimating the peak of an expert’s pose opinion

We want to estimatêut(u1:t−1), the value ofut that maximizes the pose opinion. Since

p(ut | u1:t−1, y1:t) =
p(y1:t−1 | u1:t−1)
p(y1:t | u1:t−1)

p(ut | ut−1) p(yt | u1:t, y1:t−1), (11)

ût(u1:t−1)
def= argmax

ut

p(ut | u1:t−1, y1:t) = argmax
ut

p(ut | ut−1) p(yt | u1:t, y1:t−1).

(12)

We now need an expression for the final term in (12), the predictive distribu-
tion p(yt | u1:t, y1:t−1). By integrating out the hidden texture variables from
p(yt, vt, bt | u1:t, y1:t−1), and using the conditional independence relationships defined by
the graphical model (Figure 1, right), we can derive:

log p(yt | u1:t, y1:t−1) = −m

2
log 2π − 1

2
log |V ar(Yt | u1:t, y1:t−1)|

− 1
2

n∑
i=1

(yt(xi(ut))− µv
t (i))2

σv
t (i) + σw

− 1
2

∑
j 6∈X (ut)

(yt(j)− µb
t(j))

2

σb
t (j) + σw

, (13)



wherexi(ut) is the image pixel rendered by theith object vertex when the object assumes
poseut, andX (ut) is the set of all image pixels rendered by the object under poseut.
Combining (12) and (13), we can derive

ût(u1:t−1) = argmin
ut

(
− log p(ut | ut−1) (14)

+
1
2

n∑
i=1

[
[yt(xi(ut))− µv

t (i)]2

σv
t (i) + σw︸ ︷︷ ︸

Foreground term

− [yt(xi(ut))− µb
t(xi(ut))]2

σb
t (xi(ut)) + σw

− log[σb
t (xi(ut)) + σw]︸ ︷︷ ︸

Background terms

])

Note the similarity between (14) and constrained optic flow (3). For example, focus on the
foreground term in (14) and ignore the weights in the denominator. The previous image
yt−1 from (3) has been replaced byµv

t (·), the estimated object texture based on the images
and poses up to timet − 1. As in optic flow, we can find the pose estimateût(u1:t−1)
efficiently using the Gauss-Newton method.

3.2.2 Estimating the distribution of an expert’s pose opinion

We estimate the distribution of an expert’s pose opinion using a combination of Laplace’s
method and importance sampling. Suppose at timet− 1 we are given a sample of experts
indexed byd, each endowed with a pose sequenceu

(d)
1:t−1, a weightw(d)

t−1, and the means
and variances of Gaussian distributions for object and background texture. For each expert
u

(d)
1:t−1, we use (14) to computêu(d)

t , the peak of the pose distribution at timet according

to that expert. Definêσ(d)
t as the inverse Hessian matrix of (14) at this peak, the Laplace

estimate of the covariance matrix of the expert’s opinion. We then generate a set ofs

independent samples{u(d,e)
t : e = 1, · · · , s} from a Gaussian distribution with mean̂u(d)

t

and variance proportional tôσ(d)
t , g(·|û(d)

t , ασ̂
(d)
t ), where the parameterα > 0 determines

the sharpness of the sampling distribution. (Note that lettingα → 0 would be equivalent to
simply setting the new pose equal to the peak of the pose opinion,u

(d,e)
t = û

(d)
t .) To find

the parameters of this Gaussian proposal distribution, we use the Gauss-Newton method,
ignoring the second of the two background terms in (14). (This term is not ignored in the
importance sampling step.)

To refine our estimate of the pose opinion we use importance sampling. We assign each
sample from the proposal distribution an importance weightwt(d, e) that is proportional to
the ratio between the posterior distribution and the proposal distribution:

p̂(ut | u(d)
1:t−1, y1:t) =

s∑
e=1

δ(ut − u
(d,e)
t )

wt(d, e)∑s
f=1 wt(d, f)

(15)

wt(d, e) =
p(u(d,e)

t | u(d)
t−1)p(yt | u(d)

1:t−1, u
(d,e)
t , y1:t−1)

g(u(d,e)
t | û(d)

t , ασ̂
(d)
t )

(16)

The numerator of (16) is proportional top(u(d,e)
t |u(d)

1:t−1, y1:t) by (12), and the denominator
of (16) is the sampling distribution.

3.3 Estimating an expert’s credibility

The credibility of thedth expert,p(u(d)
1:t−1 | y1:t), is proportional to the product of a prior

term and a likelihood term:

p(u(d)
1:t−1 | y1:t) =

p(u(d)
1:t−1 | y1:t−1)p(yt | u(d)

1:t−1, y1:t−1)
p(yt | y1:t−1)

. (17)



Regarding the likelihood,

p(yt|u1:t−1, y1:t−1) =
∫

p(yt, ut|u1:t−1, y1:t−1)dut =
∫

p(yt|u1:t, y1:t−1)p(ut|ut−1)dut

(18)
We already generated a set of samples{u(d,e)

t : e = 1, · · · , s} that estimate the pose opin-
ion of thedth expert,p(ut | u(d)

1:t−1, y1:t). We can now use these samples to estimate the
likelihood for thedth expert:

p(yt | u(d)
1:t−1, y1:t−1) =

∫
p(yt | u(d)

1:t−1, ut, y1:t−1)p(ut | u(d)
t−1)dut (19)

=
∫

p(yt | u(d)
1:t−1, ut, y1:t−1)g(ut | û(d)

t , ασ̂
(d)
t )

p(ut | u(d)
t−1)

g(ut | û(d)
t , ασ̂

(d)
t )

dut ≈
∑s

e=1 wt(d, e)
s

3.4 Updating the filtering distribution

Once we have calculated the opinion and credibility of each expertu1:t−1, we evaluate the
integral in (5) as a weighted sum over experts. The credibilities of all of the experts are
normalized to sum to 1. New expertsu1:t (children) are created from the old expertsu1:t−1

(parents) by appending a poseut to the parent’s history of posesu1:t−1. Every expert in the
new generation is created as follows: One parent is chosen to sire the child. The probability
of being chosen is proportional to the parent’s credibility. The child’s value ofut is chosen
at random from its parent’s pose opinion (the weighted samples described in Section 3.2.2).

4 Relation to Optic Flow and Template Matching

In basic template-matching, the same time-invariant texture map is used to track every
frame in the video sequence. Optic flow can be thought of as template-matching with a
template that is completely reset at each frame for use in the subsequent frame. In most
cases, optimal inference under G-flow involves a combination of optic flow-based and
template-based tracking, in which the texture template gradually evolves as new images
are presented. Pure optic flow and template-matching emerge as special cases.

Optic Flow as a Special Case Suppose that the pose transition probabilityp(ut | ut−1)
is uninformative, that the background is uninformative, that every texel in the initial object
texture map has equal variance,V ar(V1) = κIn, and that the texture transition uncertainty
is very high,Ψv → diag(∞). Using (7), (8), and (10), it follows that:

µv
t (i) = [av(ut−1)]T yt−1 = yt−1(xi(ut−1)) , (20)

i.e., the object texture map at timet is determined by the pixels from imageyt−1 that
according to poseut−1 were rendered by the object. As a result, (14) reduces to:

ût(u1:t−1) = argmin
ut

1
2

n∑
i=1

[
yt(xi(ut))− yt−1(xi(ut−1))

]2
(21)

which is identical to (3). Thus constrained optic flow [10, 2, 11] is simply a special case of
optimal inference under G-flow, with a single expert and with sampling parameterα → 0.

The key assumption thatΨv → diag(∞) means that the object’s texture is very different in
adjacent frames. However, optic flow is typically applied in situations in which the object’s
texture in adjacent frames is similar. The optimal solution in such situations calls not for
optic flow, but for a texture map that integrates information across multiple frames.



Template Matching as a Special Case Suppose the initial texture map is known pre-
cisely,V ar(V1) = 0, and the texture transition uncertainty is very low,Ψv → 0. By (7),
(8), and (10), it follows thatµv

t (i) = µv
t−1(i) = µv

1(i), i.e., the texture map does not change
over time, but remains fixed at its initial value (it is a texture template). Then (14) becomes:

ût(u1:t−1) = argmin
ut

n∑
i=1

[
yt(xi(ut))− µv

1(i)
]2

(22)

whereµv
1(i) is theith texel of the fixed texture template. This is the error function mini-

mized by standard template-matching algorithms. The key assumption thatΨv → 0 means
the object’s texture is constant from each frame to the next, which is rarely true in real data.
G-flow provides a principled way to relax this unrealistic assumption of template methods.

General Case In general, if the background is uninformative, then minimizing (14) re-
sults in a weighted combination of optic flow and template matching, with the weight of
each approach depending on the current level of certainty about the object template. In
addition, when there is useful information in the background, G-flow infers a model of the
background which is used to improve tracking.

Figure 2:G-flow tracking an outdoor video. Results are shown for frames 1, 81, and 620.

5 Simulations

We collected a video (30 frames/sec) of a subject in an outdoor setting who made a variety
of facial expressions while moving her head. A later motion-capture session was used to
create a 3D morphable model of her face, consisting of a set of 5 morph bases (k = 5).

Twenty experts were initialized randomly near the correct pose on frame 1 of the video
and propagated using G-flow inference (assuming an uninformative background). See
http://mplab.ucsd.edu for video. Figure 2 shows the distribution of experts for three frames.
In each frame, every expert has a hypothesis about the pose (translation, rotation, scale, and
morph coefficients). The 38 points in the model are projected into the image according to
each expert’s pose, yielding 760 red dots in each frame. In each frame, the mean of the ex-
perts gives a single hypothesis about the 3D non-rigid deformation of the face (lower right)
as well as the rigid pose of the face (rotated 3D axes, lower left). Notice G-flow’s ability to
recover from error: bad initial hypotheses are weeded out, leaving only good hypotheses.

To compare G-flow’s performance versus deterministic constrained optic flow algorithms
such as [10, 2, 11] , we used both G-flow and the method from [2] to track the same video
sequence. We ran each tracker several times, introducing small errors in the starting pose.



Figure 3: Average error over time for G-flow (green) and for deterministic optic flow [2] (blue).
Results were averaged over 16 runs (deterministic algorithm) or 4 runs (G-flow) and smoothed.

As ground truth, the 2D locations of 6 points were hand-labeled in every 20th frame. The
error at every 20th frame was calculated as the distance from these labeled locations to the
inferred (tracked) locations, averaged across several runs. Figure 3 compares this tracking
error as a function of time for the deterministic constrained optic flow algorithm and for a
20-expert version of the G-flow tracking algorithm. Notice that the deterministic system
has a tendency to drift (increase in error) over time, whereas G-flow can recover from drift.
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