
MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 1

Supplemental Material
APPENDIX I

IMPORTANCE SAMPLING

Importance sampling is a Monte Carlo technique that was designed
in the 1940s for efficient estimation of expected values [A1]. The
approach works as follows. Suppose we want to estimate the expected
value of a function h of a random variable X , whose probability
density function is p(x):

E
`
h(X)

´
=

Z
p(x)h(x)dx (41)

One way to do so is to take n samples {x(1), · · · , x(n)} from X and
average the values taken by h on those samples

E
`
h(X)

´
≈ 1

n

nX

i=1

h
`
x(i)´ (42)

Instead of sampling directly from p(x), which may be intractable
or computationally costly, in some cases it is desirable to obtain
samples from a proposal distribution, π(x), from which samples can
be drawn efficiently, and compensate by using importance weights
that are proportional to the ratio of p(x) to π(x). To see why, note
that

E
`
h(X)

´
=

Z
p(x)h(x)dx =

Z
π(x)

p(x)
π(x)

h(x)dx

=

Z
π(x)ξ(x)h(x)dx (43)

where the importance weight, ξ(x), is the ratio of the values taken
by the desired distribution and the proposal distribution:

ξ(x) =
p(x)
π(x)

. (44)

Thus, the corresponding importance sampling estimate would be

E
`
h(X)

´
≈ 1

n

nX

i=1

ξ
`
x(i)´h

`
x(i)´ (45)

where now the samples {x(1), · · · , x(n)} are taken from the proposal
distribution π(x). Since the approach provides estimates for expected
values of arbitrary functions h, it can be interpreted as providing an
estimate for the distribution of X itself, i.e.,

p̂(x) =
1
n

nX

i=1

ξ(x)δ(x− x(i)), (46)

where δ(·) is the Dirac delta function.
When p(x) is only known up to a proportionality constant, then

the importance weights ξ(x) are also known up to a proportionality
constant. In this case we can rewrite (43) as follows:

E
`
h(X)

´
=

R
π(x)ξ(x)h(x)dxR

π(x)ξ(x)dx
(47)

where ξ(x) ∝ p(x)
π(x) is now known up to a normalizing constant. Since

the ratio of two consistent estimators is also consistent, a standard
estimate in this case is as follows [A2]:

E
`
h(X)

´
≈

1
n

Pn
i=1 ξ

`
x(i)
´
h
`
x(i)
´

1
n

Pn
i=1 ξ

`
x(i)
´ =

nX

i=1

ξ̃
`
x(i)´h

`
x(i)´, (48)

where as in (45), the samples {x(1), · · · , x(n)} are taken from the
proposal distribution π(x), and

ξ̃
`
x(i)´ =

ξ
`
x(i)
´

Pn
j=1 ξ

`
x(j)

´ (49)

is the normalized importance weight. The corresponding estimate of
the distribution of X is as follows:

p̂(x) = ξ̃(x)δ(x− x(i)). (50)

For the estimation process to be efficient, the proposal distribution
π(x) must be as close as possible to the original distribution,
p(x). For our application, we found that in addition to Rao-
Blackwellization, it was critical to use the Gauss-Newton method
and Laplace’s method to generate good proposal distributions for
importance sampling. As we explained in Section 3.4.1, we accom-
plish this in the context of G-flow by performing an optic flow-like
optimization.

APPENDIX II
USING INFRARED TO LABEL SMOOTH FEATURES INVISIBLY

Until now, there has been no publicly available video data set
of a real human face moving that is up to the task of measuring
the effectiveness of 3D nonrigid tracking systems. Progress in the
field requires publicly available video data sets with ground truth
information about the true 3D locations of the facial features that
are to be tracked. In addition to facilitating refinement of one’s own
algorithm during development, such data sets will provide standards
for performance comparison with other systems.

In this appendix, we describe a new method for collection of such
data sets, using infrared marks that are visible by near-infrared (NIR)
cameras but not by standard video cameras. We used this technique
to collect a face motion data set that we are making freely available
to researchers in the field with the publication of this paper. We
describe the data collection method in detail in the following section
of this appendix (Appendix II-A), and the new data set, which we
call IR Marks, in the subsequent section (Appendix II-B).

A. Details of the data collection method
Subjects’ faces were marked using ink that absorbs light in the

near-infrared (NIR) range of the spectrum (see Figure 5). Three
infrared-sensitive video cameras (which picked up the NIR markings)
were placed close to the face for maximum spatial resolution. We
also used four visible-light video cameras (whose images do not
show the NIR markings), of which two were far away from the face
and zoomed in (for testing systems that use orthographic projection
or weak-perspective projection), and two were close up (for testing
systems that use perspective projection). We used two, rather than just
one, visible-light cameras at each distance in order to accommodate
any systems that track using video from multiple cameras.

1) Infrared marking: Subjects’ faces were marked with an
infrared pen, the IR1 pen from maxmax.com (http:// maxmax.com/
aXRayIRInks.asp). This pen has ink that absorbs near-infrared (NIR)
light with peak wavelength 793 nm, outside the visible range.4

2) Visible-light cameras: We used four Firefly cameras from
Point Grey Research (http:// www.ptgrey.com), which we chose due
to their ability to record synchronized video. These cameras captured
640× 480 color video at 30 frames per second.

The ink from the IR1 pen can show up as a very faint yellow/green
that is close to the threshold of visibility to the naked eye. We thus
took care to apply the marks without pressing too hard with the
pen (which can make visible indentations in the skin), and to avoid
oversaturating the marks with ink. After some trial and error, we
succeeded in applying the ink so that it showed up in the NIR cameras
but not in the visible-light cameras.

4The human eye can see light with wavelengths from roughly 400 nm
to 700 nm. Ultraviolet light has wavelengths shorter than 400 nm, whereas
infrared light has wavelengths longer than 700 nm. Over the lens of each
NIR-sensitive camera, we used a filter that blocks visible light: the X-Nite
715 infrared filter, also from maxmax.com. The ink in the IR1 pen is in an
alcohol base. We cannot vouch for the safety of the ink for use on the skin,
except to say that we used it liberally on the faces of two different people,
without any adverse reaction.

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 2

Fig. 5. A single frame of video from the IR Marks data set. Before video collection, the subject’s face was marked using an infrared marking pen. The
figure shows the same frame of video simultaneously captured by four visible-light cameras (top) and three infrared-sensitive cameras (bottom). The infrared
marks are clearly visible using the infrared-sensitive cameras, but are not visible in the images from the visible-light cameras.

3) Infrared-sensitive cameras: In order to reconstruct the 3D
locations of the infrared-marked points, they must be visible simul-
taneously by at least two NIR-sensitive cameras. We used three NIR
cameras, one directly in front of the face, another slightly to the left,
and a third slightly to the right. The goal was to ensure that even
when the head was turned, as many of the marked points as possible
would be visible in at least two of the three cameras, to enable 3D
reconstruction of the point locations.

The NIR cameras were standard Sony camcorders in Nightshot
mode. There are some difficulties due to the limited aperture/shutter
settings of these cameras in this mode, but overall, they are a reason-
able alternative to more expensive NIR systems. Because we were
forced to use a fully open aperture, we could not use incandescent
lights to illuminate the scene, as they would overexpose the image.
Instead, we used fluorescent lights to provide ample illumination for
our visible light cameras, but at the same time provide only a small
amount of illumination that could penetrate the X-Nite 715 filters, so
as not to overexpose the NIR images.5

As a result of the fully open aperture and slow shutter speed
required by Sony’s Nightshot mode, as well as the lightness of the
infrared marks that we drew, the images obtained with the NIR
cameras were somewhat noisy, and also somewhat blurry during
motion. To counter this effect, we used time-averaging and contrast-
enhancement to make the NIR marks more visible, which resulted in

5Our approach was to adjust the lighting to match the camera, since the
limitations of Sony’s Nightshot mode did not allow us to adjust the camera to
match the lighting. Another approach (which could provide more flexibility)
would be to use a camera that is fully enabled in the near-infrared range.

some marks not being reliably visible in frames during which the head
was moving quickly. As a result, we could only obtain reliable ground
truth information for the frames in which the head was moving slowly,
or frames in which a fast-moving head was temporarily slowed due
to a change in direction.

4) Camera synchronization: The four visible-light cameras were
well synchronized, as they were all triggered by an electrical pulse
to capture each frame in synchrony. However, our three NIR cam-
eras were inexpensive off-the-shelf cameras that recorded to digital
videotape, without the ability to synchronize electronically. We later
uploaded the video from these tapes by capturing the video frames
as a sequence of digital images. At several times during the video
session, the subject held up an LED connected to a switch, and
switched it on. The onset of the light, which was visible in all of the
visible-light and NIR cameras, was used as a synchronizing signal
for temporal alignment of the frames from the three NIR cameras
with each other and with the visible-light cameras. The alignment
was implemented as a piecewise-linear function to map the frame
number from each NIR camera to the corresponding frame number
from the visible-light cameras. This resulted in a temporal alignment
error on the order of just one-half of a frame

`
1
60 sec

´
.

5) 3D camera calibration: During collection of the video, we
held a calibration object (a checkerboard of known dimensions)
at several different 3D orientations, making sure that at each ori-
entation, the entire checkerboard was visible in every one of the
seven cameras (4 visible-light and 3 NIR). We used the stereo
calibration tool from Jean-Yves Bouguet’s camera calibration toolbox
for Matlab (www.vision.caltech.edu/bouguetj/calib doc/) to si-
multaneously calibrate one of the visible-light cameras with one of

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 3

the NIR cameras. We repeated this process three times, each time
with a different NIR camera but the same visible-light camera. As
a result of this process, we had each of the NIR cameras calibrated
with respect to the same visible-light camera (and hence with respect
to each other).

6) Hand-labeling of infrared points: We chose several frames
in which to hand-label the locations of each near-infrared (NIR) dot
in the image from each of the NIR-sensitive cameras. After the hand-
labeling, we knew the 2D image location of each NIR dot in three
images, one from each of the three NIR cameras.

7) 3D reconstruction of labeled points: The camera calibration
algorithm provided extrinsic and intrinsic camera parameters for each
NIR camera. The labeled 2D position of an NIR dot in an image
corresponds to a 3D line on which the point lies in 3D world
coordinates. If a point were visible in just two NIR cameras, we could
find its 3D world position by calculating the intersection of the lines
extending from the two cameras. Due to errors in calibration and
labeling, however, the two lines will not quite intersect in general, in
which case we need to find the single 3D point that is closest to the
two lines. If an NIR dot is visible (and labeled) in images from all
three NIR cameras, then the goal is to find the single 3D point that
is closest to the three lines extending from the three cameras.

This is a least-squares problem (finding the 3D location in the
world that minimizes the sum of squared differences corresponding
to the two or three labeled 2D positions in the NIR images). The 3D
location of each point was found using the method of homogeneous
least squares [A3].

B. The IR Marks data set for 3D face tracking
This section describes the new data set, called IR Marks, which

we are making available for free to the research community with the
publication of this paper (go to http://mplab.ucsd.edu and follow the
link to Databases). The data set consists of a training sequence (which
includes 9 labeled training frames) and 3 test sequences, of a human
face that exhibits both nonrigid motion (making facial expressions
and talking) and rigid motion (head rotation and translation, both
in-image-plane and out-of-image-plane). We used these three test
sequences to rigorously test the performance of our tracking system,
and to compare it to other systems (see Section 6). In addition,
having ground truth information available (and thus having an ac-
curate quantitative measure of error, rather than just “eyeballing” it
approximately), has been invaluable to us in debugging our code, as
well as in choosing values of parameters for optimal tracking.

Data sets like this one could be used to evaluate and compare the
performance, not only of 3D nonrigid tracking systems (its primary
purpose), but also of systems for determining 3D nonrigid structure-
from-motion. We encourage others to collect their own data sets using
our method and to similarly make them available to other researchers.
We believe that the existence of standard data sets with good ground
truth information is crucial for the field to progress. This data set is
a first step in that direction.

1) Training sequence: We drew a number of infrared dots on a
male subject. In addition to frames (of a checkerboard object) for
spatial calibration and (of an LED being switched on) for temporal
calibration of the cameras, we collected a training video sequence
whose purpose was to learn a 3D morphable model of the subject
that would later be used to track the face in the test sequences.
The training sequence consists of the subject, always from frontal
view (with minimal rigid head motion), making a series of facial
expressions. We chose one frame of each facial expression (and two
neutral frames, near the beginning and the end of the sequence)—a
total of 9 frames—for hand-labeling:

neutral, closed-mouth smile, happy, sad,
angry, disgusted, afraid, surprised, neutral (51)

For each of these 9 frames, the 2D image locations of 58 infrared
dots were hand-labeled twice, in images from each of the three NIR-
sensitive cameras. Of the 58 dots, 6 did not have the property of

being visible in at least two NIR cameras for all 9 chosen training
frames. These 6 vertices were removed, leaving 52 dots (vertices)
whose 3D locations were reconstructed in all 9 training frames. The
reconstruction error is on the order of 1 mm. In the experiments
described in this paper, our only use of the training sequence was to
obtain a 3D morphable model from the 3D locations of the vertices
in the 9 labeled training frames, as described in Appendix III-A.

2) Three test sequences: We then collected three test video
sequences simultaneously in all cameras. For each sequence, we
chose several key frames for which we hand-labeled the images from
all three NIR cameras, from which we reconstructed the 3D ground
truth information for those frames. Of the 52 infrared dots in the
training sequence, 7 did not have the property of being visible in
at least two NIR cameras for all of the selected test frames. This
leaves 45 vertices whose ground truth information is known for all
of the chosen frames in all of the test sequences. The IR Marks data
set consists of the training sequence and three test sequences: Talk1,
Talk2, and Emote.

The first test sequence, which we call the Talk1 sequence, is
empirically the easiest to track (probably because it is the shortest
sequence and has the least out-of-image-plane rotation). The sequence
consists of the subject talking and naturally moving the head and face
in a conversation. We labeled 9 key frames from this sequence twice,
and used these labelings to compute the ground truth 3D locations
of all of the vertices in each of these 9 frames. From the first labeled
frame to the last labeled frame, the Talk1 sequence is 914 frames
(over 30 sec) long.

The second test sequence, which we call the Talk2 sequence, is of
medium difficulty (it is almost twice as long as the Talk1 sequence,
and includes larger out-of-image-plane rotations). Like the Talk1
sequence, the Talk2 sequence consists of the subject talking and
naturally moving the head and face in a conversation. We labeled
11 key frames from the Talk2 sequence, and used these labelings to
compute the ground truth 3D locations of all of the vertices in each
of these 11 frames. From the first labeled frame to the last labeled
frame, the Talk2 sequence is 1716 frames (over 57 sec) long.

The third test sequence, which we call the Emote sequence,
consists of the subject making each of the facial expressions that
are listed above in (51), and holding each facial expression while
making fast rigid head motions that include large out-of-image-plane
rotations. The Emote sequence is empirically the most difficult to
track, probably due to its greater length, its greater extremes of
facial expressions, its fast motion, fast transitions from one extreme
expression to another, and large out-of-plane rotations. We labeled 9
key frames from this sequence, and used these labelings to compute
the ground truth 3D locations of all of the vertices in each of these
9 frames. From the first labeled frame to the last labeled frame, the
Emote sequence is 1855 frames (over 61 sec) long.

APPENDIX III
IMPLEMENTATION DETAILS

A. Obtaining the 3D morphable model
The 3D ground truth locations of 52 vertices were obtained for

the 9 labeled frames of the IR Marks data set’s training sequence, as
explained in Appendix II. We then needed to find a 3D morphable
model, consisting of morph bases that could be linearly combined to
give (or closely approximate) the 3D locations of the points in all 9
frames.

First we used the Procrustes method [A4] to subtract any rigid
motion between the frames (to rotate all of the frames in 3D to align
with each other). We did not need to rescale any of the frames, since
the camera calibration meant that our 3D data were already scaled
to the correct absolute size (in mm). Once the frames were rigidly
aligned, the only remaining differences between the frames were the
nonrigid motion (due to changes in facial expressions). We performed
principal component analysis (PCA) on the rigidly aligned 3D data
for the 9 training frames, to obtain 9 morph bases (the mean plus 8
variational modes) that make up the 3D morphable model.

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 4

B. Parameter settings
The original 3D morphable model had 9 morph bases, but for our

tracking results, we reduced this to the mean and top 4 modes of
variation, for a total of 5 morph bases: k = 5.

The spread of the proposal distribution for pose opinion, adjusted
using the parameter α (see Section 3.4.1), changes the balance
between exploration and exploitation: a wider proposal distribution
(larger value of α) gives the system more opportunity to find more
optimal pose values. We found that a relatively large spread, α = 50,
works well. We used a steady-state temperature (see Section 4.1) of
τ∞ = 1000. We chose resampling frames to occur every 25 frames.
Unless stated otherwise, we performed tracking using 20 experts,
η = 20, and used 5 samples for each expert’s pose opinion: λ = 5.

For determining the proposal distribution, we implemented our
algorithm using small circular windows (diameter 15 pixels) around
each vertex. For the importance sampling correction to the proposal
distribution, we usually used a dense triangular mesh, but occasion-
ally used small circular windows (when stated explicitly, for the optic
flow limit).

We tracked the Talk1 sequence of the IR Marks data set (See
Appendix II) using all 45 of the vertices that were visible in every
labeled frame of the three test sequences. Because we used small
windows around each vertex (rather than a dense triangular mesh)
to obtain our proposal distributions, we had some difficulty when
tracking the Talk2 and Emote sequences in handling points on the far
right edge of the face (points that were self-occluded in extreme out-
of-image-plane rotations). This difficulty with tracking the Talk2 and
Emote sequences could be minimized by eliminating three vertices
from the mesh that are on the rightmost edge of the face: the right
dimple, and the two rightmost vertices under the right eye (RD, RE4,
and RE5).

In the experiments described in this paper, we have assumed
an uninformative background. Thus we have not implemented the
background texture model. As a result, for the experiments described
in this paper, we eliminated both background terms and the second
of the two foreground terms from the G-flow objective function (18).

C. Graphics hardware acceleration
We implemented G-flow using both types of texture model: small

windows (circular patches) around each vertex, and a dense triangular
mesh connecting the vertices. For the dense triangular mesh, we took
advantage of graphics hardware acceleration for texture mapping to
speed up the image warping and image comparison. As mentioned
above, in our current implementation of the triangular mesh texture
model, we actually use small circular patches around the vertices to
obtain the proposal distribution, then use the full dense triangular
mesh to obtain the importance weights.

APPENDIX IV
EXPONENTIAL ROTATIONS AND THEIR DERIVATIVES

Before we can derive the constrained optic flow algorithm (in Ap-
pendix V), we must discuss exponential rotations. Taking derivatives
with respect to rotations is not trivial. The straightforward approach
of differentiating a 3× 3 rotation matrix with respect to each of the
elements in the matrix individually (used, for example, in [A5]) is
not ideal. The problem is that although there are 9 elements in the
matrix, there are nonlinear constraints between the 9 values.

In fact, there are only 3 degrees of freedom in a rotation matrix.
These 3 degrees of freedom are expressed more naturally using the
3 exponential rotation parameters, described below. We begin this
appendix by deriving the widely known first derivative of rotations
with respect to the rotation parameters [A6].

Then we derive the second derivative with respect to rotation
parameters. To our knowledge, this paper is the first time that this
second derivative has been derived or used in the fields of machine
learning, computer vision, or robotics. This second derivative has
numerous potential applications in these fields; we explain its use in
G-flow in Appendix VII-B.2.

An arbitrary rotation in 3D can be specified by the axis of rotation
and the angle of rotation about this axis. Let δ be the vector in the
direction of the axis of rotation whose magnitude is the angle of
rotation (in radians), and let ∆ be the skew-symmetric matrix that is
defined from δ as follows:

δ =

2

4
δ1

δ2

δ3

3

5 , ∆ =

2

4
0 −δ3 δ2

δ3 0 −δ1

−δ2 δ1 0

3

5 . (52)

Then the rotation matrix is given by e∆, which is defined using the
matrix exponential:

e∆ = I3 + ∆ +
∆2

2!
+O(δ3) (53)

where I3 is the 3×3 identity matrix, and O(δ3) represents the third-
order and higher-order terms of the Taylor series.

Define γ1, γ2, and γ3 to be the matrices given by:

γj =
∂∆
∂δj

. (54)

Then the γj are the following skew symmetric matrices:

γ1 =

"
0 0 0
0 0 −1
0 1 0

#
γ2 =

"
0 0 1
0 0 0
−1 0 0

#
γ3 =

"
0 −1 0
1 0 0
0 0 0

#

(55)

A. Derivatives of rotations

To find the first derivatives of the rotation matrix e∆ around δ = 0,
we just need the first two terms in the Taylor series (53) for e∆.

∂e∆

∂δj
=

∂
∂δj

(I3 + ∆) =
∂∆
∂δj

= γj . (56)

To find the second derivatives of the rotation matrix e∆ around δ = 0,
we need the first three terms in the Taylor series (53) for e∆.

∂2e∆

∂δj∂δk
=

∂
∂δj

∂
∂δk

„
I3 + ∆ +

∆2

2

«

=
∂

∂δj

„
γk +

1
2
(∆γk + γk∆)

«

=
γjγk + γkγj

2
. (57)

To find the derivative of any 3× 3 rotation matrix r with respect
to δ, we consider the composite rotation e∆ r, and evaluate its
derivative at δ = 0.

∂r
∂δj

=
∂ e∆r
∂δj

=

„
∂e∆

∂δj

«
r = γj r. (58)

We use the same approach to find the second derivatives of any 3×3
rotation matrix, r, with respect to δ (to find the terms of the Hessian
matrix):

∂2r
∂δj∂δk

=
∂2e∆r
∂δj∂δk

=

„
∂2e∆

∂δj∂δk

«
r =

“γjγk + γkγj

2

”
r. (59)

B. Derivatives of a vertex location in the image

We are now in a position to take derivatives of the vertex locations
in our 3D morphable model for shape with respect to rotation angle
(with respect to the rotation parameters, δ). Taking the first derivative
of the equation (from Section 2.1) for xi, the image coordinates of
the ith vertex, gives:

∂xi

∂δj
=

∂
∂δj

(grhic + l) = g
∂r
∂δj

hic = gγjrhic, (60)

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 5

where for the final step we used (58). We can find the second
derivatives of xi with a similar approach using (59) :

∂2xi

∂δj∂δk
= g

„
∂2r

∂δj∂δk

«
hic = g

“γjγk + γkγj

2

”
rhic. (61)

APPENDIX V
CONSTRAINED OPTIC FLOW FOR DEFORMABLE 3D OBJECTS

In this section we derive the constrained optic flow algorithm,
which is essentially equivalent to the tracking algorithms presented
in [A7], [A5]. The goal of constrained optic flow is to find the
value of the pose parameters, ut, that minimizes the sum of squared
differences between the appearance of each vertex at frame t and the
appearance of the same vertex at frame t − 1. In other words, the
goal is to find ût, the value of ut that minimizes ρ(ut):

ût = argmin
ut

ρ(ut), (62)

where

ρ(ut) =
1
2

nX

i=1

ˆ
yt

`
xi(ut)

´
− yt−1

`
xi(ut−1)

´˜2 (63)

We call this algorithm constrained optic flow, because the vertex
locations in the image are constrained by a global model (the
3D morphable model). In the special case in which the xi(ut)
are neighboring points that move with the same 2D displacement,
constrained optic flow reduces to the standard Lucas-Kanade optic
flow algorithm [A8], [A9].

We will minimize the sum of squares in (63) using the Gauss-
Newton method. First rewrite ρ(ut) as follows:

ρ(ut) =
1
2
fT f =

1
2

nX

i=1

f2
i (64)

where the vector f ,

f = [f1 f2 · · · fn]T , (65)

is analogous to the difference image in standard optic flow. Each
term fi is the difference in texture values between the pixel rendered
by vertex i at time t and the pixel rendered by the same vertex at
time t− 1:

fi = yt

`
xi(ut)

´
− yt−1

`
xi(ut−1)

´
, (66)

Before giving the Gauss-Newton update rules, we first calculate
the derivatives of f with respect to each of the motion parameters
in ut.

A. Derivatives with respect to translation
Let Jl(ut) be the Jacobian matrix (matrix of first derivatives) of f

with respect to the 2× 1 translation vector, l:

Jl(ut) =
∂fT

∂l
(ut) =

»
∂f1

∂l
(ut)

∂f2

∂l
(ut) · · · ∂fn

∂l
(ut)

–
.

(67)
The ith column in this Jacobian matrix is

∂fi

∂l
(ut) =

„
∂xi(ut)

T

∂l

«
∂yt

∂xi(ut)
(68)

=

„
∂(grhic + l)T

∂l

«
∂yt

∂x

`
xi(ut)

´
(69)

= I2
∂yt

∂x

`
xi(ut)

´
(70)

= ∇yt

`
xi(ut)

´
, (71)

where we define the 2 × 1 vector ∇yt(x) as the spatial gradient of
the observed image yt at pixel location x. In practice, we blur the
image yt before computing ∇yt to ensure that this spatial gradient
is well-behaved.

The following two products will be needed later for the Gauss-
Newton update rule for translation (87):

Jl(ut)[Jl(ut)]
T =

nX

i=1

ˆ
∇yt

`
xi(ut)

´˜ˆ
∇yt

`
xi(ut)

´˜T
, (72)

Jl(ut)f(ut) =
nX

i=1

ˆ
∇yt

`
xi(ut)

´˜ˆ
yt

`
xi(ut)

´
− yt−1

`
xi(ut−1)

´˜
.

(73)

B. Derivatives with respect to morph coefficients

Let Jc(ut) be the Jacobian matrix of f with respect to c, the k×1
vector of morph coefficients:

Jc(ut) =
∂fT

∂c
(ut) =

»
∂f1

∂c
(ut)

∂f2

∂c
(ut) · · · ∂fn

∂c
(ut)

–
.

(74)
The ith column in this Jacobian matrix is

∂fi

∂c
(ut) =

„
∂xi(ut)

T

∂c

«
∂yt

∂xi(ut)
(75)

=

„
∂(grhic + l)T

∂c

«
∇yt

`
xi(ut)

´
(76)

= (grhi)
T ∇yt

`
xi(ut)

´
. (77)

The following two products will be needed later for the Gauss-
Newton update rule for morph coefficients (88):

Jc(ut)[Jc(ut)]
T =

nX

i=1

(grhi)
T ˆ∇yt

`
xi(ut)

´˜ˆ
∇yt

`
xi(ut)

´˜T
grhi,

(78)

Jc(ut)f(ut)

=
nX

i=1

(grhi)
T ˆ∇yt

`
xi(ut)

´˜ˆ
yt

`
xi(ut)

´
− yt−1

`
xi(ut−1)

´˜
.

(79)

C. Derivatives with respect to rotation

Let Jδ(ut) be the Jacobian matrix of f with respect to δ, the 3×1
vector of rotation parameters (see Appendix IV for more details on
exponential coordinates for rotation):

Jδ(ut) =
∂fT

∂δ
(ut) =

»
∂f1

∂δ
(ut)

∂f2

∂δ
(ut) · · · ∂fn

∂δ
(ut)

–

(80)
The ith column in this Jacobian matrix is

∂fi

∂δ
(ut) =

„
∂xi(ut)

T

∂δ

«
∂yt

∂xi(ut)
(81)

=

2

6664

“
∂xi(ut)

∂δ1

”T

“
∂xi(ut)

∂δ2

”T

“
∂xi(ut)

∂δ3

”T

3

7775
∇yt

`
xi(ut)

´
. (82)

We then use (56) to get:

∂fi

∂δ
(ut) = [gγ1rhic gγ2rhic gγ3rhic]

T ∇yt

`
xi(ut)

´

=

2

4
(gγ1rhic)

T

(gγ2rhic)
T

(gγ3rhic)
T

3

5 ∇yt

`
xi(ut)

´
(83)

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 6

The following two products will be needed later for the Gauss-
Newton update rule for rotation (89):

Jδ(ut)[Jδ(ut)]
T = (84)

nX

i=1

2

4
(gγ1rhic)

T

(gγ2rhic)
T

(gγ3rhic)
T

3

5̂ ∇yt

`
xi(ut)

´˜ˆ
∇yt

`
xi(ut)

´˜T
2

4
(gγ1rhic)

T

(gγ2rhic)
T

(gγ3rhic)
T

3

5
T

,

Jδ(ut)f(ut) = (85)
nX

i=1

2

4
(gγ1rhic)

T

(gγ2rhic)
T

(gγ3rhic)
T

3

5 ˆ∇yt

`
xi(ut)

´˜ˆ
yt

`
xi(ut)

´
− yt−1

`
xi(ut−1)

´˜
.

D. The Gauss-Newton update rules

As each new video frame, yt, arrives, the goal of the constrained
optic flow algorithm is to find ût, the value of the pose parameters, ut,
that minimizes the sum in (63). The algorithm begins with an initial
guess for ut, namely u0

t = {r0
t , l0t , c0

t}. This initial guess may be set
equal to the pose of the previous frame: u0

t = ut−1. Alternatively, this
initial guess may be extrapolated from the poses of the previous two
frames, ut−1 = {rt−1, lt−1, ct−1} and ut−2 = {rt−2, lt−2, ct−2},
in a manner similar to the following:

l0t = lt−1 +
`
lt−1 − lt−2

´

r0
t = rt−1

ˆ
rt−1(rt−2)

−1˜ (86)
c0

t = ct−1

Once the initial guess is determined, we use the Gauss-Newton
method to minimize the sum in (63), by iterating the following update
rules. The following update rules tell us how to perform step s of
our iterative estimation of ut. They are used to get from the estimate
us

t = {rs
t , lst , c

s
t} to the next estimate, us+1

t = {rs+1
t , ls+1

t , cs+1
t }.

ls+1
t = lst −

h
Jl(u

s
t)
`
Jl(u

s
t)
´T i−1

Jl(u
s
t)f(u

s
t) (87)

cs+1
t = cs

t −
h
Jc(u

s
t)
`
Jc(u

s
t)
´T i−1

Jc(u
s
t)f(u

s
t) (88)

rs+1
t = e∆rs

t , where

δ = −
h
Jδ(u

s
t)
`
Jδ(u

s
t)
´T i−1

Jδ(u
s
t)f(u

s
t), (89)

and ∆ is defined from δ using (52). The rest of the terms in these
update rules are written out in full in Equations (72–73), (78–79),
and (84–85).

Each of the update rules includes the term ∇yt

`
xi(u

s
t)
´

as part of the Jacobian matrix and also includes the term
fi(u

s
t) =

ˆ
yt

`
xi(u

s
t)
´
− yt−1

`
xi(ut−1)

´˜
. Evaluating these terms

involves obtaining patches from the current image and its gradient
images, which can be computationally expensive. As a result, we
typically update the values of ∇yt

`
xi(u

s
t)
´

and yt

`
xi(u

s
t)
´

only
once every few iterations of the update rules (87–89). In practice,
we only need to update the values of ∇yt

`
xi(u

s
t)
´

and yt

`
xi(u

s
t)
´

twice for each frame of video.

APPENDIX VI
THE PREDICTIVE DISTRIBUTION FOR Yt

We now tackle the predictive distribution for the current image, yt,
given the past and current poses of the object, u1:t, and the past
images, y1:t−1:

p(yt |u1:t, y1:t−1). (90)

First note that from the conditional independence relationships de-
fined by the graphical model (Figure 1, right),

p

„»
vt

bt

– ˛̨
˛u1:t, y1:t−1

«
= p

„»
vt

bt

– ˛̨
˛u1:t−1, y1:t−1

«
(91)

= N
„»

vt

bt

–
;

»
v̂t|t−1

b̂t|t−1

–
,

»
Vt|t−1 0

0 Bt|t−1

–«

(92)

where (92) follows from definitions (6) and (7).

From these equations and (3), we can derive the mean and variance
of the predictive distribution, which is the Gaussian distribution
p(yt |u1:t, y1:t−1). First the mean:

E(Yt |u1:ty1:t−1) = E

„
a(ut)

»
Vt

Bt

–
+ Wt

˛̨
˛ u1:t, y1:t−1

«

= a(ut)E

„»
Vt

Bt

– ˛̨
˛u1:t, y1:t−1

«
+ E(Wt)

= a(ut)

»
v̂t|t−1

b̂t|t−1

–
(93)

= av(ut)v̂t|t−1 + ab(ut)b̂t|t−1, (94)

where (93) follows from (92), and (94) follows from the definition
of the projection matrix a(ut) in Section 2.2. Equation (94) merely
asserts that the expected value of each image pixel is the value of the
texel in the foreground or background texture template that (according
to ut) renders that pixel.

Now we compute the variance of the predictive distribution:

V ar(Yt |u1:ty1:t−1) = V ar

„
a(ut)

»
Vt

Bt

–
+ Wt

˛̨
˛ u1:t, y1:t−1

«

= a(ut)V ar

„»
Vt

Bt

– ˛̨
˛u1:t, y1:t−1

«
a(ut)

T + V ar(Wt)

= a(ut)

»
Vt|t−1 0

0 Bt|t−1

–
a(ut)

T + σ2
wIm (95)

= av(ut)Vt|t−1av(ut)
T + ab(ut)Bt|t−1ab(ut)

T + σ2
wIm,

(96)

where (95) follows from (92), and (96) follows from the definition
of the projection matrix a(ut). Equation (96) simply asserts that the
variance of each image pixel is σ2

w plus the variance of the texel
in the foreground or background texture map that (according to ut)
renders that pixel.

Since the covariance matrices are all diagonal, each pixel is
rendered by an independent Gaussian. Thus, we can consider the
mean and variance of each pixel independently. If an image pixel
is (according to ut) rendered by foreground texel i, then by (94)
and (96), the pixel value will have the following normal distribution:

Foreground pixel xi(ut) :

p
`
yt(xi(ut))|u1:t, y1:t−1

´
=N

`
yt(xi(ut)); v̂t|t−1(i),Vt|t−1(i)+σ2

w

´
.

(97)

On the other hand, if an image pixel is (according to ut) rendered
by background texel j, then by (94) and (96), the pixel value will
have the following normal distribution:

Background pixel j :

p
`
yt(j) |u1:t, y1:t−1

´
= N

`
yt(j); b̂t|t−1(j),Bt|t−1(j) + σ2

w

´
.
(98)

Taking the product of the probability distributions of all of the
image pixels from (97) and (98) yields the probability distribution
for the entire image, i.e., the predictive distribution. Taking the log
of this product yields an expression for the log of the predictive

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 7

distribution:

log p(yt |u1:t, y1:t−1) = −m
2

log 2π (99)

− 1
2

nX

i=1

»
log
`
Vt|t−1(i) + σ2

w

´
+

[yt(xi(ut))− v̂t|t−1(i)]
2

Vt|t−1(i) + σ2
w

–

− 1
2

X

j #∈X (ut)

"
log
`
Bt|t−1(j) + σ2

w

´
+

[yt(j)− b̂t|t−1(j)]
2

Bt|t−1(j) + σ2
w

#
,

where X (ut) is the set of all image pixels rendered by the object
under pose ut. The first sum in (99) corresponds to the foreground
pixels, while the second sum in (99) corresponds to the background
pixels.

Substituting (99) into (16) and eliminating the terms that don’t
depend on ut yields an expression for the peak of the pose opinion
distribution:

ût(u1:t−1) = argmax
ut

p(ut |ut−1)p(yt |u1:ty1:t−1)

= argmin
ut

− log p(ut |ut−1) (100)

+
1
2

nX

i=1

»
[yt(xi(ut))− v̂t|t−1(i)]

2

Vt|t−1(i) + σ2
w

+log[Vt|t−1

`
xi(ut)

´
+ σ2

w]

–

+
1
2

X

j #∈X (ut)

»
[yt(j)− b̂t|t−1(j)]

2

Bt|t−1(j) + σ2
w

+ log[Bt|t−1(j) + σ2
w]

–!
.

We can subtract any constant that does not depend on ut from the
expression inside the large parentheses above without changing the
value of the argmin function. We are thus justified in subtracting
1
2

Pm
j=1

h
[yt(j)−b̂t|t−1(j)]2

Bt|t−1(j)+σ2
w

+log[Bt|t−1(j)+σ2
w]
i

from the expression
inside the large parentheses, which converts the sums over both
foreground and background pixels into a sum over only foreground
pixels:

ût(u1:t−1) = argmin
ut

− log p(ut |ut−1) (101)

+
1
2

nX

i=1

»
Foreground terms

z }| {
[yt(xi(ut))−v̂t|t−1(i)]

2

Vt|t−1(i) + σ2
w

+log[Vt|t−1(xi(ut)) + σ2
w]

−
[yt(xi(ut))−b̂t|t−1(xi(ut))]

2

Bt|t−1

`
xi(ut)

´
+σ2

w

−log[Bt|t−1

`
xi(ut)

´
+ σ2

w]

| {z }
Background terms

–!
.

APPENDIX VII
ESTIMATING THE POSE OPINION DISTRIBUTION

In this appendix, we describe how to obtain a Gaussian estimate
of an expert’s pose opinion distribution, which we use as the
proposal distribution for importance sampling. In the first section,
Appendix VII-A, we describe how to find the peak of this pro-
posal distribution. Then, in Appendix VII-B, we explain how to
find the covariance matrix of this proposal distribution. Finally, in
Appendix VII-C, we describe how we sample from this proposal
distribution.

A. Estimating the peak of the pose opinion
We now explain how to estimate ût(u1:t−1), the peak of an

expert’s pose opinion distribution, from the G-flow objective func-
tion (18). To estimate the peak of the pose opinion, we employ
the Gauss-Newton method in a manner quite similar to constrained

optic flow (Appendix V). In practice, we ignore the two background
terms in (18), which is essentially equivalent to assuming a white
noise background, and additionally ignore the second foreground
term in (18) (this is one of the assumptions that is implicitly made
by optic flow—see Section 4.2). In other words, we use Gauss-
Newton to efficiently find the pose ut that minimizes the sum over
the first foreground (object) term in (18), and use that as our estimate
ût(u1:t−1):

ût(u1:t−1) = argmin
ut

ρobj(ut), (102)

where

ρobj(ut) =
1
2

nX

i=1

[yt(xi(ut))− v̂t|t−1(i)]
2

Vt|t−1(i) + σ2
w

, (103)

the sum over the first foreground term in (18). It would also be
possible to minimize the sum over the background terms using Gauss-
Newton, and then combine that pose estimate with the estimate
obtained from the foreground term, though Gauss-Newton cannot
be used to minimize them both simultaneously (together, they are
a difference—not a sum—of squares).

The Gauss-Newton method to iteratively minimize (103) is virtu-
ally identical to constrained optic flow, as derived in Appendix V,
except that Equation (66) is replaced by:

fi = yt

`
xi(ut)

´
− v̂t|t−1(i). (104)

As a result, the Gauss-Newton update rules (87–89) remain un-
changed except that in each of Equations (72, 73, 78, 79, 84, and 85),
the expression in the sum is divided by Vt|t−1(i) + σ2

w. Thus,
Equations (72) and (73) become:

Jl(ut)[Jl(ut)]
T =

nX

i=1

ˆ
∇yt

`
xi(ut)

´˜ˆ
∇yt

`
xi(ut)

´˜T

Vt|t−1(i) + σ2
w

(105)

Jl(ut)f(ut) =
nX

i=1

ˆ
∇yt

`
xi(ut)

´˜ˆ
yt

`
xi(ut)

´
− yt−1

`
xi(ut−1)

´˜

Vt|t−1(i) + σ2
w

,

(106)
Equations (78) and (79) become:

Jc(ut)[Jc(ut)]
T =

nX

i=1

(grhi)
T
ˆ
∇yt

`
xi(ut)

´˜ˆ
∇yt

`
xi(ut)

´˜T
grhi

Vt|t−1(i) + σ2
w

(107)

Jc(ut)f(ut) =
nX

i=1

(grhi)
T
ˆ
∇yt

`
xi(ut)

´˜ˆ
yt

`
xi(ut)

´
− yt−1

`
xi(ut−1)

´˜

Vt|t−1(i) + σ2
w

,

(108)

and Equations (84) and (85) become:

Jδ(ut)[Jδ(ut)]
T = (109)

nX

i=1

2

4
(gγ1rhic)

T

(gγ2rhic)
T

(gγ3rhic)
T

3

5̂ ∇yt

`
xi(ut)

´˜ˆ
∇yt

`
xi(ut)

´˜T
2

4
(gγ1rhic)

T

(gγ2rhic)
T

(gγ3rhic)
T

3

5
T

Vt|t−1(i) + σ2
w

Jδ(ut)f(ut) = (110)

nX

i=1

2

4
(gγ1rhic)

T

(gγ2rhic)
T

(gγ3rhic)
T

3

5ˆ∇yt

`
xi(ut)

´˜ˆ
yt

`
xi(ut)

´
− yt−1

`
xi(ut−1)

´˜

Vt|t−1(i) + σ2
w

.

B. Gaussian estimate of the pose opinion distribution
For each expert u(d)

1:t−1, we compute the peak of the pose distribu-
tion at time t according to that expert, ût(u

(d)
1:t−1) = argmin

ut

ρobj(ut),

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 8

using the method explained in Appendix VII-A. The Laplace estimate
of the covariance matrix of the expert’s pose opinion is the inverse
of the Hessian matrix (second derivatives) of (103) evaluated at
this peak. For simplicity, we take the Hessian matrix with respect
to each of the pose parameters independently (neglecting cross-
derivatives ∂2ρ

∂c∂δ).

1) Hessian matrix of ρobj with respect to l and c: The Hessian
with respect to translation and the Hessian with respect to morph co-
efficients are equal to their Gauss-Newton approximations from (105)
and (107):

∂2ρobj(ut)

∂l2
= Jl(ut)[Jl(ut)]

T (111)

∂2ρobj(ut)

∂c2
= Jc(ut)[Jc(ut)]

T (112)

2) Hessian matrix of ρobj with respect to δ: Because the
rotation, r, is not a linear function of the rotation parameters, δ,
the Hessian with respect to δ is not equal to its Gauss-Newton
approximation from (109). Instead, we actually compute the full
Hessian with respect to δ, using the method we introduced in
Appendix IV.

The Hessian with respect to the rotation parameters, δ, is:

∂2ρobj(ut)

∂δ2
= Jδ(ut)[Jδ(ut)]

T +
nX

i=1

fi(ut)
∂2fi(ut)

∂δ2
. (113)

The first term on the right side of (113) is just the Gauss-Newton
approximation to ∂2ρobj(ut)

∂δ2 from (109), and the second term on
the right side of (113) can be thought of as a correction term to
that Gauss-Newton approximation. We examine the latter term, the
Hessian matrix of fi(ut) with respect to δ, one element at a time:

∂2fi(ut)
∂δj∂δk

(114)

=

„
∂2xi(ut)
∂δj∂δk

«T

∇yt

`
xi(ut)

´
+

„
∂xi(ut)

∂δj

«T

Hyt

„
∂xi(ut)

∂δk

«

where Hyt is the Hessian of the current image, yt, with respect to
spatial coordinates, evaluated at xi(ut). Since the image Hessian,
Hyt , can be sensitive to noise and/or computationally expensive, we
replace it by its Gauss-Newton approximation:

Hyt

def
=

∂2yt

∂x2

`
xi(ut)

´
≈
ˆ
∇yt

`
xi(ut)

´˜ˆ
∇yt

`
xi(ut)

´˜T (115)

Now using the exponential rotation derivatives from (60) and (61), we
have the following formula for element (j, k) of the Hessian matrix
of ρobj with respect to the rotation parameters:

∂2ρobj(ut)

∂δj∂δk
≈
h
Jδ(ut)[Jδ(ut)]

T
i

jk

+
nX

i=1

fi(ut)

»“
g
“γjγk + γkγj

2

”
rhic

”T

∇yt

`
xi(ut)

´–

+
nX

i=1

fi(ut)
h
(gγjrhic)

Tˆ∇yt

`
xi(ut)

´˜̂
∇yt

`
xi(ut)

´ T̃
(gγkrhic)

i
.

(116)

By rewriting the right side of this equation, we obtain:

∂2ρobj(ut)

∂δj∂δk
≈
h
Jδ(ut)[Jδ(ut)]

T
i

jk
+
h
Jδ(ut)F(ut)[Jδ(ut)]

T
i

jk

+
nX

i=1

fi(ut)

»“
g
“γjγk + γkγj

2

”
rhic

”T

∇yt

`
xi(ut)

´–
, (117)

where
F(ut)

def
= diag

`
f(ut)

´
.

C. Sampling from the proposal distribution
The Laplace approximation to the covariance matrices of each of

l, c, and δ is the inverse of the corresponding Hessian matrix of ρobj
from (111), (112), or (117):

Ul(ut) =
h

∂2ρobj(ut)

∂l2

i−1

Uc(ut) =
h

∂2ρobj(ut)

∂c2

i−1

Uδ(ut) =
h

∂2ρobj(ut)

∂δ2

i−1

.

(118)

We generate a set of λ independent samples,

u(d,e)
t = {r(d,e), l(d,e), c(d,e)}, (119)

where e ∈ {1, 2, · · · , λ}, and the u(d,e)
t are drawn from a Gaussian

distribution with mean ût(u
(d)
1:t−1) = {r(d), l(d), c(d)} and variance

proportional to the Laplace covariance matrices (118):

l(d,e) is sampled from N
“
l(d), αUl

`
ût(u

(d)
1:t−1)

´”
,

c(d,e) is sampled from N
“
c(d), αUc

`
ût(u

(d)
1:t−1)

´”
,

r(d,e) = e∆ r(d),

where δ is sampled from N
“
0, αUδ

`
ût(u

(d)
1:t−1)

´”
,

(120)
and ∆ is defined from δ using (52). The parameter α > 0 determines
the sharpness of the sampling distribution. (Note that letting α → 0
would be equivalent to simply setting the new pose equal to the peak
of the pose opinion, u(d,e)

t = ût(u
(d)
1:t−1).)

In Section 3, we used the single pose sample u(d,e)
t as shorthand

for samples of all three pose parameters, and we used the sampling
covariance U as shorthand for the sampling covariances of all three
pose parameters:

u(d,e)
t

def
=
˘
r(d,e), l(d,e), c(d,e)¯, (121)

U
`
ût(u

(d)
1:t−1)

´ def
= (122)

n
Ul

`
ût(u

(d)
1:t−1)

´
, Uc

`
ût(u

(d)
1:t−1)

´
, Uδ

`
ût(u

(d)
1:t−1)

´o
.

We used a similar shorthand when we discussed sampling from the
distribution in (19). For example, the statement

u(d,e)
t is sampled from

π(ut |u(d)
1:t−1, y1:t) = N

“
ût(u

(d)
1:t−1), αU

`
ût(u

(d)
1:t−1)

´”

is merely shorthand for all of the statements in (120).

REFERENCES

[A1] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential monte
carlo sampling methods for bayesian filtering,” Statistics and Computing,
vol. 10, pp. 197–208, 2000.

[A2] C. Andrieu, N. de Freitas, A. Doucet, and M. Jordan, “An introduction
to MCMC for machine learning,” Machine Learning, vol. 50, no. 1–2,
pp. 5–43, 2003.

[A3] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2004.

[A4] G. H. Golub and C. F. Van Loan, Matrix Computations. Johns Hopkins
University Press, 1989.

[A5] M. Brand and R. Bhotika, “Flexible flow for 3D nonrigid tracking and
shape recovery,” in CVPR, 2001.

[A6] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation. Boca Raton: CRC Press, 1994.

[A7] L. Torresani, D. Yang, G. Alexander, and C. Bregler, “Tracking and
modeling non-rigid objects with rank constraints,” in CVPR, 2001, pp.
493–500.

[A8] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision (ijcai),” in Proc. 7th Int. Joint Conf.
Artificial Intelligence (IJCAI 81), 1981, pp. 674–679.

[A9] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying
framework,” Int.l J. Computer Vision, vol. 56, no. 3, pp. 221–255, 2004.

