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Abstract. This paper analyzes the issue of catastrophic fusion, a problem that occurs in multimodal recognition
systems that integrate the output from several modules while working in non-stationary environments. For
concreteness we frame the analysis with regard to the problem of automatic audio visual speech recognition
(AVSR), but the issues at hand are very general and arise in multimodal recognition systems which need to
work in a wide variety of contexts. Catastrophic fusion is said to have occurred when the performance of a
multimodal system is inferior to the performance of some isolated modules, e.g., when the performance of the
audio visual speech recognition system is inferior to that of the audio system alone. Catastrophic fusion arises
because recognition modules make implicit assumptions and thus operate correctly only within a certain context.
Practice shows that when modules are tested in contexts inconsistent with their assumptions, their influence on the
fused product tends to increase, with catastrophic results. We propose a principled solution to this problem based
upon Bayesian ideas of competitive models and inference robustification. We study the approach analytically on
a classic Gaussian discrimination task and then apply it to a realistic problem on audio visual speech recognition
(AVSR) with excellent results.
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1. Introduction

This paper analyzes the issue of “catastrophic fusion” in multimodal systems, and explores
a principled solution to this problem inspired by the Bayesian ideas of competitive models
(Clark & Yuille, 1990) and inference robustification (Box, 1980; O’Hagan, 1994). The
discussion is framed with respect to the task of automatic audio visual speech recognition
(AVSR) but the issues at hand are very general and appear whenever multimodal signals
need to be integrated in non-stationary environments.

1.1. Audio Visual Speech Recognition

Human speech perception is a multimodal process. Sensitivity to contingencies in audio
(A) and video (V) signals has been shown in 4-month-old infants (Kuhl & Meltzoff, 1982).
By 6 years of age, humans consistently use visual information to understand speech
(Massaro, 1987), and by adulthood, vision has an automatic effect on speech perception.
The automatic character of this visual influence is commonly illustrated by the McGurk-
MacDonald effect, an auditory illusion created by cross-dubbing of A and V speech signals
(McGurk & MacDonald, 1976).

Recent years have seen a dramatic flourishing of the engineering literature on
AVSR (Yuhas et al., 1990; Wu et al., 1991; Stork et al., 1992; Bregler et al., 1993b;
Cosi et al., 1994; Bregler et al., 1994; Wolff et al., 1994; Hennecke et al., 1994;
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de Sa, 1994; Movellan, 1995). Current interest on AVSR is in part due to the pop-
ularization of digital multimedia tools, its potential application to automatic speech
recognition in noisy environments (e.g., car telephony, airplane cockpits, noisy offices),
and its links to fundamental theoretical issues in engineering and in cognitive science
(Movellan & Chadderdon, 1996).

One important area of research in AVSR is the development of principled methods to
integrate A and V information (Hennecke et al., 1995). One of the problems identified in
this area is what we refer to as “catastrophic fusion”. For concreteness, let us illustrate the
problem with a hypothetical car telephony task which we will simulate in later sections. The
task is to recognize spoken phone numbers based on input from a camera and a microphone.
The system is supposed to operate intelligently under a wide variety of conditions. For
example, at times the V signal may be relatively clean and the A signal may be contaminated
by sources like the radio, the engine, and friction with the road. At other times the A signal
may be more reliable than the V signal (e.g., the radio is off, but the talker’s mouth is partially
occluded). We want the recognition system to combine the A and V sources intelligently
given the conditions at hand (e.g., give more weight to whichever channel is more reliable at
that time). At a minimum we expect that for a wide variety of conditions, the performance
after fusion should not be worse to that of independent unimodal systems, a pass/non-pass
test for any reasonable fusion algorithm (Bernstein & Benoit, 1996). Catastrophic fusion
occurs when component modules before fusion significantly outperform the overall system
after fusion (e.g., if the A-system alone does better than the combined AV system).

We will analyze this effect in later sections but for now suffice it to say that because of
it AVSR systems turned to a variety of heuristics to adaptively change the weight given
to the A and V modules (Bregler et al., 1993b; Adjondani & Benoit, 1995). While these
heuristics are intuitively sound it is unclear whether they are optimal in any sense.

The goal of this paper is to formally analyze the problem of catastrophic fusion and
to propose a principled solution inspired by the Bayesian ideas of competitive models
(Clark & Yuille, 1990) and inference robustification (Box, 1980; O’Hagan, 1994). The
paper is organized as follows: Section 2 describes competitive models and robustification.
Section 3 illustrates analytically how these ideas apply to a simple problem. Section 4
shows that the approach can be easily applied to current AVSR systems with very good
results. Section 5 discusses theoretical implications and limitations of the approach.

2. Competitive Models and Robustification

Clark & Yuille (1990) and Yuille & Bulthoff (1996) analyzed information integration in sen-
sory systems from a Bayesian perspective. Their work focuses mostly on the psychophysics
of vision, but the issues at hand are very general and apply to the current work on AVSR.

Modularity is justified in their view by the need to make assumptions that disambiguate
the data available to the perceptual system (Clark & Yuille, 1990, p. 5). For example, a
shape from shading module may assume a single light source and a Lambertian reflectance
function with constant albedo. The problem is that these assumptions restrict the range of
proper operation of the module: the module will only work well within a restrictedcontext.
The solution proposed by Clark & Yuille (1990) is to work with an ensemble of models each
of which specializes on restricted contexts and automatically checks whether the context is
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correct. The hope is that by working with such an ensemble of models, robustness under a
variety of contexts can be achieved (Clark & Yuille, 1990, p. 13).

Similar ideas had actually been advanced in the Bayesian literature with regard to the
problem of robust statistical inference. The emphasis in the theory of robust statistics is
in the development of estimators that work efficiently over a wide range of distributions
(Hoglin et al., 1983). Using a Bayesian approach, Box (1980) noticed that robust statistical
inference could be achieved by extending inference models with additional “nuisance”
parameters, a process he called Bayesian robustification. The idea is to replace an implicit
assumption about the specific value of parameters with a prior distribution that represents
uncertainty about those parameters.

The approach presented in this paper combines the ideas of competitive models and
Bayesian robustification: each of the channels in the multimodal recognition system is
provided with extra parameters that represent non-stationary properties of the environment,
what we call acontext model. By doing so we effectively work with an infinite ensemble
of models each of which compete on-line to explain the data. As we will see later, even
unsophisticated but variable context models are superior to fixed context models when the
environment is non-stationary.

We frame the recognition problem as that of simultaneously choosing the most probable
perceptual alternative and context parameters1

{ŵ, σ̂a, σ̂v} = argmax
wi,σa,σv

p(wi, σa, σv |xa, xv,M). (1)

whereσa andσv are context parameters for the audio and video,M symbolizes fixed
parameters of the recognition engine, andwi are the perceptual units being recognized
(e.g., words or subwords). The effect of this joint decision approach is that only the most
probable context models are allowed to have an influence on the fused percept. In other
words, the first component of(ŵ, σ̂a, σ̂v) can be obtained as follows

ŵ = argmax
wi

{
max
σa,σv

p(wi, σa, σv |xa, xv,M)
}
, (2)

Hereafter, we will refer to this approach as therobustified approach.
AVSR systems typically consist of two independent modules, one dedicated to

A signals and one to V signals and each capable of independently recognizing
the entire lexicon (Bregler et al., 1993a; Wolff et al., 1994; Adjondani & Benoit, 1996;
Movellan & Chadderdon, 1996). From a Bayesian perspective this modularity reflects an
assumption of conditional independence of A and V signals (i.e., the likelihood function
factorizes)

p(xa, xv |wi, σa, σv,Ma,Mv) ∝ p(xa |wi, σa,Ma) p(xv |wi, σv,Mv), (3)

wherexa andxv are the audio and video data,wi is a perceptual interpretation of the
data (i.e., a word in the lexicon) and{Ma,Mv} symbolize fixed parameters of the au-
dio and video models. In fixed lexicon systems, conditional independence is usually as-
sumed at the word level, with very good results (Stork et al., 1992; Bregler et al., 1993b;
Adjondani & Benoit, 1995; Movellan, 1995). While our approach does not require the as-
sumption of conditional independence, it greatly simplifies the computations. In particular,
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assuming conditional independence and uninformative priors for(σa, σv) the robustified
approach yields

ŵ = argmax
wi

{
log p(wi) +[
max
σa

log p(xa |wi, σa,Ma)
]

+
[
max
σv

log p(xv |wi, σv,Mv)
]}

.

(4)

Thus conditional independence allows a modular implementation of the robustified ap-
proach (i.e., the A and V channels do not need to talk to each other until the time to make
a joint decision):

1. For eachwi we obtain conditional estimates of the context parameters for the audio and
video signals:

σ̂a|wi = argmax
σa

{ log p(xa |wi, σa,Ma) } , (5)

and

σ̂v|wi = argmax
σv

{ log p(xv |wi, σv,Mv) } . (6)

2. Find the bestwi using the conditional context estimates.

ŵ = argmax
wi

{log p(wi)

+ log p(xa |wi, σ̂a|wi ,Ma) + log p(xv |wi, σ̂v|wi ,Mv)
}
.

(7)

In the next sections we analyze this approach on a simple Gaussian discrimination task and
then apply it to a realistic AVSR problem.

3. Analytical Example

The purpose of this section is to gain a better understanding of why a naive implementation
of Bayesian fusion can have catastrophic results and how Bayesian robustification helps
solve this problem. To this goal we chose a Gaussian discrimination, simple enough to
obtain analytical results yet closely related to the probabilistic models used in our AVSR
system. For ease of presentation we frame this toy problem in terms of audio and video
channels. The reader is reminded that in this section no real audio and visual signals are
used. Our goal is just to understand mathematically why Bayesian robustification avoids
catastrophic interference in this particular problem.

Consider an environment which varies randomly between two alternativesw1 andw2

(e.g., two different words). LetW be a random variable representing the state of the world,
and letpW (w1) = pW (w2) = 0.5. Two sensory channels, arbitrarily labeled A and V,
provide conditionally independent information about the state of the world in the form of
measurement vectors:X = (Xa, Xv) whereXa isRNa valued andXv isRNv valued. The
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centroids of these measurements change with the state of the world and are contaminated
by an additive Gaussian random vectorE:

X = E +
∑
i

µ(wi)1{W=wi}, (8)

whereµ(wi) = (µa(wi), µv(wi) ) is the centroid whenW = wi, and1{W=wi} is an
indicator random variable,

1{W=wi}(ξ) =

{
1 if W (ξ) = wi

0 if W (ξ) 6= wi.
(9)

The noise vectorE = (Ea, Ev) has Gaussian probability density

pE(e |wi, σa, σv,Ma,Mv) = (
1

σa
√

2π
)Nae−‖ea‖

2/2σ2
a(

1
σv
√

2π
)Nve−‖ev‖

2/2σ2
v , (10)

wheree = (ea, ev), andσa andσv represent the strengths of the noise in the audio and
video channels. The classical Bayesian decision rule to the Gaussian discrimination task
simplifies as follows

ŵ = argmin
wi

{‖xa − µa(wi)‖2
σ2
a

+
‖xv − µv(wi)‖2

σ2
v

− log p(wi)
}
. (11)

Decisions are made by measuring the Euclidean distance between the data vector(xa, xv)
and prototypes for each hypothesis(µa(wi), µv(wi)). The distances between data and
prototypes are compared to a bias parameter and the winning prototype is chosen. Those
readers familiar with signal detection theory will recognize this solution as the classic signal
detection model of observers’ sensitivity (Peterson et al., 1954). Note how theσ’s weight
the relative importance of the two information modules, e.g., ifσv À σa then the audio
channel has a higher relative weight in (11).

Let us compare now this standard solution with the robustified approach proposed in this
paper. The idea is to useσa andσv as context parameters and to simultaneously estimate
the context parameters and the perceptual hypothesis. In the previous section we saw that
this approach leads to the following decision rule

ŵ = argmax
wi

{
log p(wi)

+ log p(xa |wi, σ̂a|wi ,Ma) + log p(xv |wi, σ̂v|wi ,Mv)
}
.

(12)

whereσ̂a|wi , σ̂v|wi are the conditional context estimates. In our example these estimates
are

σ̂a|wi =
‖xa − µa(wi)‖√

Na
, (13)

and

σ̂v|wi =
‖xv − µv(wi)‖√

Nv
, (14)
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substituting them in (12) leads to the robustified decision rule

ŵ = argmin
wi

{
Na log ‖xa − µa(wi)‖2 +Nv log ‖xv − µv(wi)‖2 − log p(wi)

}
. (15)

In the standard case, displayed in (11), fusion is based on Euclidean distances between
data and prototypes. In contrast, the robustified Bayesian rule calls for a comparison oflog
distances, and theσ parameters do not appear in the resulting decision rule.

The difference between these two rules is clear in the gradient of the fused output with
respect to the “video data”. This gradient reveals the influence of the “video data”,xv, on
the fused output. In the standard case the gradient is given by

∇xv
(‖xa − µa(wi)‖2

σ2
a

+
‖xv − µv(wi)‖2

σ2
v

)
=

2
σ2
v

(xv − µv(wi)). (16)

Note that the magnitude of the gradient increases with distance from the prototype. Thus,
measurements yielding data far from any prototype become very influential in the final
decision. In the robustified rule the gradient is given by

∇xv
(
Na log ‖xa − µa(wi)‖2

+Nv log ‖xv − µv(wi)‖2
)

=
2Nv

‖xv − µv(wi)‖2
(xv − µv(wi)). (17)

It follows that the magnitude of the gradient decreases with the distance from the prototype.
This limits the influence of signals far from a prototype, which are treated as indicative of
a high noise context.

To gain a better understanding of the performance of the standard and robustified ap-
proaches we performed a simulation of the following toy problem.

Simulation

The audio channel was simulated as follows

Xa = Ea +
∑
i

µa(wi)1{W=wi}. (18)

where the values ofµ(wi) are discussed below. The simulated video channel was contam-
inated by an additional vectorkU that simulated non-Gaussian contextual changes caused
by occlusion and/or illumination.

Xv(k) = kU + Ev +
∑
i

µv(wi)1{W=wi}. (19)

We used non-Gaussian contamination to asses how well standard and robustified fusion
works when the system’s assumptions are not met. In the simulationU had a uniform
probability distribution over theNv-dimensional sphere of unit radius. The parameterk
was systematically varied to control the magnitude of the contamination by non-Gaussian
sources.

The independent variables in the experiment were:
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1. Decision rule (standard vs. robustified).

2. Dimensionality of the feature vectors (2-D vs. 100-D). The 2-D case represents data-
poor problems and the 100-D case data-rich problems.

3. Magnitude of the contamination in the simulated video.

The dependent variable was performance in a two category discrimination task. The simu-
lation was conducted as follows:

1. The dimensionality of the audio and video channels was first fixed atNa = Nv = N =
2, simulating data-poor conditions.

2. The prototype centroids{µ(w1), µ(w2)} for both the audio and video signals were
located at the origin forw1 and at{1, . . . , 1} for w2. The true context valuesσa and
σv were fixed at

√
N .

3. For the standard approach, the expected context parameters were fixed at
√
N .

4. The parameterk, which represents the magnitude of the contamination in the video
channel, was systematically varied from 0 to 5. For each value ofk, estimates of the
classification performance of the standard and robustified rules were obtained using
Monte Carlo sampling (10000 times).

5. The optimum performance achievable by a system that used only the audio channel was
determined analytically.

The entire experiment was then repeated forNa = Nv = N = 100, simulating data-rich
conditions.

Figure 1 displays the results of the experiment. The horizontal axis shows the magnitude
of the contamination vectorkU . The vertical axis shows the performance of the standard and
robustified approaches. Note that the standard approach shows catastrophic fusion: when
the magnitude of the video contamination is large, the performance after fusion is worse than
the performance of the A module only. Bayesian robustification practically eliminates this
problem. For the data rich case (100-D), the performance of the robustified approach is never
worse than the performance of an optimal audio-only system, thus avoiding catastrophic
fusion. In the data-poor case the adaptive system is still clearly more robust than the system
with fixed context parameters.

These results suggest that robustification has desirable properties and may help avoid
catastrophic fusion. We get an important clue for the success of the robustified approach
by examining the difference in evidence assigned to the two word alternatives by the
video alone. We represent this difference using the indexed family of random variables
{Dv(k)}k∈R, wherek represents the magnitude of the contamination. Ideally we would
like Dv(k), to be unchanged byk. This would mean that the noise has been completely
filtered out. In practice this may be effectively impossible and thus a more realistic goal is
to haveDv(k) converge to zero as the magnitude of the contamination increases. Note how
in the standard Bayesian rule the magnitude ofDv(k) diverges almost surely ask increases.

Dv(k) =
1
σ2
v

(
‖Xv(k)− µv(w1)‖2 − ‖Xv(k)− µv(w2)‖2

)
. (20)
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Figure 1. Performance on the two category discrimination task with non-Gaussian noise contamination, when
the simulated audio and video data are 2-dimensional and 100-dimensional. Robustified fusion degrades more
gracefully than standard fusion. The horizontal line is the theoretical performance limit using audio information
only. Note how standard fusion is catastrophic, since when the audio is highly contaminated the performance after
fusion is lower than that of the audio system alone.

In other words, as the video becomes more and more contaminated it also becomes more
and more influential in the final decision, with catastrophic effects.

However, in the robustified approachDv(k) converges to zero almost surely2,

Dv(k) = Nv log
‖Xv(k)− µv(w1)‖2
‖Xv(k)− µv(w2)‖2 (21)

P ( lim
k→∞

Dv(k) = 0) = 1. (22)

The robustified approach automatically recognizes the contamination in the video and shuts
down its influence by assigning equal weight to the different word hypotheses. This is
precisely what we want from a robust procedure, since our assumptions about the video
are more incorrect ask increases. In the next section we apply this approach to a realistic
AVSR task.

4. Application to AVSR

Bayesian robustification can be easily applied to Hidden Markov Models (HMM), arguably
the most successful architecture for AVSR. Hidden Markov models are defined by

• Markovian state dynamics:p(qt+1|qt) = p(qt+1|qt), whereqt is the state at time t and
q
t

= (q1, · · · qt).
• Conditionally independent sensor models linking observations to statesf(xt|qt), typi-

cally a mixture of multivariate Gaussian densities

f(xt|qt) =
∑
i

p(mi|qt)(2π)−Na/2 |Σ|−1/2 exp(d(xt, qt, µi,Σ)), (23)
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Figure 2. The recognition engine consists of an A module and a V module. Each module is a bank of HMMs one
per word hypothesis.

wheremi is the mixture label,p(mi|qt) is the mixture distribution given stateqt, Σ is
a covariance matrix, andµi is the centroid for mixturemi, andd is the Mahalanobis
norm

d(xt, qt, µi,Σ) = (xt − µi)′Σ−1(xa − µi). (24)

Most fixed lexicon systems consist of a bank of HMMs, one per entry in the lexicon. At
test time, a new data sequencexT is presented and each HMM calculates the probability
of the data given the model. Using the law of total probability in combination with the
Markovian property, the probability of the data can be obtained as follows

p(xT ) =
∑
q
T

p(q
T

xT ) =
∑
q
T

p(qo)
T−1∏
t=1

p(qt+1|qt)f(xt|qt), (25)

which is simply a weighted sum of Gaussian densities. Thus the HMM case is formally
very similar to the standard Gaussian problem we studied in the previous section.

Current work on AVSR shows that good results are obtained with independent A module
and V modules, each of which is a bank of HMMs (see Figure 2). At training time, each
model within a module is trained to maximize the likelihood of observation sequences from
one of the words in the lexicon. For example, the first model in the A module may be trained
to maximize the likelihood of audio-signals from utterances of the word “one”. The first
model of the V module may be trained with the corresponding video signals of the same
word. This training is usually done using the EM algorithm (Dempster et al., 1977).

At test time the audio part of the test sequence is fed to the A module and the video part
to the V module. Each model in the A and V modules computes the probability of the
corresponding input sequence. The output of the corresponding A and V models is fused
using the standard Bayes rule: the log-likelihoods of the A and V modules are added to the
log-priors of each word hypothesis and a decision is made for the hypothesis with largest
combined output.
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Figure 3. 1) Raw Image. 2) Symmetrized Image. 3) Difference Image. 4) Final Composite.

The robustified approach explored in this paper calls for simultaneous optimization of
the variance parameters for all the models at the same time we optimize with respect to the
word alternative.

ŵ = argmax
wi

{
log p(wi) +[
max
Σa

log p(xa |wi,Ma)
]

+
[

max
Σv

log p(xv |wi,Mv)
] }

.

(26)

The maximization with respect to the variances can be easily integrated into standard HMM
packages by simply applying the EM algorithm on the variance parameters at test time.
Thus, in practice, the only difference between the standard approach and the robustified
approach is that the latter one retrains the variance parameters of each HMM at test time.
In practice this training takes only one or two iterations of the EM algorithm and can be
done on-line. We tested this approach on the following AVSR problem.

Training database

We used Tulips1 (Movellan, 1995) a database consisting of 934 images of 9 male and 3
female undergraduate students from the Cognitive Science Department at the University of
California, San Diego. For each of these, two samples were taken for each of the digits “one”
through “four”. Thus, the total database consists of 96 digit utterances. The audio sampling
rate is 11.1 kHz, and each sample has an 8-bit representation. Each frame in the video track
of a movie is an 8-bit grey-scale, 100x75 pixel image, and each movie is sampled at a
visual frame rate of 30 frames per second. The subjects were asked to center and align their
lips in the camera during sampling. However significant deviations from ideal conditions
occur often (e.g., at times the lips are out of focus or partially occluded by the edge of the
rectangular filming window). The database is available at http://cogsci.ucsd.edu.
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Signal Processing

We have tried a wide variety of visual processing approaches on this database, includ-
ing decomposition with local Gaussian templates (Movellan, 1995), PCA-based templates
(Gray et al., 1997), and Gabor energy templates (Movellan & Prayaga, 1996). To date, best
performance was achieved with the local Gaussian approach. Each frame of the video track
is soft-thresholded and symmetrized along the vertical axis, and a temporal difference frame
is obtained by subtracting the previous symmetrized frame from the current symmetrized
frame. We calculate the inner-products between the symmetrized images and a set of basis
images. Our basis images were 10x15 shifted Gaussian kernels with a standard devia-
tion of 3 pixels. The loadings of the symmetrized image and the differential image are
combined to form the final observation frame. Each of these composite frames has 300
dimensions (2x10x15). The process is depicted in Figure 3 and explained in more detail in
(Movellan, 1995).

LPC/cepstral analysis is used for the auditory front-end. This is a fairly standard pre-
processing technique which parameterizes an estimate of the human vocal tract’s transfer
function. First, the auditory signal is passed through a first-order emphasizer to spectrally
flatten it. Then the signal is separated into non-overlapping frames at 30 frames per second.
This is done so that there are an equal number of visual and auditory feature vectors for
each utterance, which are then synchronized with each other. On each frame we perform
the standard LPC/cepstral analysis. Each 30 msec auditory frame is characterized by 26
features: 12 cepstral coefficients, 12 delta-cepstrals, 1 log-power, and 1 delta-log-power.
Each of the 26 features is encoded with 8-bit accuracy.

Recognition Engine

In previous work (Chadderdon & Movellan, 1995) a wide variety of HMM architectures
were tested on this database including architectures that did not assume conditional in-
dependence. Optimal performance was found with independent A and V modules using
variance matrices of the formσI, whereσ is a scalar andI the identity matrix. The best
A models had 5 states and 7 mixtures per state and the best V models had 3 states and 3
mixtures per state. We also determined the optimal weight of A and V modules. Optimal
performance is obtained by weighting the output of V times 0.18.

Factorial Contamination Experiment

In this experiment we used the previously optimized architecture and compared its perfor-
mance under 64 different conditions using the standard and the robustified approaches. We
used a2× 8× 8 factorial design. The first factor represents the fusion rule, and the second
and third factors represent the context in the audio and video channels. To our knowledge
this is the first time an AVSR system is tested with a design of this type. The independent
variables were:

1. Fusion rule: Classical, and Robustified.
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Figure 4. Example of the different occlusions levels. From left to right: 0 %, 10 %, 20 %, 40 %, 60 % 80 %.
Percentages are in terms of area.

2. Audio Context: Inexistent, clean, or contaminated at one of the following signal to
noise ratios: 12 dB, 6 dB, 0 dB, -6 dB, -12 dB and -100 dB. The contamination was
done with audio digitally sampled from the interior of a car while running on a busy
highway with the doors open and the radio on a talk-show station.

3. Video Context: Inexistent, clean or occluded by a grey level patch. The percentages of
visual area occupied by the patch were 10 %, 20 %, 40 %, 60 %, 80 % and 100 % (see
Figure 4).

The dependent variable was performance on the digit recognition task evaluated in terms
of generalization to new speakers. In all cases training was done with clean signals and
testing was done with one of the 64 contexts under study. Since the training sample is
small, generalization performance was estimated using a jackknife procedure (Efron, 1982).
Models were trained with 11 subjects, leaving a different subject out for generalization
testing. The entire procedure was repeated 12 times, each time leaving a different subject
out for testing. Statistics of generalization performance are thus based on 96 generalization
trials (4 digits× 12 subjects× 2 observations per subject). Standard statistical tests were
used to compare the classical and robustified approaches.

The results of this experiment are displayed in Table 1. Note how the experiment replicates
the phenomenon of catastrophic fusion. With the classic approach when one of the channels
is contaminated, performance after fusion can be significantly worse than performance with
the clean channel alone. For example, when the audio is clean, the performance of the audio-
only system is 95.83 %. When combined with bad video, this performance drops down to
61.46%, a statistically significant difference3 F(1,11) = 132.0, p< 10−6. In the robustified
approach the performance of the joint system is93.75%, which is not significantly different
from the performance of the A system only, F(1,11) = 2.4, p= 0.15. The boxed cells
represent regions for which the classical and robustified approaches were significantly
different(α = 0.05). Contrary to the classic approach, the robustified approach does not
exhibit catastrophic fusion.
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Table 1.Average generalization performance with classic and robustified fusion. Boxed cells indicate
a statistically significant differenceα = 0.05 between the two fusion approaches.

Performance with Robustified Fusion
Audio

Video None Clean 12 dB 6 dB 0 dB -6 dB -12 dB -100 dB

None — 95.83 95.83 90.62 80.20 67.70 42.70 19.80

Clean 84.37 97.92 97.92 94.80 90.62 89.58 81.25 82.20

10 % 73.95 93.75 93.75 94.79 87.50 80.20 71.87 64.58

20 % 62.50 96.87 96.87 94.79 89.58 80.20 62.50 41.66

40 % 37.50 93.75 89.58 87.50 83.30 70.83 43.75 30.20

60 % 34.37 93.75 91.66 88.54 82.29 65.62 42.70 26.04

80 % 27.00 95.83 90.62 86.45 79.16 64.58 46.87 25.00

100 % 25.00 93.75 92.71 84.37 78.12 63.54 44.79 26.04

Performance with Classic Fusion
Audio

Video None Clean 12 dB 6 dB 0 dB -6 dB -12 dB -100 dB

None — 95.83 94.79 89.58 79.16 65.62 40.62 20.83

Clean 86.45 98.95 96.87 95.83 93.75 87.50 79.16 70.83

10 % 73.95 93.75 93.75 93.75 89.58 79.16 70.83 52.58

20 % 54.16 89.58 84.41 84.37 84.37 75.00 51.00 43.00

40 % 29.16 81.25 78.12 78.12 67.20 52.08 38.54 34.37

60 % 32.29 77.08 77.08 72.91 62.50 47.91 37.50 29.16

80 % 29.16 70.83 72.91 68.75 54.16 44.79 33.83 28.12

100 % 25.00 61.46 61.45 58.33 51.04 42.70 38.54 29.16

5. Discussion

This paper explored the issue of catastrophic fusion, a problem that occurs when two or
more modules need to be fused in non-stationary environments. Catastrophic fusion may
occur when modules operate outside their assumed context. The reason for this problem is
that in the absence of a context model, deviations from the expected context are interpreted
as information about the different perceptual interpretations instead of information about
contextual changes.

We proposed a principled solution to this problem inspired by the ideas of competitive
models (Clark & Yuille, 1990) and Bayesian robustification (Box, 1980; O’Hagan, 1994).
We provided each module with simple white-noise context parameters and jointly estimated
the most probable context and perceptual hypothesis. By doing so, context deviations are
interpreted as changes in the white noise contamination strength, automatically adjusting
the influence of the module.

The approach presented in this paper has two desirable properties: 1) it is very easy to
implement; 2) it is framed in Bayesian decision theory and thus we know in which sense
it is optimal; 3) even though white noise may be grossly incorrect as a model of context, it
automatically shuts down modules with wrong assumptions. However, there is still room
for improvement: first of all, the current context models are static. It may be desirable
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to use dynamic context models, thus allowing combination of previous context estimates
with current context estimates. Second, talkers may articulate different in different noise
levels thus affecting both the A and V channels. In such cases it may still be necessary to
use a range of audio and visual models explicitly trained with a range of noise levels. Our
approach can still be useful in this case by robustifying the different models and providing
continuity between the different levels. Finally, we achieve optimality with respect to the
joint task of estimating the contexts and deciding for a perceptual hypothesis. While our
approach is optimal in this sense, it is not necessarily optimal for each of the marginal tasks
(e.g., estimating each context or choosing a perceptual hypothesis). An optimal procedure
for the marginal tasks would require integrating over the entire space of context models
weighted by their posterior probability. For example, the marginal task of finding the most
probablew, (e.g., which word was uttered), can be described as follows

ŵ = argmax
wi

{∫
dσa dσv p(xaxv|wi)p(σaσv|xaxvwi)p(wi)

}
. (27)

By redefining the task as joint estimation ofw and context{σa, σv}, we avoid the integral
in equation 27. From the point of view of the marginal tasks, our approach can be seen as an
approximation to the true posterior distribution of the context by a delta function centered
at the most probable context (i.e., only the most probable context model is allowed to
participate in the fusion process). More sophisticated approximations using the curvature
of the posterior probability at the maximum (MacKay, 1996) or Monte Carlo sampling
(Neal, 1996) may prove beneficial and help improve the fusion process even more.

Notes

1. For simplicity when possible we identify probability mass and density functions by their arguments. For
example, ifX is a continuous random variablep(x) will representfX(x), the probability density ofX
evaluated atx.

2. The sole exception being when the vectorU is perpendicular to the vector joining the two centroids, an event
of probability zero.

3. We use standard notation withF (a, b) standing for Fisher’s statistic, withadegrees of freedom in the numerator
andb degrees of freedom in the denominator.
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