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This article analyzes learning in continuous stochastic neural networks
defined by stochastic differential equations (SDE). In particular, it studies
gradient descentlearningrules to train the equilibrium solutions of these
networks. A theorem is given that specifies sufficient conditions for the
gradient descent learning rules to be local covariance statistics between
two random variables: (1) an evaluator that is the same for all the network
parameters and (2) a system variable that is independent of the learn-
ing objective. While this article focuses on continuous stochastic neural
networks, the theorem applies to any other system with Boltzmann-like
equilibrium distributions. The generality of the theorem suggests that
instead of suppressing noise present in physical devices, a natural alter-
native is to use it to simplify the credit assignment problem. In deter-
ministic networks, credit assignment requires an evaluation signal that
is different for each node in the network. Surprisingly, when noise is not
suppressed, all that is needed is an evaluator that is the same for the en-
tire network and a local Hebbian signal. This modularization of signals
greatly simplifies hardware and software implementations. The article
shows how the theorem applies to four different learning objectives that
span supervised, reinforcement, and unsupervised problems: (1) regres-
sion, (2) density estimation, (3) risk minimization, and (4) information
maximization. Simulations, implementation issues, and implications for
computational neuroscience are discussed.

1 Introduction

This articlestudies how to train equilibrium solutions of continuous stochas-
tic neural networks. The networks proposed are specified by stochastic dif-
ferential equations (SDE), an extension of ordinary differential equations
that incorporates probabilistic dynamics. The article illustrates how these
networks can be optimized so that their equilibrium distributions exhibit
desired properties.

From a more general point of view, the article is also a theoretical analy-
sis of learning in systems that exhibit Boltzmann equilibrium distributions,
regardless of whether this distribution is obtained using SDE models or
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other methods (see Neal, 1993, and Gidas, 1986, for a review of methods
to generate Boltzmann-type equilibrium distributions). As such, the arti-
cle generalizes the original Boltzmann machine learning algorithm (Ackley,
Hinton, & Sejnowski, 1985) to a very wide variety of architectures and learn-
ing criteria.

The article proposes sufficient conditions for the gradients of the cost
functions minimized during learning to be local covariance statistics be-
tween two random variables: (1) an evaluator variable that is the same for
all the network parameters and (2) a local system variable that is inde-
pendent of the particular cost function being minimized. This factorization
avoids backpropagation of error signals specific to each network parameter,
greatly simplifying hardware and software implementations. The analysis
presented here suggests that probabilistic dynamics may play an integral
part of learning in natural nervous systems by simplifying the solution to
the credit assignment problem.

Learning with stochastic networks has played an important theoretical
role in the neural network literature (Cowan, 1968; Geman & Geman, 1984;
Ackley etal., 1985; Smolensky, 1986), but curiously, even though mostneural
network applications use continuous representations, learning in the con-
tinuous stochastic case has seldom been studied. Analyzing the continuous
stochastic case is important for the following reasons:

* Many natural signals, like pixel gray-level object positions and orienta-
tions, are well described as continuous random processes. Experience
shows that some practical applications benefit from the use of a con-
tinuous stochastic framework (Isard & Blake, 1996).

* Randomness is essential when modeling natural computation because
of the intrinsic variability of natural hardware. It has been proposed
that a unified theory of cognition and neural computation should be
based on models that are random, continuous, and interactive (Mc-
Clelland, 1993).

¢ Current digital technology suppresses structural and thermodynamic
noise in hardware devices by creating high-energy barriers between
states, thus requiring relatively high power supplies (Andreou, 1994;
Landauer, 1992; Mead & Conway, 1980). This approach does not work
with supplies on the order of 0.1 volt, characteristic of natural comput-
ers. As we move toward low-voltage systems, the computing environ-
ment becomes analog and stochastic, the realm of stochastic diffusion
models.

¢ There are existing VLSl implementations of continuous stochastic neu-
ral networks, and it is important to have a formal framework to under-
stand the kind of things that we can do with them (Alspector, Jayaku-
mar, & Luna, 1992).
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This article focuses on the problem of optimizing networks for tasks
where what matters is the stable distribution of responses (e.g., image com-
pletion) rather than the paths leading to those responses. For generality,
the framework and the results are presented in an abstract manner. For
concreteness, we show how to construct and train an SDE version of the
continuous Hopfield model (Hopfield, 1984).

Sections 2 and 3 introduce SDEs and discuss analytical solutions for their
equilibrium distributions. Section 4 presents a theorem applicable to a gen-
eral class of models and cost functions. When this theorem applies, gradient
descent learning rules take the form of local covariance statistics between
evaluators and system variables. Section 5 applies the theorem to derive
evaluator variables for the following supervised, reinforcement and unsu-
pervised problems: (1) regression, (2) density estimation, (3) risk minimiza-
tion, and (4) information maximization. The theorem applies to any dynam-
ical system that exhibits Boltzmann equilibrium distributions; however, the
main focus of this article is on the application of the theorem to neural net-
works specified via SDEs. As such, section 6 derives the system variables
for a stochastic version of the continuous Hopfield model. Sections 7 and 8
present simulations and discuss implications of this approach.

2 Introduction to SDEs

The theory of SDEs is a well-known formalism for describing continuous
strong Markov processes (Karatzas & Shreve, 1988, p. 81). SDEs are com-
monly used to model the effects of noise in electric circuits, computer net-
works, and control systems (Oksendal, 1992; Borkar, 1989). In the cognitive
modeling literature, SDEs have been used to model human reaction time dis-
tributions (Ratcliff, 1979) and to illustrate the principles of random, graded,
and interactive propagation of information (McClelland, 1993). In the neu-
ral network literature, SDE models have been used explicitly or implicitly
to describe single neuron activity (Gerstein & Mandelbrot, 1964; Ricciardi,
1977; Hanson & Tuckwell, 1983), small pools of neurons (Matsuyama, Shirai
& Akizuki, 1974) and noisy neural networks (Zipser, 1991; Ohira & Cowan,
1995).

The solutions of SDE equations are known as “diffusion processes” be-
cause they canbe thought of as the mathematical description of the motion of
small particles in a moving fluid (Karatzas & Shreve, 1988; Oksendal, 1992).
Hereafter we will refer to the general class of neural network models speci-
fied by SDEs as diffusion networks. From a formal point of view, diffusion
networks are continuous hidden Markov models (HMM). In discrete-state
HMMs, standard in current automatic speech recognition systems (Rabiner,
1989), the system dynamics are explicitly defined by a matrix of state tran-
sition probabilities and a matrix of output probabilities conditional on each
hidden state. In diffusion networks, the state and observation probabilities
are implicitly defined by a drift function, which is the deterministic kernel
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of the system (e.g., as for a deterministic neural network) and a disper-
sion function, which controls the level of uncertainty in the system. More
specifically, diffusion networks are specified by the following SDE

dY} = p, YR X) dt + o (YF) dWy (2.1)
Yo=v, (2.2)

where
(YA A e RP}4e[0,00) 18 @ continuous R"-valued random process repre-
senting the state of the n nodes in the network.

XisanR™ valued random vector representing the input. It has a known
probability density fx fixed by the environment.

v is an R" valued random variable representing the initial conditions.
o: R" - R" ® R" is a matrix function called the dispersion.

A € RP is a vector of adaptive parameters (e.g., coupling weights be-
tween units).

w: RP x R" x R™ — R" is a function known as the drift. The drift
can be interpreted as the deterministic kernel of a neural network with
vector parameter A (see section 6).

{Wi}tel0,00) is an N-dimensional Wiener process, a mathematical model
of Brownian motion (Papoulis, 1991, p. 346). The process is assumed
independent of {Y}},crr and X.

To simplify the presentation, we will assume that our formal objects are
mathematically well behaved. For example, if we take a partial derivative
of a function, we implicitly assume that such a derivative exists.

3 Stochastic Equilibrium

This article focuses on the probability densities of diffusion networks at
stochastic equilibrium, the densities in R” induced by the random variables

(Y5= lim Yiherr, (3.1)

where £ stands for “defined.” Under conditions to be detailed later, such a
limitexists in distribution and is independent of the initial conditions. In this
article, we care about the diffusion dynamics only to the extent that they lead
to an equilibrium solution; thus we will ease the notation by dropping the
time index in the underlying process. For example, Y* will stand for Y%, and
Y? for its ith component. Moreover, we will denote the space of continuous
densities on R" w.rt the Lebesgue measure as D,. Let fy,y represent the
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density induced by Y* in response to input X. It is well known that this
density uniquely satisfies the following equilibrium condition:!

V0 =0, (32)
Py, 0 2 frx | x) V* (y, x), (3.3)

Viy,x) = wit,y, 0 —5 thl](y) log(fy|x(y | ) al](y)> (34)
Ly = T : 35
al,](y) (a(y) a(y))@j (3.5)

where J: R" x R"™ — R" is the equilibrium current, V*: R" x R" — R”
the equilibrium velocity, V,- the divergence with respect to y, and V, the
gradient with respect to y

For the purposes of this article, a diffusion network with parameter A is
a deterministic mapping NV;: R™ — D,, from input space into the space
of densities on R". Equation 3.2 defines the mapping implicitly. Making it
explicit is difficult in general; however, there is a special case with a well-
known solution, the focus of this article. In particular, let 8 > 0 such that

o(y) = \/%In, where [, is the n xnidentity matrix, and let {U: R? xR" xR"™ —
R} be a function such that

nh,y, x) = —VyU(A, Y. x) . (3.6)

In this case it is easy to verify that the Boltzmann density

foxw [ x exp[ B UG y. )], (3.7)

1
S}
ZMx) & / exp [ —B UM, y,x) ldy, (3.8)

satisfies equation 3.2. For equation 3.7 to be well defined, the integral in
equation 3.8 needs to exist. Gidas (1986, p. 190) and Geman and Hwang
(1986) specify sufficient conditions on U(A, y, x) for this. Note that in fact
equation 3.7 makes the velocity V*(y, x) zero everywhere, a condition suffi-
cientbut not necessary to satisfy equation 3.2 and which is known as detailed
balance (Poggio & Girosi, 1994). The function U(2, y, x) is sometimes known
as the potential, the energy, or the dissonance. When its sign is changed, it
is known as the harmony (Smolensky, 1986).

! This condition easily follows from the Kolmogorov forward equation (Oksendal,
1992, p. 127), assuming nonzero equilibrium density everywhere and positive definite
dispersion. This simple transformation of the forward Kolmogorov equation ties up
nicely with mathematical physics and emphasizes the idea of probability currents moving
throughout the state-space.
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4 Learning

Equation 3.7 defines a family of mappings {N;: R™ — Dy}, crr, and equa-
tion 2.1 tells us how to implement these mappings using diffusion networks.
The learning task is that of finding members of the family that are optimal
in some specific sense. In general we may care about only the distribution
of a subset of d < n system variables, which we call the observables. In such
a case, we divide the state random variables Y* into observable and hidden
components: Y» = (O*, H%).

e {O*: Q — RY), gy is called the observable component.

o {H*: Q — R" )}, g is called the hidden component.

Hidden variables are important to allow the marginal density of observables
to be non-Boltzmann. In this section we propose a learning theorem that
applies to two different cases: one typical in the neural network literature
and the other in the stochastic filtering literature.

Case 1: The joint state process (i.e., the observable process and the
hidden processes) is defined by the SDE

2
Ay} = =V,U, Y}, X)dt + \/;dwt , (4.1)

with an input density fx fixed by the environment. For each input
x and parameter vector A, the joint state equilibrium distribution is
Boltzmann, as in equation 3.7.

Case 2: In this case, the hidden process is defined by the SDE
A A 2
dHy = =V, U(x, Hy, X)dt + 3 AWt , (4.2)

with U*: R"™ x R” — R. As in case 1, the input density is fixed by
the environment. Moreover, the equilibrium densities of observables
conditioned on inputs and hidden states? fox,x do not depend on A.
Note in case 2 that the drift for the hidden process does not depend
on the observable process. From a neural net point of view, this says
that there is no feedback connection from the observables back into
the hidden nodes, a classic constraint in stochastic filtering (Oksendal,
1992, p. 58)

Let {(Q, F, m")}yere be an indexed family of probability spaces where
Q = RY x R" x R™, F = B(RQ), the Borel sigma-algebra of Q. The proba-
bility measures m* are defined by densities induced by the random variables

2 These conditional densities could be optimized, but that is not the focus of this article.
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{O*, H*};err and X. We represent these density functions with the symbol
f and appropriate superscript and subscripts.

Next, we define a series of random variables needed in the derivation of
the learning theorem. We define these random variables in terms of auxiliary
functions whose only role is to facilitate the derivations by making explicit
dependencies between different variables.

Let {Si*, i=1,...,plrcre, be a family of random variables named the

system covariates and defined by auxiliary functions {S}: RY x R"~ x
R™ — R}ere,

s+ £ 8+ (0*, H*, X) , 43)
él),‘(a h, x) S _w()\"—o’h’x). (4.4)
oA

Let {Q*: RY x R™ — R}, be a family of functions called the state
cost and defined by auxiliary function Q: R x R” x R x R — R,

Qk(u, v)éé (u, v, fg (u), f3|x (u | v)) . (4.5)

Let {R*},cge be a family of random variables named the evaluators,
defined by auxiliary functions (R*: RY x R™ — R}y cpy,

R*2 R (0,X), (4.6)
30 (u, v, f& ). fix (u v))

Iik(u, v) £
fyx (| v)

@7)

Let {T*: RY x R™ — R}, cp» be a family of functions defined as follows:

9Q (u, v, f& ), fx v))

T (u, v)2 (4.8)
of5 ()
Let C: R? — R be an overall cost function defined as
C(A)é/ dx g(x) / do Q" (0, x) , (4.9)
m Rd

where g: R™ — R is a function for which equation 4.9 is well defined
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and such that

Vv, dx g(x) T*(o, x)=0. (4.10)
RHX

This condition tells us that the integral in equation 4.10 ought to be a
constant with respect to o, (i.e., its gradient with respect to o is the zero
vector). The reasons for this condition will become apparent later. Our
goal is to find values of A that minimize C(1) by using gradient-descent
approaches. We will show that these gradients are linear combinations
of covariance statistics. We refer to this fact as the Boltzmann covari-
ance theorem (BCT).

Boltzmann covariance theorem. For systems defined as in cases 1 and 2, and
satisfying equation 4.10, the gradient of the overall cost with respect to the network
parameters is a linear combination of covariance statistics between the evaluator
and the system covariates, and it has the following form:

aC(r)

—_— = ,3/ dx g(x) Cov*(R*, S} | X = x) , (4.11)
3)\1‘ Rm

where Cov* is a covariance with respect to measure m*.

Proof. The proof consists of two steps. In the first step, we study the gra-
dients of output probabilities. In the second step, we study the gradient of
the cost function.

Step 1. We explore two different cases as defined at the beginning of this
section.

In case 1, the joint states have Boltzmann density

fomx(0. 1| x) = exp [ —B UMK, 0,hx) ] (4.12)

1
ZM(x)
Thus,

Of 5 px 0, b | x)

o = B fo.mx(0. | x)
[E*S} | O* =0, H* = h, X = x)

— E*SHIX =], (4.13)
where E* represents expected values with respect to measure m*. Therefore,
dffx(0 1 %) B / i Of5 ix 0. 1 1 %)
AN T Jpoa AN

= B fox(0 | x)
[EMS} 0" =0, X=x)—ES} | X=x)1] (4.14)



A Learning Theorem 1165

In case 2, the hidden states are Boltzmann and the outputs have a fixed
conditional density model foy x. Thus,

1
frnx (| x) = 7 P -pUG DT, 4.15)
Affyx(h | %)

Hl);T =B flx(h 10
[E*S! |H =h,X=x)—ENS} [ X=x], (416)
and
x| %) § Offyx (| )
S = e e S
=B fox© 1 %) 4.17)
[E*S} | O* =0, X = x) —E*S} | X = »)], (4.18)

which is equivalent to equation 4.14. Thus, from now on cases 1 and 2 behave
identically.
Step 2. Applying the chain rule on equation 4.9,

ViCL) = / dx g(x) / do 1@(0, x)VAfCANX(o | X)
m Rd

+ / dx g(x) / do T*(o, x) fog(o), (4.19)
m Rd

where R* and T* are defined in equations 4.7 and 4.8. The last term in
equation 4.19 vanishes,

/ dx g(x) / do Tk(o,x) fog(o) (4.20)

m ]Rd

= / do fog(o)/ dx g(x) Tx(o,x) (4.21)
]Rd Rm

o / do V; f5(0) =V, / dxf5(0) = 0 (4.22)
R4 R4

since [p,do f(0) = 1 and we assume the equation 4.10 holds. Moreover,
the components of the second term have the desired covariance form,

)
agi“ / dx g(x) / do R*(o0 —fo'x(0|x) (4.23)
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= /3/ dx g(x) /Rd do R* (0, %) fyx (0 | )

[E'S7 10" =0, X =2 ~E'; | X = x)] (4.24)
= /3/ dx g(x) /Rd do R* (0, %) fx (0 | %)

* /R dh 5} (0.1 ) f5 0. 1t | 1)

—B | dxgx)E*R*| X =x)E*SH | X =x) (4.25)
RHX

=g dxg)
RHX

[E*R*S} | X = x) —E*(R* | X = x)EX(S} | X = )]
=8 / dx g(x) Cov*(R*, S} | X = x) . (4.26)
RHX

Corollary. Let an overall cost function C have the form
Ch 2 / dx g(x) g (x, C(A, X)) , (4.27)
RYH

Conx) 2 /Rd 400 (0.7, f50). fx 1) . (4.28)

where g: R x R — R is a well-behaved function and Q is defined in
equation 4.5, satisfying equation 4.10. In this case the gradient of the overall
cost with respect to the network parameters is also a linear combination of
covariance statistics between an evaluator and system random variables

% =B | dxgx) Cov*(R*, S| X =1x), (4.29)
i Rm
99 (x, CO., X(0))

DA A pa
R*(w) = R*(w) 3C0. X@) cw€EQ, (4.30)

where R* is defined in equation 4.6.

Proof. Applying the chain rule,

(4.31)

aC) / 3g (x, C(A, x)) 9C(x, x)
— = dx g(x) .
BAi m BC()L, x) 3)\1

Note that C can be expressed as an overall cost function,

Ch,u) = / dx8(x —u) / doQ <o,x, fg (0),f3|X (o] x)) , (4.32)
m ]Rd
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where § is the Dirac delta function. Thus, applying the BCT,

aC(x
—%EﬂzﬁRdww—waRW§HX:m (4.33)
1 m
= B Cov*(R*, S | X = u), (4.34)
and
AaC(L) g (x, C(x, x))
T =8 . dx g(x)qaC(TCOV)\(R)\, Sf\ | X =x). (4.35)
1 m N

Moreover, since the partial derivative in equation 4.35 is a function of A and
x, it can be moved inside the covariance.

5 Evaluators for Common Optimization Problems

An interesting aspect of the BCT is that the evaluators R* can be derived di-
rectly from the cost function without specifying the system being optimized.
Moreover, the system covariates S* can be derived directly from the system
dynamics, regardless of the cost function. This modularization of learn-
ing signals greatly simplifies software and hardware implementations. In
this section, we derive the evaluators for four different learning problems
that span supervised, unsupervised, and reinforcement situations: (1) re-
gression, (2) density estimation, (3) risk minimization, and (4) information
maximization. In section 6 we derive the system variables for continuous
stochastic neural networks.

5.1 Regression. Inregression problems, the goal is to learn the expected
values of a random vector O conditional on an input vector X with respect
to a probability measure P of input and outputs. In other words, the goal
of regression is to approximate the function ¢(x) = EP(O | X = x), from
inputs to conditional expectation of the output (Papoulis, 1991, p. 179).
Thus, in regression problems we care only about the expected value of the
distribution of outputs and disregard its higher-order statistics. Most of the
applications on supervised neural network learning, and classical signal
filtering can be seen as regression problems. A popular cost function for
such problems is the expected Euclidean distance, or sum of squares. To
simplify the presentation, we focus on the case with only one observable
node (d = 1),

N 1
Co) =5 /R dx (0 I ) — B O | X = ) |2 | (5.1)

which has the form studied in equation 4.27,

Ch,u) = EX(O" | X = w), (5.2)



1168 Javier R. Movellan

g, C(h,w) = 51l ¢(x) = Ch, w) |12, (5.3)
Q <o,x, fg (0), f3|x (0| x)) = f3|x(o [ x)o0. 5.4)

Moreover, C(%, x) satisfies equation 4.10 since

90 (0.x. 5@ flyx ©01))
35(0)

- 0. (5.5)

Applying equation 4.29 the evaluator random variable follows,

R* = O*, (5.6)
R* = —0* (¢(X) —E*O" | X)). (5.7)

In general, if there is more than one observable node, d > 1, the evaluator
is as follows:

0

R*==>"0; () -E*O; 1X)). (5.8)
j=1

Note that this evaluator corresponds to the classic backpropagation delta
signal (Rumelhart, Hinton, & Williams, 1986) evaluated at the outputs. In
diffusion networks, however, the very same evaluator is sent to all the adap-
tive parameters (e.g., the weights), with no need of further transformation
as we move to hidden layers.

5.2 Density Estimation. In this case the problem is that of approximat-
ing an entire mapping from inputs into probability densities on R¥. This is
a much harder problem than regression, since we care about the entire den-
sity of outputs, not just the expected value. In general, density estimation is
important when unimodal uncertainty models are not appropriate (Movel-
lan & McClelland, 1993). A popular cost function for density estimation is
the Kullback-Leibler information criterion (KLIC). In our case we need the
KLIC between the desired and obtained conditional distributions averaged
with respect to the input density (Haykin, 1994, p. 447),

p(o | x)

Ch) = / dx fx(x)/ do p(o | x) logx— , (5.9)
R™ R4 fo|x(0 | x)
where p(o | x) is the desired conditional output density. In this case,
5 p | x)
Qlo,x, f5 ), fbx (01%)) = plo | x) log—— . (5.10)
( 16 ). forx ) p gf3|x(0|x)
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The partial derivative of Q with respect to f5(0) is zero, and thus equa-
tion 4.10 holds. The evaluator random variable, defined in equation 4.6,
easily follows:

o PO IX)
fox(©O 1X)

(5.11)

This evaluator measures to what extent the desired density is larger than the
obtained density (i.e, whether state regions are visited at the desired rate).
It requires computing densities of individual states. Good results can be ob-
tained by discretizing the states into a finite number of regions. Although the
number of states to keep track of in principle grows exponentially with the
number of units, in practice only a few regions with nonnegligible measure
are visited. Those are the only ones we need to care for when computing our
covariance statistic. Note that this method avoids the two different learning
phases of the Boltzmann machine learning algorithm (Ackley et al., 1985).
In any case, it is easy to show that the gradient obtained using the BCT can
also be expressed as a generalized form of the standard Boltzmann learning
algorithm:

e =B dxfx (x) Cov*(R*, S} | X = x)
a)\-l Rm
— _,3/ dx fx(x)/ do p(o | x)
Rm Rd
[E*(S}| 0" =0, X =x)—E*(S} | X =x)]. (5.12)

where E*( S} | O* = 0, X = x ) is estimated by clamping the observable
and input units, and E*( S} | X = x ) is estimated by clamping the input
units. For applications of diffusion networks to density estimation problems,
see Movellan and McClelland (1993). Methods to accelerate learning are
discussed in Stark and McClelland (1994).

5.3 Risk Minimization. The objective in this case is to minimize the
expected loss, which in Bayesian decision theory is known as the risk (Duda
& Hart, 1973, p. 14),

C() = E* p* 1, (5.13)

where {p*: Q — R}, cre is the loss random variable, defined by an auxiliary
loss function p: R x R" — R,

ot = p(0*, X). (5.14)

Risk minimization is at the heart of most reinforcement problems. The def-
inition of the loss function, p, is entirely general (e.g., it may be discrete
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or continuous; it may be based on the entire output state or on just a few
dimensions of the state). In this case,

Q (o,x, 160, fox @1 x)) = fox(© 1050, %), (5.15)

which satisfies equation 4.10 since the partial derivative of Q with respect
to fg (0) is zero. Moreover, the evaluator is the loss itself,

R* = p*. (5.16)

5.4 Information Maximization. Information maximization (infomax) is
a classic criterion for unsupervised learning problems. Information maxi-
mization has been studied by Linsker (1988), and more recently by Nadal
and Parga (1994) and by Bell and Sejnowski (1995), among others. It turns out
that the infomax criterion satisfies the constraints of the BCT, and thus info-
max learning can be performed using covariance statistics. An appropriate
cost function for this problem is the negative mutual information between
input and outputs, which is defined as follows (Haykin, 1994, p. 451):

C)=—E'I"], (5.17)

where I*: Q@ — R is the mutua1~differential information random variable,
defined by auxiliary functions {I*: R™ x R? — R} cpe,

I = (0, X), (5.18)
félx(o | x)
f500)

*(0,x) £ log (5.19)

Note that equation 5.17 is not a special case of risk minimization because I*
varies with A whereas p does not. In this case,

Q(o x, f50), f&x (| x)) = f540]x) lo M (5.20)
X 7o (0), Joix = Joix & 20N .
which satisfies equation 4.10, since
A
VO/ dx fx(x) T0,x) = =V, | dx w -0, (521)
R™ R™ fO(O)

where T is defined in equation 4.8. Therefore, the BCT applies, and the
evaluator random variable easily follows,

R* = -1" (0", X) — 1. (5.22)
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Since constants do not affect covariance statistics, we can drop the —1. Equa-
tion 5.22 tells us that the smaller the mutual information in an outcome, the
less we like that outcome. This evaluator requires computing mutual infor-
mation of individual states. Good results can be obtained by discretizing the
states into a finite number of regions. Although the number of states to keep
track of in principle grows exponentially with the number of units, in prac-
tice only a few regions have nonnegligible measure and thus an influence
on the covariance.

5.5 Remarks. Since covariances are linear operators, it is possible to op-
timize a weighted sum of learning criteria by using an evaluator that is a
weighted sum of the evaluators for each criterion. Second-order optimiza-
tion methods (Gill, Murray, & Wright, 1981, p. 105) would also be based
on covariance statistics. The reason is that covariances are linear operators
that satisfy the conditions of the BCT. Therefore, if the gradient is a linear
combination of covariances, the gradient of gradients (the Hessian matrix)
is also a linear combination of covariances.

6 System Covariates

Up to now, we have derived evaluators for a variety of cost functions. In
this section, we construct diffusion neural networks and derive their sys-
tem covariates. This completes all that is needed to apply the BCT. There
are many ways to construct diffusion neural networks with detailed equilib-
rium solutions. The one we worked with in our simulations is based on the
continuous Hopfield model (Hopfield, 1984) and is constructed as follows.
We are given:

* An n x n symmetric matrix, w, whose elements represent coupling
strengths between nodes in the network.

* Ann x m matrix, v, representing the coupling strengths between input
lines and the nodes in the network.

* A vector o € R", of activation gains.

¢ An invertible activation function g: R — R.

* A constant g that controls the level of uncertainty in the system.

The adaptive parameter vector A is the elements of w, v, and « organized

as a vector. We then define the following potential function,

n 8(yi) 1 X
U, y.x) =) o / g Ls)ds — 5 > gpwig(yy)

i=1 N ij=1

=3 v (6.1)

i=1 j=1
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where ¢7(g(1))2y. We then define the drift as the negative gradient of the
potential,

, ou,y,x)
iy, x)=—gY)————
wi(A, Yy, x) < i) 250D
=g W) | —eiyi + > wigyp) + Yo | (62)

j=1 j=1

where ¢ is the derivative of g. The state variables Y? are commonly in-
terpreted as presynaptic activations and g(Y?) as postsynaptic activation.
The network dynamics are described by equation 4.1 defining a stochastic
variation of the continuous Hopfield model (Hopfield, 1984). In this case,
the Wiener process represents presynaptic noise. The system covariates (see
equation 4.3) easily follow:

g(Y]) g(Yy) if A; is Wik
;=1 g(Yp) X if 1; is vy, (6.3)
8(Y))

— Jg0) g Ne)ds if A is o).

Note that since the potential function is separable into additive second-
order terms, the system covariates are local. Moreover, the S; for the weight
parameters are products of activations, and thus the necessary gradients
can be computed with Hebbian-like operations.

7 Simulation: Image Reconstruction

The purpose of this simulation was to test whether the BCT could be used
in practice to train the equilibrium distribution of diffusion networks. To do
so, we need to substitute the covariances called for by the BCT by estimates
of these covariances based on discrete time approximations to SDEs. For
this reason, it is unclear whether the learning algorithms would work at all
in computer simulations. We chose a problem for which the true popula-
tion covariances of the continuous system can be obtained analytically and
which has potential applications for hardware implementations of diffusion
networks (Alspector et al., 1992).

The technique employed for the simulation was a simple forward-Euler
approach. Equation 2.1 is replaced with the discrete-time stochastic differ-
ence equation,

Yia =Y+ n YE XA+ 0V AZs (7.1)

where Atisasmall constant, and foreach {t = kAt; k= 1,2, ...},therandom
vectors Z; are independent identically distributed N-dimensional gaussian
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with zero mean and identity covariance matrix. Moreover, we fixed o = I,,,
the n x n identity matrix. When the sampled points are linearly interpolated,
this defines a stochastic process that converges in distribution to the solution
of the original SDE as At — 0 (Gillespie, 1992, p. 193).

7.1 Task and Network Architecture. The task was to do optimal recon-
struction® of noise-contaminated samples from TULIPS1 (Movellan, 1995),
a database of 935 human lip images.* Each image consists of 100 x 75 pixels
with gray-level values ranging from 0 to 255. The images were contaminated
on a pixel-by-pixel basis with ii.d. zero mean Gaussian noise and standard
deviation ranging from 10 to 80.

The network consisted of 100 x 75 observable units, one per pixel, an
equal number of input units, and no hidden units. Thus, in our notation,
n =m = d = 7500. There was a one-to-one correspondence of input units,
output units, and pixels. Each input unit represented a pixel value in a
noisy version of an image. The corresponding output unit represented the
clean value of the same pixel. To do the reconstruction, each output unit
used a 15 x 15 receptive field: each output unit received input from the
corresponding input unit and from 224 surrounding input units arranged
as a square patch. Image borders were treated using a toroidal wrap-around
of the input image. All receptive fields were constrained to share the same
kernel of weights, effectively performinga convolution operation. Thus, the
total number of free parameters was p = 225. The activation function was
linear ¢(y) = y since for this case the optimal solution can be shown to be a
classical Wiener filter (Jain, 1989), which can be calculated analytically. This
allowed us to compare the solution found by the network with the optimal
solution.

The BCT works for equilibrium solutions, the limiting density as t — oo.
In practice, the initial state of each output unit was set equal to the inner
product between the input weight vector of that unit and the input image
being processed. Then we cycled 10 times using equation 7.1, with A t = 0.1.
After these 10 settling cycles, the system was considered sufficiently closed
to stochastic equilibrium. Equilibrium statistics were then calculated by
running the network for 10 additional cycles and estimating expected values
and covariances based on the states obtained during those 10 cycles.

7.2 Training Sample. Each training sample consisted of a noisy input
image, which was used as input (100 x 75 noisy pixel values), and the
corresponding clean image, which was used as a teacher for the output
units. Training was performed with respect to the sum of squares criterion

3 We are using optimal in the mean square sense. It is well known that other filters may
perform better with respect to other criteria.
4 Available at http:/ /cogsci.ucsd.edu.
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Figure 1: (Left) Weight kernels analytically derived. Each image has 15 x 15
pixels, with each pixel representing a weight. Large weights appear white, small
weights dark. (Right) The weight kernels learned using a diffusion network. The
four kernels reflect four different noise conditions. From top to bottom and left
to right, the standard deviation of noise is 10, 20, 40, and 80, respectively, where
each pixel can take values from 0 to 255.

presented in section 5.1. Thus, the goal was for the expected value of each
output unit to approximate as closely as possible the value of the clean
pixel corresponding to that output unit. Learning was done using Newton's
second-order method (Gill et al., 1981, p. 105), with a single pass over the
entire image database. As mentioned in section 5.5, computation of the
Hessian matrixis also accomplished through the use of covariance statistics.
We had to resort to second-order methods because first-order methods were
too slow for this task, a problem shared by deterministic linear systems with
a large number of correlated inputs.

Figure 1 shows the impulse response of the optimal Wiener filter, ana-
lytically obtained, and the weight kernels obtained using the discrete time
approximation to the diffusion network. Each image in Figure 1 has 15 x 15
pixels, with each pixel representing a weight. Large weights appear white,
small weights dark. The weights were obtained for four different levels of
noise in the input images. As the figure shows, the solutions obtained by
sampling in discrete time were very close to the analytical solutions. Note
how the kernels increase in size as the noise power increases. Note also
that the kernels are elongated horizontally, capturing the fact that lips are
mostly a horizontal structure and, thus, on average, pixel values correlate
more with horizontal than with vertical neighbors. Figure 2 shows exam-
ple reconstructions of three images performed by the simulated diffusion
network. The first column shows the original images, the second column
shows the images contaminated with gaussian noise (mean = 0, SD = 80),
and the third column is the reconstruction. Each pixel of the reconstruction
image is the conditional average activation of an output unit given the noisy
input image.
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Figure 2: (Left to right) Clean images, contaminated images (SD = 80), and
reconstructed images.

8 Discussion

We explored the problem of learning equilibrium solutions in diffusion
networks, a stochastic extension of continuous neural networks. A learning
theorem is proposed that specifies sufficient conditions for the gradients of
cost functions to be computable by simple covariance statistics of a uniform
evaluator and a set oflocal system variables. The conditions proposed by the
theorem apply to a variety of cost functions that span common supervised,
unsupervised, and reinforcement problems. Although our focus was on
training diffusion networks, the learning theorem applies to any system
whose equilibrium solution is Boltzmann (see Neal, 1993, and Gidas, 1986,
for a review of such systems).

The article suggests an approach to learning that may serve as inspira-
tion for hardware design and computational neuroscience. The approach
is consistent with von Neumann's views of the brain as a system in which
“error ... is not [seen] as an extraneous and misdirected or misdirecting
accident, but as an essential part of the process under consideration” (Neu-
mann, 1956). Instead of suppressing noise present in physical devices, nat-
ural computers may use it to simplify the credit assignment problem. In
deterministic approaches, like backpropagation, proper credit assignment
requires an evaluation signal that is different for each node in the network.
Surprisingly, when noise is not suppressed, all that is needed is an evaluator
that is the same for the entire network. The covariance between this uni-
form evaluator and Hebbian signals is sufficient for the proper distribution
of credit throughout the entire network.
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