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Abstract 

 

Neuropsychological and neuroimaging evidence suggests that the human brain contains facial 

expression recognition detectors specialized for specific discrete emotions. However, some 

human behavioral data suggest that humans recognize expressions as similar and not discrete 

entities.   This latter observation has been taken to indicate that internal representations of facial 

expressions may be best characterized as varying along continuous underlying dimensions.  To 

examine the potential compatibility of these two views, the present study compared human and 

support vector machine (SVM) facial expression recognition performance.  Separate SVM’s 

were trained to develop fully automatic optimal recognition of 1 of 6 basic emotional expressions 

in real-time with no explicit training on expression similarity.  Performance revealed high 

recognition accuracy for expression prototypes.  Without explicit training of similarity detection, 

magnitude of activation across each emotion-specific SVM captured human judgments of 

expression similarity.  This evidence suggests that combinations of expert classifiers from 

separate internal neural representations result in similarity judgments between expressions 

supporting the appearance of a continuous underlying dimensionality.  Further, these data 

suggest similarity in expression meaning is supported by superficial similarities in expression 

appearance. 
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Introduction 

 

The premise that emotions are discrete entities with distinct physiological signatures 

dates back to Charles Darwin’s observations of continuity in prototypical displays of emotion 

across animal species (Darwin, 1872). Darwin speculated that displays across species mapped 

onto such emotion states as pain, anger, astonishment, and terror.  In revisiting Darwin’s 

observations, the universality of emotions was examined in cross-cultural human studies in 

which participants were asked to identify (Ekman & Friesen, 1971) and pose (Ekman, 1972) 

facial expressions associated with emotion-specific described contexts.  A primary set of basic 

emotions was identified with characteristic facial signatures with substantial cross-cultural 

expression and recognition (Ekman & Friesen, 1971).  Thus emotional experience and 

expression has been characterized as a set of discrete dimensions coding activation of specific 

states, such as fear, anger, sadness, or happiness (Ekman, 1992).  More complex emotions, like 

love, may occur from secondary mixtures of these proposed basic prototypes.  Basic emotions 

would then provide the palette from which more complex emotions are mixed (Plutchik, 1980).  

Behavioral evidence from forced choice recognition of morphs between prototypical 

expressions demonstrates nonlinearities consistent with categorical perception, implying the 

existence of discrete expression categories (Calder et al, 1996; Etcoff & Magee, 1992; Young et 

al, 1997).  Neuropsychological and neuroimaging evidence likewise provide evidence consistent 

with neurally localized discrete representations of facial expressions. Damage to the amygdala 

differentially impairs fear recognition whilst leaving other discrete emotions such as disgust 

recognition largely intact, while damage to anterior insula differentially impairs disgust 

recognition leaving fear recognition intact (Adolphs et al, 1999; Phillips et al, 1998).  
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Convergent evidence from functional neuroimaging demonstrates that fear expressions 

maximally activate the amygdala while disgust expressions maximally activate the anterior 

insula (Anderson et al, 2003; Philips et al, 1998).   Similarly, discrete neural representations have 

recently been proposed for recognition of anger in the ventral striatum (Calder et al, 2004).  To 

the extent that such dissociations in recognition can be found for a variety of basic prototypes 

would provide further evidence for their status as the primaries on which emotional experience 

and communication depend.  

The alternative view of emotional space is characterized by lower order dimensions that 

suggest that emotions are fuzzy categories clustered on axes such as valence, arousal, or 

dominance (Russell, 1980; Russell & Bullock, 1986; Schlosberg, 1952).  As such, emotions can 

be understood according to their relatively continuous ordering around a circumplex 

characterized by a few underlying dimensions.  In these models, recognizing facial expressions 

relies on an ability to find the nearest cluster to the current exemplar in this continuous low-

dimensional space rather than by matching to basic emotion prototypes.  Behavioral evidence is 

consistent with some form of lower-order dimensional representation of emotions, whereby 

emotion types are closer (e.g., anger and disgust) than others (sadness and happiness) in emotion 

space.  As such, expression judgments tend to overlap, indicating that emotion categories are not 

entirely discrete and independent.  Proximity of particular expression exemplars (e.g. anger) to 

other expression exemplars (e.g. disgust) is tightly clustered across individuals, reflecting the 

possibility that categorization tasks force boundaries to be drawn in the lower dimensional 

expression space.  In contrast with these lower order dimension theories, basic prototype 

accounts do not make explicit the similarity relationships between the basic emotions, as they do 

not explain the tight or distant clustering between expression types.  
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Although integrating behavioral accounts with neuropsychological and neuroimaging 

studies provides important data towards explaining emotional space, progress in the field of 

machine perception and machine learning offers an opportunity to test the computational 

consequences of different representational theories. Such an approach also affords examining to 

what extent recognition of emotional expressions directly reflects the statistical structure of the 

images to which humans are exposed.  Parallel interest in facial expression recognition has been 

evolving in computer science as researchers focus on building socially interactive systems that 

attempt to infer the emotional state of users (Fasel, 2003). Progress in computer facial expression 

analysis has just begun to contribute to understanding the information representations and brain 

mechanisms involved in facial emotion perception because approaches from the various 

disciplines have not been integrated and closely compared with human recognition data.   

Machine learning approaches to facial expression recognition provide a unique 

opportunity to explore the compatibility or incompatibility of different theories of emotion 

representation. To the degree that human data on facial expression recognition are consistent 

with basic prototype accounts, it is unclear if such representations can support the similarity 

relationships between the basic emotions, as do models that describe emotions in terms a small 

number of underlying dimensions.  To address this issue, in the present study, we compared a 

computer model trained to make a 7-way forced choice between basic expressions plus neutral 

with human behavioral data. The system was developed by machine learning methods with the 

only goal of providing strong expression discrimination performance by developing distinct 

expert classifiers for different basic emotions.  No attempt was made to fit human data. In the 

model, support vector machine (SVM) classifiers were trained to maximally discriminate a 

particular emotion.  In contrast to traditional back-propagating neural networks that minimize the 
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training error between network output and target for each training example (e.g., Dailey et al, 

2002), SVM’s learn an optimal decision boundary between two labeled classes by focusing on 

difficult training examples. This method finds features that maximally separate decision 

boundaries resulting in a high level of discrimination performance between expression types, 

minimizing false alarms to non-target expressions. Each expert is trained independently from all 

the other experts and then their opinions are integrated. The extent to which such a computer 

model of expression recognition correlates with human judgments of expression similarity will 

be a strong test of whether separate internal representations can support similarity judgments 

attributed to continuous underlying dimensions.  Such a comparison can provide important 

computational constraints on how emotional expression recognition may take place in the human 

brain.  

 

Methods 

 

Computer Model Details 

The system we tested was developed at UC San Diego’s Machine Perception Laboratory 

(Littlewort et al, 2004). The software is currently distributed as part of the MPT/MPTX library 

(available online at http://mplab.ucsd.edu). This system was developed with the explicit purpose 

of performing robustly and in real-time in a fully automatic manner. The system can operate over 

video images at 30 frames per second, automatically extracting frontal faces, and categorizing 

the expression of the detected faces. During development of the model no attempt was made for 

it to fit human perceptual data.  
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The computer model (see Figure 1a) automatically finds and registers faces in images, 

extracts visual features, makes binary decisions about the presence of each of seven expressions 

(happiness, sadness, fear, disgust, anger, surprise, neutral), and then makes a multiple class 

decision.  Face detection was performed by a system developed by Fasel et al (2005). The face 

detector uses a cascading decision tree based on the thresholded outputs of local oriented 

intensity difference detectors selected by a training process designed to detect frontal faces, and 

returns a rectangular face box with the candidate face region. It has an approximate hit rate of 

90% for a false alarm rate of 1/million. The detector can process 320x240 pixel images in 1/30 of 

a second on a Pentium 4 personal computer. For the present study, faces were correctly detected 

in each expression exemplar used in the human behavioral experiment. After detecting a face, the 

system automatically extracted the face region from the image, converted the pixels to grayscale 

values, and rescaled the region to a common 96x96 window to standardize all training and test 

images. No further registration was performed. The computer system employed machine 

learning for subsequent feature selection as well as class decisions. No assumptions about facial 

expression appearance were programmed into the model. 

Face images at the pixel level were then converted to Gabor magnitude representations 

using a bank of Gabor filters at 8 orientations and 5 spatial frequencies (4:16 pixels per cycle at 

octave steps). Gabor filters are Gaussian modulated sinusoidal gratings that approximate 

response properties of simple cells in primary visual cortex, essentially performing edge 

detection over locations, orientations, and scales (Lades et al, 1993). Figure 1b shows a single 

Gabor filter overlaid on a face. Gabor magnitude filters add the squared output of two filters with 

the same spatial frequency and orientation but out of phase by 90 degrees (Movellan, 2002). 

Converting face images to Gabor magnitudes results in image representations that are relatively 
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resistant to slight translations in image registration compared to pixel representations. Moreover, 

using Gabor filters allows for representations that include overlapping features, a property seen 

in receptive fields of higher-level visual areas such as area IT (see Figure 2).  

The resulting matrix of Gabor magnitudes contains on the order of 106 elements for a 

single image at 96x96 pixel resolution. Feature selection by AdaBoost was performed to reduce 

computational complexity and to encode images with a minimal set of highly useful features 

(Friedman et al, 2000). By reducing complexity, systematic feature selection by AdaBoost 

eliminates redundancy in representation and decreases the propensity for making false alarms. 

AdaBoost selects features iteratively, resulting in a reduced feature set in which each successive 

feature is contingent on previously selected features. The process can be interpreted as a 

maximum likelihood sequential optimization process for the generalized linear model (Freeman, 

1979).  In contrast to principal component analysis (PCA), which is an unsupervised technique, 

AdaBoost is supervised. PCA selects features that maintain as much information as possible 

about the input images, whereas AdaBoost selects features that maintain as much information as 

possible about the categories of interest. In practice, AdaBoost was a much more effective 

feature selection technique than PCA for expression classification using the computer model 

(Bartlett et al, 2004).   

Gabor features are combined into a single feature vector after AdaBoost selects those 

features that are deemed most useful in discriminating each one-versus-rest combination of 

expression types. Linear SVM classifiers were used to make local expert decisions on one 

expression versus the rest, using the Gabor feature representations selected by AdaBoost. In a 

former study, discrimination performance on facial expressions with SVM’s exceeded that of 

alternative methods such as traditional neural networks (multilayer perceptrons) and linear 
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discriminant analysis (Littlewort et al, 2004). Support vector classification (Vapnik, 1998) is 

particularly useful in situations where feature data are high dimensional and not necessarily 

linearly related to the input space. SVM classifiers are a regression technique that provides a 

generic framework for finding a hyperplane decision boundary that achieves the largest 

separating margin between positive (target) and negative (non-target) training exemplars. The 

decision boundary is generic in the sense that any non-linear decision function can be used (e.g. 

polynomial, Gaussian). However, in the current study, a linear hyperplane was chosen based on 

comparable performance to more complicated functions. Those training examples that fall 

closest to the boundary between positive and negative classes are called support vectors. The 

separating margin is defined as the distance between the support vectors on each side of the 

boundary. 

The model has 7 different SVM classifiers, one for each of the 6 basic expressions plus 

neutral. Each SVM was trained separately to discriminate one expression from the other 5 plus 

neutral. A particular exemplar feeds to each of the classifiers, which produce a weighted “Yes” 

or “No” answer for whether the emotion specific to each SVM is detected. Positive output values 

indicate one side of the decision boundary while negative output values indicate the other. The 

output magnitude for each classifier corresponds to the distance from the decision boundary that 

an exemplar falls. Maximizing the decision margin between two classes of data within an SVM 

optimizes the trade-off between model complexity and goodness of fit to the data. Thus the 

model is set up to drive expression types apart (within a SVM) while attempting to maintain the 

ability to generalize to new exemplars from the same expression type.  As such, the model is 

designed to minimize similarity in response between expression types. Figure 3 provides a 

pictorial representation of the weights learned by an SVM for discriminating two expressions. 
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AdaBoost feature selection and SVM model parameters were trained using 625 posed 

expression images from Cohn and Kanade’s DFAT-504 (Kanade et al, 2000) and 110 exemplars 

from Ekman and Friesen’s Pictures of Facial Affect (POFA; Ekman & Friesen, 1976) datasets, 

totaling more than 50 independent face exemplars for each of the six emotion types plus 

comparable numbers of neutral. DFAT-504 consists of 100 university students ranging in age 

from 18 to 30 years. 65% were female, 15% were African-American, and 3% were Asian or 

Latino. State of the art performance was achieved using leave-one-out benchmarking (93% 

generalization on a 7-alternative forced choice test).  

 

Experiment Participants 

Twenty-three undergraduate participants from the University of Toronto Psychology 

Department volunteered for this study for optional course credit. Informed consent was obtained 

from each participant prior to his or her involvement in this study in accordance with the ethics 

guidelines at the university. 

 

Stimuli 

To test the expression recognition and generalization performance for both the computer 

model and human subjects, we first compared computer performance on the POFA set with 

human norms (Ekman & Friesen, 1976).  Generalization performance was tested on a distinct set 

of eight exemplars (2 Male/2 Female Caucasians and 2 Male/2 Female Asians) from each 

category including Anger, Disgust, Fear, Happiness, Sadness, Surprise, and Neutral obtained 

from Ekman and Matsumoto’s Japanese and Caucasian Facial Expressions of Emotion 

(JACFEE) and Neutral Faces (JACNeuF) datasets (Biehl et al, 1997). Each stimulus was 
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converted to grayscale using Adobe Photoshop 7.0 and was normalized for contrast differences 

between stimuli. Stimuli were displayed at 418x463 image resolution to both the human subjects 

and the computer model. 

 

Experimental Design and Procedure 

Participants were asked to rate images of facial expressions with respect to labels 

corresponding to 6 basic emotions (anger, happiness, surprise, sadness, fear, and disgust) on a 

scale from 1 to 7 (1 – not at all; 7 – very much) (Adolphs et al, 1994). Stimuli and rating scales 

were presented in random order, continuing until each exemplar was rated on each of the six 

scales. All stimuli were presented and responses were recorded via computer. The experiment 

required 30-45 minutes to complete. 

The same stimuli were presented to the computer model. For the purposes of evaluating 

discrimination performance and comparing to human ratings similarity, all ratings were 

converted into standard score (z) units.  Outputs from each SVM classifier were converted from 

a signed distance to the decision boundary to a z-score, using the mean and standard deviation 

computed across all exemplars.   

 

Results 

 

Discrimination Performance 

Computer model outputs were measured on generalization to untrained exemplars on 

which human subjects made their judgments.  As illustrated in Figure 4, standardized ratings for 

each of the target emotions (ratings for humans and SVM activations) demonstrate that the 



HUMAN AND COMPUTER 12 

model performed comparably to human ratings for all expressions (falling within 1 standard 

deviation).  For both human and model judgments, consistent with accurate discrimination, the 

target expression received the highest average ratings for each expression type (i.e., surprise 

ratings were highest for surprise, sadness ratings highest for sad, etc.).   

As a different index of discrimination performance, the continuous data were converted 

into a force choice format by defining correct responses as the proportion of exemplars on which 

the maximal response was for the target prototypical label. Humans correctly classified the target 

expressions with differing degrees of accuracy (mean=89.2%, SD=0.17). Happiness 

(mean=98.4%, SD=0.04), followed by sadness (91.8%, 0.10) and surprise (92.9%, 0.10) were 

discriminated accurately followed by anger (88.0%, 0.16), fear (84.8%, 0.17) and disgust 

(79.3%, 0.30). An ANOVA demonstrated statistically reliable differences in accuracy across 

expression types, F(5,132)=3.71, p<0.005, consistent with expression recognition success 

differing across expression type.  The computer model showed good generalization performance 

on the untrained exemplars (mean=79.2%, SD=.292).  Similar to human performance, accuracy 

was highest for happiness=100%, sadness=100% and surprise=100%, with less accurate 

performance on anger=75%, disgust=75% and relatively poor performance on fear (25%). 

Despite the model’s high average ratings of fear for the fear prototypes, the low forced choice 

performance for fear expressions reflected an overlap with surprise and sadness ratings. Fear 

expressions were classified as surprise 62.5% of the time, and as sadness 12.5% of the time. The 

low accuracy for fear relative to the other expressions is consistent with evidence that fear 

recognition is particularly difficult (Rapzcak et al., 2000). 

  Inspection of Figure 4 revealed rather than all human perceivers demonstrating identical 

expression recognition performance there was substantial variability across subjects, in 
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particular, for anger, disgust and fear. We used principal component analysis (PCA) to explore 

the patterns of accuracy variability across subjects and the model. The PCA two-factor solution 

indicated two clear clusters each containing 7 of the 23 subjects. As shown in Figure 5a, the 

cluster that contained the computer model, was characterized by subjects who had difficulty with 

fear. The other cluster, not containing the model, was defined by difficulty in classifying disgust 

(Figure 5b). Thus, to the degree the model differs from idealized mean group performance, it 

also behaved similarly to a major subgroup of human participants.   

 

Similarity performance 

We next examined whether the model's appreciation of expression similarity was 

comparable to human observers. Similarity of exemplars in terms of average subject ratings 

across expression types was computed and visualized using multidimensional scaling (MDS) 

analyses of  the human data (average rating for each exemplar on the six emotion scales). The 

same analysis was performed for the computer model. Human and computer MDS plots were 

then compared for similarity of the relative positions of exemplars on a circumplex across the six 

basic expressions. 

Trained exemplars. Human rating norms from the original POFA rating study (Ekman & 

Friesen, 1976) were compared to SVM ratings using MDS.  Focusing on training exemplars 

allowed examination of similarity on data where discrimination between expressions classes was 

most accurate.  The MDS circumplex for the human ratings, shown in Figure 6a, demonstrates 

that each expression class is clustered tightly together with no overlap between adjacent classes. 

In addition, exemplars were clustered in a characteristic order, replicating MDS analyses in 

previous studies (Adolphs et al, 2000; Dailey et al, 2000; Dailey et al, 2002). Although more 
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diffuse than mean human performance, highly distinct clusters were also formed in the computer 

model (Figure 6b). Critically, the ordering of the clusters and their relative positions was 

identical to human observers.  For example, anger exemplars were rated between sadness and 

disgust, surprise was between happiness and fear, with sadness rated maximally distant from 

happiness.  MDS for human and computer model data resulted in similar levels of stress (Stress-

I) in two-dimensional solutions (0.256 vs. 0.257).  Thus, where supervised training achieved 

maximal discrimination of expressions types, a secondary unsupervised aspect of performance 

was the model’s capturing of the similarity between expression types.   

Untrained exemplars. We next assessed similarity performance on exemplars not in the 

model’s training set.  Human and computer ratings were again converted to standard scores for 

comparison. MDS on the human ratings verified that the circumplex ordering matched the above 

reported human norms for POFA (see Figure 7a). Adjacent clusters were no longer equidistant; 

angry exemplars fell in close proximity to disgust exemplars while fear exemplars fell close to 

surprise exemplars, suggesting greater perceived similarity in these expression pairings in 

comparison to the POFA images.   

Our above finding of individual differences in discrimination of fear and disgust 

expressions may be due in part to the perceived similarity with adjacent clusters on the 

circumplex.  To address this further, we examined MDS solutions on subjects who formed the 

two major sub-clusters in discrimination performance reported above (see Figure 5).  As 

illustrated in Figure 7b, individuals reveal different clustering from idealized mean performance, 

with much less separation of expression types, such as fear and surprise, or disgust and anger.  

This demonstrates that ordering and clustering on the circumplex is somewhat variable and that 
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averaging over subjects reveals a stronger tendency towards clustering than may be present in 

individual subjects.  

When MDS was applied to the computer model, despite overall similarity in the 

circumplex solution, generalization to new exemplars revealed looser clustering of exemplars 

and more overlap between expression types than the mean human ratings, as depicted in Figure 

7c. However, the model’s performance appears more similar to individual subjects; in particular 

those with less pronounced discrimination of fear (Figure 7b).  Critically, the circumplex for the 

computer ratings followed the same order as the human circumplex, demonstrated in both group 

and individual subject data. In particular, where the computer model fails to define distinct 

clusters it largely captures the similarity amongst exemplar types in humans.  MDS solutions for 

human and computer model data resulted in similar levels of stress with a two-dimensional 

projection (0.157 vs. 0.221). 

Despite the more sparse clustering found in the computer model relative to average 

human data, the correlation coefficient between human and computer judgments across 

expression types was very high (r = 0.80, p < .001), suggesting a great deal of similarity in the 

rating patterns.  Examining how well the activation of distinct expert SVM’s (anger, fear, 

disgust, etc) corresponded to humans, we found that specific correlations for each expression 

type were consistently high (anger, r = 0.96; sadness, r = 0.94; happiness, r = 0.89; fear r = 0.85; 

surprise, r=0.83; disgust, r = .60).  For example, as illustrated in Figure 8 for fear expressions, 

humans and SVM experts agreed upon fear as the target expression, and also rated surprise as the 

most similar relative to the other expression types.  The model’s capturing of the similarity 

between fear and surprise underlies its poor discrimination of fear, often providing false alarms 
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to surprise.   Similarly, with anger expressions, humans and SVM’s agreed upon angry faces as 

the target expression, and rated disgust as the most similar relative to the other expression types.  

 

Discussion 

 

In the present study, we show that a computer model of facial expression recognition 

performed comparably to human observers in two critical capacities: 1) the discrimination of 

distinct basic emotion classes and 2) judgments of the similarity between distinct basic emotions. 

With respect to the latter, the similarity space in the model was driven entirely from visual input, 

without any inferences about the meaning of an expression or the similarity of one emotion to 

another. Without direct training or implementation in the model, expression similarity was found 

to be a secondary consequence of training to discriminate between basic emotions. Thus, the 

judgment of similarity in affective experience across different facial expressions requires no 

explicit understanding of emotions or their relations.  For instance, the observation that 

individuals expressing disgust may portray feelings of anger but little happiness can be computed 

from their similarity in high dimensional visual feature space. This emotional comparison does 

not necessarily require an appreciation of their similarity in somatic space (Adolphs et al 2000; 

Anderson & Phelps, 2000; Damasio, 1994; 1996), nor does it entail accessing linguistic or 

conceptual descriptions of the relation between different expression types (e.g., Russell, 1991; 

Shaver, Schwartz, Kirson, & O'Connor, 1987).   

Recognition of facial expressions and the phenomenology of internal affective states have 

been characterized in two seemingly incompatible ways. The notion of a primary set of distinct 

basic emotion types (Ekman, 1992) has been contrasted with lower dimensional accounts, 
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whereby emotions fall in specific locations in lower order affective space, and thus are better 

characterized as varying along underlying continua, such as valence, arousal, or dominance (e.g., 

Russell & Mehrabian, 1977; Schlosberg, 1952). A few recent studies have systematically 

compared human and computer performance on recognition of facial expressions using holistic 

neural network models (Dailey et al, 2000; Dailey et al, 2002). These studies show how both 

continuous and discrete-like representational performance can coexist in the same holistic 

network model. In particular, it is shown that categorical perception of facial expressions can 

occur in a distributed architecture. In addition, these models not explicitly trained to exhibit 

continuous dimension-like performance can nevertheless capture aggregate human similarity 

judgments. Thus, distributed models can capture both the continuous and categorical nature of 

expression recognition. However, such models that have impressively captured human similarity 

data have employed an all-or-none teaching signal dependent on the output activity across the 

single network rather than on independently trained expert classifiers for each category. As such, 

these models may not necessarily reflect the organization of the human brain where there is good 

evidence for the existence of distinct neural substrates specialized for recognition of expressions 

of specific types, such as fear, disgust and anger (Adolphs et al 1994; Calder et al 2004; Phillips 

et al 1997,1998). To the degree to which human brain data are consistent with the existence of 

distinct specialized representations, the present study examined whether similarity in judgments 

can be captured by specialized representations alone.  A strong test of whether judgments of 

similarity can be supported by specificity coding alone is to examine a model based on 

specialized experts each focused on discriminating a particular facial expression from all others. 

Our results demonstrate that judgments of similarity can arise from the patterns of 

activity across outputs of local expert classifiers, which were trained to optimally discriminate 
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specific target emotions.  As such, the present model provides strong evidence that activations 

across specialized emotional classifiers can support the judgments of expression similarity. We 

first tested similarity on training set examples, which the computer model was trained to 

specifically discriminate with very high accuracy. Although never intended to be a model of 

human affective judgments, the computer model’s ratings matched the human data both in terms 

of ordering on the circumplex and equidistance between neighboring clusters.  These results 

strongly suggest that human-like judgments of similarity naturally arise out of the problem of 

sculpting categorical boundaries between expression types in order to maximize accuracy, rather 

than developing internal representations for how emotions relate to each other. Although the 

computer model presented here makes a case for functional specialization for expression 

discrimination, it is not intended to address how such functional structure arises. Indeed, 

functional specialization can emerge in a fully distributed system from the statistical structure of 

the data. This is supported by a number of computational models (e.g. Linkser, 1988), as well as 

by neurophysiological studies of plasticity (e.g. Neville & Bavelier, 2000). 

The evidence from computational modeling suggests that underlying expression 

similarity can be achieved by superficial visual feature analysis. That facial displays of basic 

emotions are not entirely independent, but portray related states, may then simply depend upon 

shared component features (Scherer,1984; 1988).  Visual analysis of feature overlap would then 

be sufficient to capture the relations between emotions.  This can be interpreted as evidence 

against facial expression recognition depending on computations of the similarity in underlying 

emotional/somatic activity across facial expression types (Adolphs et al, 2000). Facial feedback 

theories of emotional experience suggest configurations of the face play an important role in 

emotional experience (see Adelman and Zajonc, 1989).  Similar feeling states between two 
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emotions would be mirrored in facial efference (Adelman and Zajonc, 1989). This 

correspondence in the activation of specific facial muscles would result in visual similarity 

(Dailey et al, 2002).  As such, the present study does not argue against human observers 

extracting underlying emotional-somatic representations from facial displays; rather, these 

results are consistent with subjectively similar emotions depending on objectively (i.e., 

structurally) similar facial displays produced by underlying facial musculature.   

 

Computational and neural representations of emotion recognition 

In contrast to studies of emotion experience, where there is neural evidence supporting 

the existence of emotional dimensions such as approach-withdrawal, valence, and emotional 

intensity (e.g., Anderson & Sobel, 2003; Davidson, 1995), support for dimensional correlates in 

facial expression recognition is limited (but see Anderson et al, 2000). Neuroimaging and 

neuropsychological data demonstrating neural representations selective for distinct expression 

classes including fear, anger, and disgust are on the surface most consistent with the existence of 

a set of primary or basic emotions supported by discrete neural substrates. The amygdala is 

implicated in numerous studies as a crucial component of fear recognition relative to other 

expressions (e.g., Russell, et al, this issue; Ashwin et al, this issue; Adolphs et al, 1999; 

Anderson et al, 2003; Philips et al, 1998).  In contrast, disgust expressions maximally activate 

the anterior insula (Anderson et al, 2003; Philips et al, 1998), and patient studies have implicated 

a basal ganglia-insula system in disgust recognition dysfunction in Parkinson’s and Huntington’s 

diseases (Suzuki et al, 2006; Hennenlotter et al, 2004). Anger recognition may involve the 

ventral striatum (Calder et al, 2004) and deficits in anger recognition have been linked to 

Parkinson’s disease (Lawrence et al, this issue). These data provide strong evidence consistent 
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with local accounts of brain information processing, suggesting that facial expression recognition 

is supported by distinct expert systems that process specialized information and result in 

selective deficits when damaged (e.g., Downing, Jiang, Shuman, & Kanwisher, 2001; 

Kanwisher, McDermott, & Chun, 1997). 

On the other hand, distributed accounts of brain function argue that representations are 

patterns shared across brain areas (e.g., Haxby et al, 2001).  The degree to which a particular 

individual perceives anger and disgust in the same expression, or detects similarity between 

sadness and fear, may reflect the combinatorial response across distinct expert neural classifiers.  

Consistent with this view, studies have also shown that regions “specialized” for a specific facial 

expression also demonstrate reliable responses to other expressions. For instance, regions of the 

anterior insula responsive to disgust are also responsive to fear in faces (Anderson et al, 2003; 

Morris et al, 1998), and conversely, the amygdala can reveal robust responses to expressions of 

disgust (Anderson et al, 2003), anger (Wright, Martis, Shin, Fischer, & Rauch, 2002) and 

sadness (Blair et al., 1999). Although a brain region may be maximally responsive to a specific 

emotion, these non-maximal responses to other expressions may have important functional 

significance for expression recognition. The present computational model suggests that 

specialized representations of basic emotions classes can support dimension-like gradients of 

similarity when magnitude of activation across neural local experts is considered.  Thus, 

specialized representations are not antithetical to dimensional-like performance, but represent 

two compatible modes of information representation. Such combinatorial coding across neural 

classifiers allows the simultaneous maintenance of discrimination attributed to basic emotions 

theories and similarity/generalization attributed to dimensional theories. Consistent with this 

combinatorial coding hypothesis, patients with selective impairments in facial expression 
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recognition following amygdala damage maintain a largely intact capacity to judge similarity 

between expression classes (Anderson et al, 2000; Hamann & Adolphs, 1999), which may result 

from the profile of activation across the remaining spared neural classifiers.  These profiles, 

whether facial, auditory, or somato-visceral, may be integrated in a convergence zone, such as 

the right somatosensory cortices (Adolphs et al, 2000). Contrary to the emotion specific 

impairments described above, lesions of the right somatosensory cortices result in more global 

facial expression recognition impairments. According to this hypothesis, in contrast to lesions of 

expert classifiers, we would predict lesions of this region to be particularly harmful to judgments 

of expression similarity. 

Another view is that the expert classifiers do not represent entire facial expressions 

configurations, but important subcomponents of expressions. A crucial aspect of the computer 

model in this study is the common visual Gabor feature layer shared by all expert SVM 

classifiers. The computational evidence for feature overlap between expressions implies that the 

dimensions on which facial expressions are related are literally sets of visual features that are 

themselves important for discrimination. The Component Process Model of Emotion (CPM) 

(Scherer,1984; 1988; 2001) emphasizes that expression configurations are composed of subunits, 

with component appraisals such as novelty detection being associated with specific physical 

features of the face (e.g., eye opening) that may be common across basic expressions (e.g., fear 

and surprise). Recent studies supporting the importance of feature components to facial 

expression recognition suggest that the amygdala is not critical for the entire expression 

configuration but serves primarily as a detector of eye opening (Whalen et al, 2004; Adolphs et 

al, 2005). Vuilleumier and colleagues (2003) showed in an fMRI experiment that the amygdala 

response to fearful expressions is greatest for low spatial frequency components, which may 
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preferentially encode the presence of eye whites. In combination with neural and behavioral 

evidence, emergent similarity in the computer model as a consequence of overlapping features 

indicates that expression recognition in the brain may depend on detecting important component 

features, such as eye opening (e.g., in surprise and fear), and not basic emotion prototypes or 

dimensions such as valence/arousal. 

 

Deconstructing idealized discrimination performance  

One question that has not been addressed well by either basic emotion or circumplex 

accounts of subject ratings is whether aggregate subject discrimination performance is 

characteristic of individual subject performance. Comparing human and computer accuracy 

scores for the six emotion ratings revealed that the computer model generally matches the mean 

performance trend of humans. However, for untrained exemplars, the computer model 

demonstrated lower forced choice discrimination accuracy for fear expressions relative to the 

other expression types.  This is consistent with fear recognition being least accurate in human 

observers. The MDS analysis performed on standardized subject ratings indicates that subjects 

are not a homogenous group in terms of discrimination errors. There are substantial individual 

differences in facial expression recognition (Elfenbein et al, 2002) as well as differences in 

neural response across individuals (Canli et al, 2002). Our analyses of individual differences 

revealed that some well-defined clusters arise, suggesting that various groups of subjects may 

share rating patterns (e.g., some subjects perform lower recognizing fear due to similarity with 

surprise while others perform lower on disgust due to similarity with anger).  These individual 

differences are consistent with a CPM account of facial emotion recognition, as an individual can 
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attend to certain features and ignore others within a facial configuration, resulting in predictable 

patterns of facial expression confusion.  

The computer model was found to make similar discrimination errors to the cluster of 

subjects characterized by a relatively selective difficulty with fear.  Thus, while comparing 

accuracy for the computer model to aggregate human accuracy suggests that the computer model 

performs atypically on fear, this comparison is flawed by benchmarking the computer model 

against an idealized human observer based on average subject performance.  A more detailed 

analysis reveals that the model performs similarly to specific subgroups of human observers. 

There may be important individual differences in how humans recognize facial expression that 

are often glossed over in treatment of group mean data alone.  To the degree that computer 

simulations capture human performance, it may be argued that an appropriate index is their 

mirroring of how specific individual human observers categorize rather than their capacity for 

modeling aggregate behavior. 

The current experiment relied on facial expression datasets coded and tested within a 

basic emotions theoretical framework (Ekman & Friesen, 1976; Kanade et al, 2000). It remains 

possible that assumptions made in this framework bias exploration of actual emotion space.  

Exploring emotion space by training computer models on exemplars of spontaneous expression 

data that have not been coded into basic emotions may provide a different picture of facial 

expression behavior and the representations underlying their recognition. Further, the present 

model is context independent, relying solely on facial features for recognition.  The present study 

suggests that significant statistical regularity of image features across expressions types allows 

for recognition of expression similarity and distinctiveness.  Recent work nevertheless 

emphasizes the role of temporal and spatial situational context in interpreting facial expressions. 
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For example, a cropped image of a face of an Olympian gold medal winner at the podium may 

portray extreme grief but will resemble extreme happiness with the context of the scene 

incorporated (Fernandez-Dols & Carroll, 1997).  Such context dependence suggests an 

understanding of the full range of human competence in emotional communication cannot be 

characterized by statistical regularities in image structure alone. 
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Figure 1. a) Diagram of support vector machine computer model showing the flow of 

information processing through multiple representational layers: from the pixel level to 

preprocessing by Gabor feature selection with AdaBoost and ending with seven-output 

SVM classification. SVM classifications represent 6 emotion types plus neutral.  Separate 

weight connections for two SVM classifiers are depicted in black and dashed lines. b) 

Example of a Gabor filter projected onto a face image.



 

 

 

Figure 2. Illustration of Gabor features selected for each expression. a. Center locations 

of the first 50 Gabor features are indicated by white dots. b. Receptive fields of the first 

10 Gabor features projected onto image space showing the preferred spatial frequency, 

orientation, and location.   

 



 

 
 
 

Figure 3. In order to visualize the weights, this figure employed a linear SVM trained 

directly on the image pixels rather than the Gabor representations. The weights shown in 

this figure were trained to discriminate two specific emotions, a) anger versus disgust and 

b) sadness versus fear.  Positive weights are shown in white and negative weights in 

black. 

 

 



 

 
 
 

Figure 4. Standardized target emotion ratings (e.g. anger ratings for angry faces) for 

human subjects and SVM activations for the computer model averaged over exemplars. 

Means for each subject are plotted as points and the overall human subject mean is 

represented by a horizontal line. Mean standard ratings for the computer model are 

indicated by a triangle.  

 



 

 

 
 

 

Figure 5. Target emotion forced choice accuracy for two clusters of human subjects 

identified by MDS. Each human subject is represented by a different filled shape. a) 

Depicts subjects that consistently rate fear lower than the other expressions. The 

computer model (open circles) fits this accuracy pattern. b) Unlike the model are 

subgroups of subjects who consistently rate disgust lower than the other expressions.  

 



 

 
 
 

Figure 6. MDS plots of similarity between exemplars of different emotions from the 

POFA training dataset. a) Human rating norms. b) Computer model activations. 

 
 



 

 
 
 

Figure 7. MDS plots of similarity between exemplars of different emotions from the 

JACFEE dataset. a) Human ratings averaged across all 23 subjects. b) Human ratings for 

subjects in two characteristic clusters of subject rating patterns (see Figure 5). The first 

column shows ratings for two subjects with low accuracy for fear. The second column 



 

shows ratings for two subjects with low accuracy for disgust. c) Computer model 

activations. 



 

 

 

Figure 8. Comparison of human and computer rating profiles. a) Profile comparison 

averaged over anger exemplars. b) Profile comparison averaged over fear exemplars. The 

x-axis is rank-ordered by human ratings and thus the label order in (a) and (b) differ.   

 


