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Abstract—This paper reports progress on the development of a 
humanoid robot designed for realtime face-to-face interaction 
with humans. An essential component for face-to-face interaction 
with humans is being able to find faces, tracking them and 
smoothly move back and forth between gazing to a face and other 
objects of interest. In this paper we propose a system that inte-
grates peripheral vision and foveal vision in a principled manner 
using particle filters. The developed system generates hypotheses 
about face position by using peripheral vision and verifies them 
by integrating peripheral vision and foveal vision. Even though a 
face may not be present in foveal vision, while the robot is gazing 
at another object, it keeps plausible hypotheses about the location 
of the human face with peripheral vision, and restarts the face-
following by verifying the hypothesis later. 

Keywords-component; human-robot interaction, face-tracking, 
condensation 

I.  INTRODUCTION 
Over the past several years, many humanoid robots have 

been developed. We believe that in the near future humanoid 
robots will interact with humans in our daily life. Their human-
like bodies enable humans to intuitively understand their ges-
tures and cause people to unconsciously behave as if they were 
communicating with humans [1]. That is, if a humanoid robot 
effectively uses its body, people will naturally communicate 
with it. This could allow robots to perform communicative 
tasks in human society such as route guides. 

Previous research works proposed various kinds of com-
municative behaviors made possible by humanoid robots. In 
particular, the eye (head orientation) is a very important body 
part. Humans utilize their eye-gaze to convey their attention 
about certain objects to other humans while maintaining eye-
contact, which is widely known as the joint-attention mecha-
nism [2]. Scassellati developed a robot with a joint-attention 
mechanism that recognizes another’s gaze in order to share 
attention [3]. Kozima and his colleagues also developed a robot 
with a joint-attention mechanism [4]. As Imai and his col-
leagues showed, it is important to convey a robot’s intention to 
humans through eye-contact [5]. Otherwise, humans would not 
understand the robot’s utterance. In addition, humans can suc-
cessfully determine a robot’s intention from its head orientation 
[6]. We believe that these gestures produced by changes in 
head orientation are essential functions for humans and robots 
to engage in natural social interaction. 

Since tracking of a human face is an essential function for 
interactive humanoid robots, several researchers have devel-

oped face-tracking mechanisms for robots. Nakadai and his 
colleagues developed a robot that can track a speaking person 
by integrating visual and auditory information [7, 8]. Ma-
tsusaka and his colleagues also developed such a robot that 
uses eye contact [9]. Doi and his colleagues integrated tracking 
of face and body with peripheral vision [10]. However, little 
previous research utilized eye and head orientation in making 
gesture with tracking the human face for eye-contact. Shibata 
and his colleagues developed a stabilization function of track-
ing eyes based on biological knowledge [11]. 

For human-robot communication, it is difficult to utilize 
only foveal vision (narrow spatial range with high-resolution 
vision) for eye-contact because a robot sometimes needs to 
look away to gaze at other objects to show its attention. More-
over, it is difficult to just use peripheral vision (wide spatial 
range with low-resolution vision) for eye-contact because the 
accuracy of the eye-contact will be limited with this approach. 
In addition, when a robot makes a gesture, humans remain si-
lent, so it is difficult to rely on only auditory-based tracking. 
Several research works have employed an approach of integrat-
ing peripheral and foveal vision [3, 11, 12]. We also integrate 
peripheral vision and foveal vision to keep face-tracking even 
when a robot is gazing at other objects. 

On the other hand, it is also important to reduce the calcula-
tion costs of the sensor processing system for autonomous mo-
bile robots. For humanoid robots in particular, very limited 
space and energy are available for computer resources. A pre-
vious work on computer vision has proposed a probabilistic 
method that has advantages in both tracking performance (by 
generating multiple hypotheses) and calculation cost, known as 
particle filter [13]. 

In this paper, we propose a robust face-following mecha-
nism based on the integration of peripheral vision and foveal 
vision with a particle filter-based method. Our approach con-
sists of the following three steps: generating hypotheses about 
face position (finding potential human faces) with peripheral 
vision, verifying the hypotheses with integrating peripheral and 
foveal vision, and providing robust and accurate face-following 
with foveal vision. Even though foveal vision is unavailable in 
cases such as when it is gazing at other objects, it continues 
generating the hypotheses about face position with peripheral 
vision and restarts the face-following by verifying the hypothe-
ses later. We report experimental results showing that the sys-
tem works well indoors environments with difficult illumina-
tion and background conditions. 
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II. DEVELOPMENT OF FACE-FOLLOWING FUNCTION 

A. Interactive humanoid robot Robovie 
Figure 1 displays the interactive humanoid robot “Robo-

vie,” which is characterized by its human-like body expression 
and various sensors. The human-like body consists of eyes, a 
head and arms, which components generate the complex body 
movements required for communication. In order not to alarm 
humans, we decided on a size of 120 cm. The diameter is 40 cm. 
The robot has two arms (4*2 DOFs), a head (3 DOFs), and a 
mobile platform. It has a speaker for talk in a synthesized voice. 

The robot has two types of vision sensors: an omnidirec-
tional vision sensor (considered as peripheral vision) and a 
stereo vision sensor (considered as foveal vision). It also has 
various sensors: 16 skin sensors covering the major parts of the 
robot, 10 tactile sensors around the mobile platform, a micro-
phone for listening to humans, and 24 ultrasonic sensors. Fur-
ther, the robot satisfies the mechanical requirements of auton-
omy. It includes all computational resources needed for proc-
essing the sensory data and for generating behaviors. It has two 
PCs on board: a Pentium4 PC (2.4 GHz) for image processing 
and speech recognition and a Pentium III PC (933 MHz) for 
processing other sensory data and controlling the motors that 
generate interactive behaviors. 

B. Integration of foveal vision and peripheral vision 
For the interactive humanoid robot, it is important to per-

form eye-contact (looking at human face) and to show its atten-
tion (look at other objects). Thus, the robot should be able to 

 accurately look at a human face so that the human be-
lieves he/she has established eye-contact with the robot, and 

 robustly re-look at the face after looking at something 
else (even if the human moves or does not react). 

To achieve these capabilities, we integrated peripheral vi-
sion and foveal vision with the particle filter method. It consists 
of the following three steps. First, it uses peripheral vision to 
generate hypotheses about the position of face-like objects. 
Similar to humans, peripheral vision is useful for finding a 
moving object. Second, it uses foveal vision to verify the hy-
potheses generated with peripheral vision so that it can accu-
rately look at a human face. Finally, it integrates these two 
kinds of sensor information by updating the probability distri-
bution corresponding to the peripheral vision. 

1) Hypotheses generation with peripheral vision 
A human’s peripheral vision is usually utilized to obtain 

motion information as well as color information. However, 
spatial resolution is limited, so it is difficult to recognize de-
tailed shape with peripheral vision. By imitating this human 
mechanism, we retrieve color and motion information from 
peripheral vision to generate hypotheses on the position of 
face-like object(s). In addition, a particle filter mechanism con-
trols attention to reduce the amount of calculation. 

Figure 2 represents the relationships among variables in the 
system as a graphical model. In the figure, single circles repre-
sent the variables related to the sensor data, and double circles 
represent the variables of generated hypotheses. The solid lines 
represent the internal dependencies among the variables, which 

are used for estimating the face position. The broken lines rep-
resent the external dependencies. For example, with the vari-
able “human-like moving object,” the robot controls its gazing 
direction, which affects the variables “color” and “shape” in 
foveal vision.  

The left side of the Figure 2 represents the process related 
to the peripheral vision. The system retrieves color information 
(second upper picture in left column) and temporal difference 
information (third upper picture) from the peripheral vision and 
integrates them to generate hypotheses on “human-like moving 
regions (bottom picture)”. These hypotheses are preserved in 
each pixel as a probability )( txp  (equation 1), which is also 
utilized for attention control. As particle filter mechanism, it 
only checks the neighbors of current hypotheses )( txq  to re-
duce calculation (equation 2). 
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where tx represents the pixel in foveal image tx  at time t, thq  
is the threshold for attention control, y is the two-dimensional 
vector that satisfies 11 )( −− ∈− tt yx x , and )(yλ  is a function 
that decreases along with the increase of || y . For instance, the 
function ||2)( yywy =λ satisfies this requirement, where yw is 
a standard normal random variate. In equation 3, )( txdiff

 and )( txcolor represent the likelihood of a human face at each 
pixel tx , and these are calculated based on the temporal differ-
ence and color features, respectively. We will describe 

)( txface  later, which is calculated based on frontal face detec-
tion in foveal vision. The coefficients dα , cα , and fα  stand 
for internal parameters for retrieving information from meas-
ured features. We do not incorporate expectation of human 
movements into )(yλ , since it is difficult to estimate human 
movement in communication (for example, humans do not 
constantly move with certain velocity or acceleration when 
they communicate with others). Instead, the particle filter 
method provides the random sampling using MCMC, which 
estimates such random movements as humans make. 

2) Frontal-face detection in foveal vision 
Foveal vision is used to verify the hypotheses generated 

with peripheral vision. The right half of Figure 2 represents the 

   
Fig. 1: Interactive humanoid robot “Robovie” 

(1)

(2)

(3)



 dα  cα  fα  
Finding 0.75 0.25 0 

Following 0.43 0.14 0.43 
Look away 0.4 0.6 0 

Table 1: System parameters for three tracking modes 

 
Figure 2: Relationships among internal probabilistic variables (internal and external dependencies) 

process related to foveal vision. The system controls head ori-
entation to look at the face-like region obtained from peripheral 
vision (upper picture in right column of Figure 2) and then tries 
to find “shape” information (human frontal face) with foveal 
vision. Frontal face detection was based on the MPISearch 
system available at http://kolmogorov.sourceforge.net [14,15]. 
This calculation is slightly expensive (currently it runs at about 
3.5 fps with this mechanism), while the found face is also 
tracked with “color” information in realtime. By integrating the 
“shape” and “color” information, the hypotheses “face-like 
object” is generated in the foveal vision (bottom picture in right 
column). 

3) Integration of periheral and foveal vision 
First, the hypotheses on the frontal face in foveal vision 

(“face-like object”) are compared with the hypotheses on the 
face-like region in peripheral vision (“face-like moving ob-
ject”). If these hypotheses match, the system assumes that the 
hypotheses are verified. The verification is formalized as: 
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where 'tx  includes every pixel in a detected region as a frontal 
face in the foveal vision, and )(xµ  is a coordination conver-
sion function from the pixel position in peripheral vision x  to 
the pixel position in foveal vision. If the verification is success-
ful (that is, tht v'verify >)(x ), it updates the probability distribu-
tion in peripheral vision. We calculate )( txface  as follows, 
where thv  is a certain threshold for the verification. 
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4) Look away mode 
There are three modes in the face-following system. “Find-

ing” mode is usually chosen when the system does not have a 
sufficient hypothesis on face-like regions. “Following” mode is 
usually chosen for following a human face with this mecha-
nism. “Look away” mode is only chosen by the upper layer 
module, which allows the robot to intentionally look away, 
such as for gazing at an object during joint-attention. After 

looking away, the robot looks back toward the face-like region 
to find the human face, which enables the robot to reestablish 
eye-contact after showing its attention by gazing at the other 
object. This mode transition is accomplished simply by chang-
ing the parameters in equation (4). Table 1 indicates the pa-
rameters ( dα , cα , and fα ) for these three modes. 

III. EVALUATION 
We performed experiments to verify the performance of 

the face-following system. This section reports the results of 
the experiments on face-following performance. (Videos 
showing the scene and internal status can be seen at 
http://www.irc.atr.co.jp/~kanda/ft/ ) 

A. Performance of face-following 
First, we measured the face-following performance for one 

human who is walking around the robot and interacting with 
the robot. Figure 3 shows the results of the experiment. In the 
figure, “tracking status” (uppermost graph in the left half  
(“face-following”)) shows whether the robot found the frontal 
face (denoted as “foveal”) and whether it found the human in 
peripheral vision (denoted as “peripheral”), which correspond 
to the generated hypotheses ”human-like moving object” and 
“frontal face” in Figure 2. “Face orientation” (center graph in 
left half) stands for the orientation of the human face from the 
robot (0 degree indicates that the human face is toward the ro-
bot head, and 90 degrees indicates that the human face is at a 
right angle to the robot head. In the “accuracy” graph (bottom 
graph in left half), “human” represents the direction of human 
face position from the robot’s head, and “robot” stands for the 
orientation of the robot’s head (0 degree represents the front 
direction of the robot). These movements of the human and the 
robot were measured by a motion capturing system. “Internal 
status” (right half of the figure) shows the internal status cor-
responding to scenes 1 to 5, which is denoted in the bottom of 

(4)

(5)



Figure 3: Experimental results for finding and tracking a human face 
“Internal status”t shows the internal status corresponding to the scenes 1 to 5, which are denoted at the bottom of the left half of the figure.  For 
the internal status, each picture on the left denotes the probability )( txp as white colored regions on the image of peripheral vision, and each 

picture on the right denotes the detected human face as a square on the image of foveal vision. 

Figure 4: Experimental results for tracking of multiple humans 



 
Figure 5: Transition of internal status in “look away mode”

Peripheral 
 [ms] 

Foveal
[ms]  ([fps])

Peripheral only (with search limit) 8.0 — 
Foveal only — 169.5 (5.9)
Integrated, w/o search limit 9.7 322.6 (3.1)
Integrated, with search limit 6.4 285.7 (3.5)

Table 3: Comparison of calculation costs of face-following 

N \ human Stay Follow gaze
1 [s]  1.00 0.95 
3 [s] 0.90 0.90 
5 [s] 0.85 0.90 
7 [s] 0.80 0.90 

Table 2: Look-back performance (successful rate) 

left half of the figure. For the internal status, each picture on 
the left denotes the probability )( txp as white colored region(s) 
on the peripheral vision image, and each picture on the right 
denotes the detected face as squares on the foveal vision image. 

As shown in the figure, the robot stably tracked the human 
face. Scene 1 is the initial status of the robot. The human was 
approaching the robot while the robot was in “finding mode.” 
There is no meaningful probability for human face existence 
( )( txp )  at that time. At scene 2, the human came in front of 
the robot, and then the robot immediately found the human and 
looked at the human’s face. In scenes 3, 4, and 5, it was able to 
follow the human face when the human moved around. In par-
ticular, in scene 4, it lost the frontal face once because the hu-
man moved too fast, but it found the frontal face again by using 
peripheral vision. We believe these results show the robustness 
and stability of the face tracking function. 

During this one-minute experiment, the average error of 
tracking (difference of the angle between the direction to hu-
man face position and orientation of the robot head) was 13.5 
degrees (standard deviation was 5.82, which also suggests the 
stability). As the figure shows (shown in the lower-left as 
“face-following”), it stably tracked the human face even 
though it sometimes failed to follow the face with foveal vision. 
The system successfully found the face in 91% of the frames in 
foveal vision after the human came in front of the robot. 

We also analyzed the system performance during interac-
tion with two humans. As a result, the system is capable of 
preserving multiple hypotheses (potential human faces). Fig-
ure 4 indicates the result of the experiment. In the experiment, 
two people talked near the robot, and one of them sometimes 
interacted with the robot. In the figure, “human 1” and “human 
2” stand for the direction of each person’s face (in “face orien-
tation“) and position to the robot (in “accuracy”). 

The system followed the face of human 1 (scene 1), found 
human 1 and human 2 (scene 2), looked at human 2 but did 
not find the frontal face, which decreased the probability 
(scene 3), started to maintain eye-contact with human 1 when 
he started to face the robot (scene 4), and looked at human 2’s 
hand (scene 5) but did not find the frontal face. As a result, the 
robot successfully detected the potential faces, successfully 
followed the frontal faces when the humans faced the robot, 
and did not misunderstand human hands as human faces. (The 
system is designed to only track a face owing to the integra-
tion of peripheral and foveal vision.) 

B. Performance of looking back 
We evaluated the looking back performance after the robot 

looked away (“look away” mode). The robot gazed at certain 
directions (looked away) for N second(s) and then looked back 
to the human face. Meanwhile, the human in front of the robot 
followed the gaze or stayed still. Since the robot senses motion 
and color information in peripheral vision, it is easy to observe 
a human who moves around it (we expect perfect performance 
for this condition). However, it is difficult to detect a human 
who does not move much. Thus, we prepared these two condi-
tions. In the “stay” condition, the human did not move at all. 
In the “follow gaze” condition, the human only moves his 
head to follow the robot’s gaze. 

Figure 5 indicates the internal states of the robot during 
one of the trials. In the “tracking-status” graph (uppermost in 
the figure), “look away” indicates that the robot was looking 
away, which corresponds to the “face-following” graph in the 
figure where the robot’s head direction becomes about ±30 
degrees. As the “internal status” shows, it was able to preserve 
the hypotheses on a potential face when it was looking away 
and continued the eye-contact after that. 

Table 2 indicates the rate of successful looking back after 
looking away for N second(s). The human followed its gaze or 
stayed to gaze at the robot. In each condition, we performed 
20 trials with the robot’s looking away and checked the suc-
cessful rate of looking back. As a result, the performance is 
quite good when looking away duration N is small. In the 



   
Figure 6: Expression of intention by gazing and pointing 

“stay” condition, the performance becomes worse when N 
increases, since it did not obtain motion information in periph-
eral vision and thus the preserved region of the human face 
became a little vague. Even if it failed to look back immedi-
ately, it rapidly found the face again. 

C. Evaluation of calculation time 
We evaluated the calculation time of our integration method. 

Table 3 shows the calculation time of peripheral vision and 
foveal vision. In the table, “foveal only” and “peripheral only” 
stands for the cost where the system only processed the foveal 
or peripheral vision. In the “Integrated, w/o search limit” con-
dition, the system searches for faces around every pixel in pe-
ripheral vision (equivalent with “ 0=thq ” in equation 1), while 
“peripheral only” and “Integrated, with search limit” utilized 
certain thq . Since the system processed peripheral vision with a 
higher priority than foveal vision, the calculation time of pe-
ripheral vision affected that of foveal vision (the amount of 
calculation in foveal vision is constant). Peripheral vision 
works in real-time in any experiment condition, and foveal 
vision is processed 3.5 frames per second in our proposed 
method. (In the experiment, “foveal” represents the process of 
retrieving “shape (frontal face)” information in foveal vision, 
and the process of retrieving “color” information in foveal vi-
sion works in realtime). In addition, “Integrated, with search 
limit” is faster than “peripheral only,” since it utilizes foveal 
vision, consequently, the search limit with )( txq was more 
effective. We believe these results demonstrate the advantage 
of our approach. 

IV. DISCUSSION AND CONCLUSION 
We implemented a robust face-following mechanism for an 

interactive humanoid robot. It is based on integration of pe-
ripheral vision and foveal vision and a particle filter method. 
This mechanism reduces the vagueness of sensor information 
with this integration method and tracks human face robustly in 
a realistic daily environment in realtime. Moreover, even when 
the robot is gazing at other objects, it continues tracking a hu-
man face with peripheral vision, and restarts the face-following 
after that. We conducted several experiments to confirm the 
performance, and, as a result, the robot successfully maintained 
eye-contact with a human even after it looked away. 

This function of face-to-face interaction is essential for in-
teractive humanoid robots. A robot needs to maintain eye-
contact with humans as well as to show its intention by gazing 
at objects (Figure 6). Moreover, it has been found that coop-
erative body movements such as eye-contact correlates with 
subjective evaluation of the robot [17]. Furthermore, this eye-

contact ability allows robots to perform richer interaction. For 
example, face-to-face interaction (accomplished by maintain-
ing eye-contact) allows robots to understand human emotion 
from the face [18], to detect human intention by checking the 
frontal face, and to effectively gather human utterances by us-
ing a unidirectional microphone. 
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