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Abstract

Bayesian filtering provides a principled approach for a
variety of problems in machine perception and robotics.
Current filtering methods work with analog hypothe-
sis spaces and find approximate solutions to the re-
sulting non-linear filtering problem using Monte-Carlo
approximations (i.e., particle filters) or linear approxi-
mations (e.g., extended Kalman filter). Instead, in this
paper we propose digitizing the hypothesis space into
a large number, n ≈ 100, 000, of discrete hypotheses.
Thus the approach becomes equivalent to standard hid-
den Markov models (HMM) except for the fact that we
use a very large number of states. One reason this ap-
proach has not been tried in the past is that the standard
forward filtering equations for discrete HMMs require
order n2 operations per time step and thus rapidly be-
come prohibitive. In our model, however, the states are
arranged in two-dimensional topologies, with location-
independent dynamics. With this arrangement predic-
tive distributions can be computed via convolutions. In
addition, the computation of log-likelihood ratios can
also be performed via convolutions. We describe al-
gorithms that solve the filtering equations, performing
this convolution for a special class of transition kernels
in order n operations per time step. This allows exact
solution of filtering problems in real time with tens of
thousands of discrete hypotheses. We found this num-
ber of hypotheses sufficient for object tracking problems.
We also propose principled methods to adapt the model
parameters in non-stationary environments and to de-
tect and recover from tracking errors.

1 Introduction

Bayesian filtering refers to the problem of making in-
ferences about the values taken by random variables
at time t based on a sequence of observations up to
that time. In computer vision the observed variables
are typically image sequences and the unobserved vari-
ables are analog in nature (e.g, pose and deformation
parameters of an object). For this reason continu-
ous state filtering approaches are the preferred choice.
While exact analytical solutions exist for continuous fil-
tering problems the needed assumptions (Gaussianity
and Linearity) are too restrictive. Thus Monte-Carlo
approximations (i.e., particle filters) have become the
method of choice in computer vision and much work is

being devoted to making these approximations as effi-
cient as possible [2; 1; 9]. We informally refer to these
approaches as “smarticle filters” for their emphasis on
improving the accuracy of a small number of particles
using clever techniques.

In speech recognition hidden Markov models
(HMMs) are used to model the dynamics of speech.
The observable data of interest are phoneme-like seg-
ments of speech and thus can be represented well
with a small number of discrete states or hypotheses
(nh ≈ 50). Furthermore the models are typically con-
strained for state transitions to have left-to-right con-
straints. The small number of states and state transi-
tions allows the filtering problem to be solved exactly in
real time. Unfortunately the filtering equations in the
discrete case require order n2

h operations per time step
and thus do not scale well for large, densely connected
hypothesis spaces. This is arguably the main reason
why HMMs are not as popular in computer vision as
they are in speech recognition.

While in general the discrete filtering equations scale
order n2

h, in most computer vision problems there is
spatio-temporal structure that can be used to develop
faster inference algorithms. In this paper we present
a new algorithm that works in order nh operations.
This makes it possible to solve inference problems in
real time with tens of thousands of hypotheses. We
informally refer to the approach as “dumbicle filter-
ing” because it relies on a massive number of particles
rather than a few clever particles. In fact we exhaus-
tively populate a continuous hypothesis space with a
large number of discrete states and solve the resulting
inference problem exactly. We describe the algorithm
in the context of 2D tracking problems. Extensions are
discussed in Section 7.

2 A Generative Model for 2D
Tracking

We identify random variables with capital letters, and
specific values taken by those variables with small let-
ters. When possible we use shorthand notation and
identify probability functions by their arguments. For
example, p(ht) is shorthand for pHt

(ht), the probabil-
ity (or probability density) that the random variable Ht
takes the specific value ht. We use subscripted columns
to designate sequences. For example y1:t = y1 · · · yt.
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Finally we reserve Greek letters for parameters.

We model the image generation process as follows
(see Figure 1): First a parameter λt is chosen by a
process described in Section 4. This parameter deter-
mines the location-dependent probability distribution
of image features in the background bi(· | λt), and the
probability distribution of image features in the ob-
ject of interest o(· |λt). The image features can be any
function of a local patch of pixels, and can represent for
instance texture, color, or motion or object categories
(see [6]). Without loss of generality we formulate the
model here using the color of individual pixels as the
feature of interest 1.

The pixels rendered by the object are inside a rect-
angle of fixed aspect ratio ht = (xt, st) centered at xt,
with scale parameter st. Generalizations to arbitrary
rotations and non-rectangular hypotheses are easy (see
Section 7) once this case is understood. The rectangle
containing the object pixels is chosen with probability
p(xtst | xt−1st−1) = p(st | st−1)p(xt | xt−1st−1).

Once ht is known, we know which pixels are ren-
dered by the background and which are rendered by
the object of interest. For each pixel location u in the
background, a color yt(u) is chosen with probability
bi(yt(u) | λt). For each pixel v in the object, a color
yt(v) is chosen with probability o(yt(v) | λt)

Location of Object 
on Image Plane

Observed Image sequence     Y0

    λ0

    Yt

    λt

 Yt+1

λt+1

             Ht+1               Ht                 H0

Background Model

Object Histogram

Figure 1: The hidden variable H determines which pixels
belong to the object and which belong to the background. The
object pixels are rendered independently from an object his-
togram. The background pixels are rendered independently
from a space variant background histogram model.

Image Likelihood Let yt represent the image ob-
served at time t and yt(u) the value taken by the pixel
at location u ∈ R2 in that image. From the description

1Here color refers to an rgb value and thus it may include
intensity, not just hue and saturation.

of the model above, it follows that:

log p(yt | xtstλt) = log
∏

u∈ht

o(yt(u) | λt)

+ log
∏

u 6∈ht

bi(yt(u) | λt) (1)

=
∑
u∈ht

log
o(yt(u) | λt)
bi(yt(u) | λt)

+ Z(yt, λt) (2)

where
Z(yt, λt) =

∑
u

log bi(yt(u) | λt) (3)

The log-likelihood of a hypothesis ht is a constant Z
plus the sum of the log-likelihood ratios of all the pixels
within that hypothesis.

Filtering Distribution Let y1:t = (y1 · · · yt) repre-
sent an observed image sequence up to time t. Our goal
is to compute the filtering distribution, i.e., the poste-
rior distribution of ht given y1 · · · yt. Using the stan-
dard HMM update equations we have that the poste-
rior probability of a hypothesis ht is proportional to the
product of the probability of the current image given
the hypothesis times the predictive probability of each
hypothesis given the past image sequence:

p(ht | y1:tλ1:t) =
p(y1:t−1 | λ1:t)
p(y1:t | λ1:t)

p(yt | htλ1:t)p(ht | y1:t−1λ1:t−1) (4)

p(ht | y1:t−1λ1:t−1) =
∑
st−1

p(st | st−1)∑
xt−1

p(xt | xt−1st−1)p(ht−1 | y1:t−1λ1:t−1) (5)

where ht = (xt, st), ht−1 = (xt−1, st−1). For each scale,
we let the transition distribution p(xt |xt−1st) be rect-
angular uniform and shift invariant. This allows using
cumulative probability maps to compute the predictive
probability of each hypothesis with four operations per
hypothesis.

Minimum Risk Estimation In many applications
we need to choose a single hypothesis per time step. In
such cases it is reasonable to choose the hypothesis that
minimizes the posterior risk, i.e., the expected average
of an error function

ĥt = argmin
h

E(ρ(Ht;h) | y1:t λ1:t) (6)

where ρ is an error function that measures the mis-
match between two hypotheses. We experimented with
two types of error functions: (1) The correct hypothe-
ses get zero error and incorrect hypotheses get error
1; (2) An error function that measures average dis-
tance between corresponding object landmarks in two
hypotheses. The first error function is minimized by
choosing the hypothesis with maximum posterior prob-
ability (MAP). The Appendix shows the minimum pos-
terior estimate for the second error function.
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Figure 2: The log-likelihood of a hypothesis is the sum of
the log-likelihood ratios of each pixel. This can be computed
in 4 operations using cumulative log-likelihood ratio maps:
l(h) = L(1)− L(2)− L(3) + L(4), where L(i) is the cumu-
lative log likelihood ratio evaluated at pixel i.

3 Computational Complexity

To compute the filtering distribution at time t+1 first
we need to to compute the predictive distribution at
time t + 1. This is the distribution of hypothesis at
time t + 1 based on the observed images up to time t.
The predictive distribution contains all the information
about the hypotheses prior to the observation of the
image at time t + 1. It is obtained by propagating
the filtering distribution at time t + 1 via the state
transition function p(ht+1 | ht). Following Bayes rule
we then need to compute the likelihood of the image
at time t + 1 for each possible hypothesis and multiply
the predictive probability (prior) times the likelihood
of each hypothesis. In this section we describe methods
to achive the desired results in order nh+np operations,
making it possible to work with a very large number of
hypothesis in real time.

Double Integral Likelihood Ratio Maps A brute
force approach for computing the likelihood-ratios
would require order np×nh sums, where np is the num-
ber of pixels on the image and nh the number of hy-
potheses. In practice we can compute the log-likelihood
ratio of all the hypothesis using np + 4nh sums. First
for each pixel location x = (x1, x2)T we compute the
likelihood ratio of the value taken by that pixel

l(x) = log
o(yt(x) | λt)
bx(yt(x) | λt)

(7)

This can be done using table-lookups for the likelihood-
ratio function. Then we compute the double integral
log-likelihood ratio map L:

L(x) =
x1∑

u1=0

x2∑
u2=0

l(x) (8)

Once L is known, the probability of each hypothesis
can be computed in 4 operations (see Figure 2).

Double Derivative Predictive Maps For the gen-
eral case the problem of computing the predictive prob-
ability from the filtering probability takes n2

h opera-

tions

p(xt+1st+1 | y1:tλ1:t) =
∑
xt,st

p(xtst | y1:tλ1:t)

p(xt+1st+1 | xtst) (9)

=
∑
st

p(st+1 | st)
∑
xt

p(xtst | y1:tλ1:t)p(xt+1 | xtst)

(10)

If the transition probabilities are shift invariant this
amounts to a convolution operation for each of the
scales, with cost of order ns×np log np, where ns is the
number of scales under consideration. Here we propose
a new approach that allows updating in ns×(np +4nx)
operations. The method relies on propagation of prob-
ability derivatives. Once the probability derivative
map is ready, the actual probabilities are obtained by
integration. Let the double derivative of a probability
mass p be as follows follows

∇2
xp(x) =

∑
i,j∈{−1,1}

p(x + uij) (11)

where uij = (i, j)T . Thus

∇2
xp(xt+1, st+1 | y1:tλ1:t) =

∑
st

p(st+1 | st)∑
xt

p(xtst | y1:tλ1:t)∇2
xp(xt+1 | xtst)

(12)

and since p(xt+1 | xtst) is a square centered at xt and
with height 2st it follows that

∇2
xp(xt+1 | xtst) =


1 if xt+1 = xt ± (1, 1)T

−1 if xt+1 = xt ± (−1, 1)T

0 else
(13)

Table 1 shows the cost of an iteration of the filtering
algorithm. By use of cumulative log-likelihood ratio
maps and rectangular transition probabilities, the cost
is order nh + np.

Thus, to construct the gradient predictive probabil-
ity map we just need to send four numbers per hypothe-
sis (one for each of the corners of the square centered at
the center of the hypothesis). Once the gradient map is
built, the predictive probability can be obtained by in-
tegrating the map, which costs np operations per map
and obtaining the value of the integral map at xt+1 for
scale st (see Figure 3

p(xt+1st+1 | y1:t) =
xt+1(1)∑

i=1

xt+1(2)∑
j=1

∇2
xp(xt+1st+1 | y1:t)

(14)
The standard forward filtering recurrence for HMMs

requires order n2
h operations per time step, where nh

is the number of hypotheses. The use of cumulative
probability maps reduces it to 8nh algebraic operations
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Task Sum/Diffs Prods/Ratios Exps LLRs If
CLR np np

LI 4nh nh

PD 4nh + np

UFD nh

NFD nh nh

MAP nh

MRS nh 1
MRL nh nh + 1

Table 1: nh: Number of hypothesis; np: Number of pix-
els; LLR: Log-likelihood ratio of a single pixel; If: Logi-
cal “if” operation; CLR: Cumulative Likelihood Ratio Map;
LI: Likelihoods; PD: Predictive Distribution; UFD: Un-
normalized Filtering Distribution; NFD: Normalized Fil-
tering Distribution; MAP: Maximum Posterior Hypothesis;
MRS: Minimum Risk Scale; MRL: Minimum Risk Loca-
tion. Log-likelihood ratios (LLR) and exponentials can be
implemented via look-up tables.

p(xtst|y1:t) ∇xp(xt+1st+1|y1:t) p(xt+1st+1|y1:t)

Filtering Distribution Predictive DistributionDouble Derivative of the
Predictive Distribution

Figure 3: The double derivative method for computing the
predictive distribution. For each hypothesis from the filter-
ing distribution we add 4 numbers (2 positive and 2 nega-
tive) at the corners of the transition probability kernel for
that hypothesis. The sum of all these numbers is the double
derivative map of the predictive distribution. The double
integral of this map gives us the desired predictive distribu-
tion.

and nh exponentials. This allows filtering problems
with about 100, 000 hypotheses to run in real time on
a state of the art PC. In practice this provides more
than enough resolution for difficult Tracking problems
(see Section 5).

4 Unknown, Non-stationary
Model Parameters

The appearance of the background and the object of
interest may change due to changes in illumination,
camera movement, or the movement of objects in and
out of the image plane. Thus we need a scheme to
adaptively change the model parameters.

Let M represent the set of possible image genera-
tion models. When the model is unknown and non-
stationary, optimal inference calls for marginalizing

across all possible image sequence models

p(ht | y1:t) =
∑
λ1:t

p(λ1:t | y1:t)p(ht | y1:tλ1:t) (15)

where p(λ1:t | y1:t is the parameter adaptation term.
In practice we need to approximate this by: finding
reasonable estimates ŷ1:t and letting p(λ1:t | y1:t) ≈
δ(y1:t, ŷ1:t), i.e.,

p(ht | y1:t) ≈ p(ht | y1:tλ̂1:t) (16)

This approximation while efficient is risky and thus
methods are needed to detect when the approximation
is not working well and to recover from error.

In our current implementation we rely on an aux-
iliary object detector whose main role is to help with
parameter estimation and error recovery of the primary
object tracker. The secondary detector is set to have
very small number of false alarms, thus when it de-
tects the object of interest we can safely assume that
the object was there. The disadvantage of the auxiliary
detector is higher computational cost than the primary
detector and the fact that it can only detect the object
of interest in a particular pose. In our experiments the
auxiliary detector is a Viola & Jones [10] style detector
of frontal/upright faces described in [6].

Non Stationary Environments We model changes
in illumination, camera movement and background
movement as a continuous time Poisson jump process:
The background and object models are constant except
for specific jump points that occur at unknown random
times. The time between jump points is independent of
previous jump points and is governed by an exponen-
tial density function with parameter θ. At jump points
new model parameters are chosen from a distribution
of known mean.

Let T1, T2, · · · represent the unknown times at
which the object and background model changed (the
jump times). Let S1, S2, · · · be the unknown ob-
ject and background parameters chosen at jump times
T1, T2, · · · . Since these values are independent sam-
ples from a continuous random vector it follows that
P (Si = Sj) = 0 if i 6= j. Let λt represent the unknown
color and background models at time t, i.e.,

λt = STi
for Ti ≤ t < Ti+1 (17)

Suppose by time t the auxiliary detector has found the
object of interest at times τ1 < τ2 < · · · < τn ≤ t.
By doing so it provided samples pixels from the back-
ground and from the object. Lee xi = (hτi , yτi) repre-
sent the information provided by the auxiliary detector
at time τi. Our goal is to use this information to ob-
tain estimates of λt. One reasonable estimate is the
posterior mean of λt given x1 · · ·xn. Let An+1 be the
event that at least one jump occurred after τn. Thus

P (An+1) = p(λt 6= λτn) = e−θ(t−τn) (18)

For j = 2, · · ·n let Aj represent the event that the last
jump occurred between τj−1 andτj . Thus

Aj = ∩n
i=j{λt = λτi} ∩

j−1
i=1 {λt 6= λτi} (19)
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i.e., the probability that at least a jump occurred be-
tween τj−1 and no jump occurred afterwards:

P (Aj) = (1− e−θ(τj−τj−1))e−θ(t−τj) (20)

= e−θ(t−τj) − e−θ(t−τj−1) (21)

Finally let A1 be the event that the last jump occurred
prior to τ1. Thus

A1 = ∩n
i=1{λt = λτi

} (22)

P (A1) = e−θ(t−τ1),
n+1∑
j=1

P (Aj) = 1 (23)

Thus

λ̂t = E(λt|x1:n) = P (An+1)E(λt)+
n∑

j=1

P (Aj)E(λt|xj:n Aj)

(24)
where E(λt | xj:i Aj) = E(λt | yτ1hτ1 · · · yτihτi) are the
object and background histograms obtained by seg-
menting the images yτ1 · · · yτi

into object and back-
ground as determined by hτ1 · · ·hτi clumping all the
object pixels together and all the background pixels
from the same location together. After some algebra it
can be shown that λ̂t consists on weighted frequency
counts of colors found in the object and the background
locations, where the weight of a pixel decays exponen-
tially with the length of time since the pixel was col-
lected.

Error Detection and Recovery The auxiliary ob-
ject detector may be slow or may run with low priority;
thus it may provide information with some delay. Sup-
pose at time t the auxiliary detector tells us that at
time t −∆ the correct hypothesis was ht−∆. We also
have information that at that time the tracker chose
ĥt−∆. Ideally we should go back in time and propa-
gate forward the new information. However due to the
fact that we adapt the model parameters λ based on
our knowledge about ht−∆ this would require buffering
the distribution p(ht−∆ |y1 : yt−∆λ̂t−∆) and the image
sequence yt−∆:t. If this information is lost by time t,
we are presented with the problem of combining two
experts whose opinions are derived from different in-
formation sources: (1) The auxiliary detector provides
us with p(ht |ht−∆), which does not make any assump-
tions about λ. However if ∆ is large, p(ht | ht−∆) will
be almost flat, and thus uninformative. (2) The main
tracker provides us with p̂(ht | y1:tλ̂1:t), which relies
on the assumption that λt:t is a good estimate of the
actual object and background models. A reasonable
approach is to choose the minimum risk expert. The
risk for expert 1 is

R1 = min
h

E (ρ(Ht, h) | ht−∆) (25)

The risk for expert 2 is

R2 = E
(
ρ(Ht, Ĥt) | ht−∆, ĥt−∆,∆

)
(26)

If R1 < R2 we discard the current distribution and
restart the system with the distribution p(ht+∆ | ht)
proposed by the auxiliary detector. In practice we
model R2 using some reasonable heuristic (28) or by
using a labeled dataset in which we estimate how the
error of the system changes as a function of time ∆ and
the starting error ρ(ht−∆, ĥt−∆).

5 Simulations

A video tracking simulation was performed on a dataset
comprised of five minutes of video. Footage was col-
lected from three subjects. Each subject performed
two action sequences consisting of rapid camera move-
ments, in plane translations, rotations, and hand/arm
occlusions. The goal was to simulate the very difficult
tracking conditions typically found in pet robots. Dur-
ing the sequence the lighting was changed by adding
two blue illumination sources. The resulting video
footage was converted to 160x120 color images. The
simulation was developed and tested on a 3.0 GHz Pen-
tium 4 computer.

The model is specified by the initial distribution of
H, the transition kernel p(ht+1 | ht), the average time
1/θ between parameter jumps, and the prior distribu-
tion for object and background models, the error func-
tion ρ and the risk estimation method. In the experi-
ments presented below we used the following architec-
ture: The initial distribution for H was uniform across
hypotheses, the transition kernel was uniform rectan-
gular with width and height equal to 1/2 the scale
of the parent hypothesis. The average time between
model jumps was set at 5 seconds (i.e., θ = 0.2 seconds.
The face color model for the tracker was implemented
as a twenty-bin histogram. The prior distribution for
the background and object models was assumed to be
flat. The prior histogram model for faces was based on
the model published in Jones [5]. For risk estimation
we used the following

R1 = min
h

E(ρ(Ht, h) | ht−∆) = max
ht

p(ht | ht−∆) (27)

E
(
ρ(Ht, Ĥt) | ht−∆, ĥt−∆,∆

)
≈ p(ht−∆|y1:t−∆λ1:t−∆)

(28)
The system could run in real time with a space of

100,000 hypotheses.

6 Previous Work

The use of double integral functions to measure rect-
angular sets is well known in measure theory, proba-
bility theory, and statistics. This approach is also used
in computer animation for fast rendering of rectangu-
lar objects. Viola and Jones [10] were first to use this
method in computer vision problems for computing the
output of rectangular feature detectors. Stochastic fil-
tering approaches to tracking have been popular for
more than a decade in the computer vision community.
Most approaches nowadays find approximate solutions
to the filtering problem using Monte-Carlo methods
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Figure 4: The two rows of images represent hypotheses at
two different scales. The left column represents the most
likely hypotheses. The center image represents the prior
distribution based on the previous image, the right-sice col-
umn shows the posterior distribution of hypohteses.

Figure 5: An example of uncertainty propagation. The left
side shows the most probable hypotheses at time t, i.e., the
filtering distribution. The image on the left shows the pre-
dictive distribution for time t+1, i.e, the prior distribution
for the nexst time step.

(particle filters). Monte-Carlo approaches to filtering
were first described in [3] and introduced to the com-
puter vision community by [4]. Current work in this
field has focused on the development of intelligent sam-
pling methods to find good approximations with very
few particles [1; 9; 8].

As far as we know the current document is the first
one to point out that the double integral method can
be used to compute likelihood-ratio maps. The use of
double derivative maps to compute predictive probabil-
ities was also unknown to us before we produced this
document.

7 Extensions

While the specific architecture presented here is lim-
ited to upright rectangular hypothesis, additive log-
likelihood functions, and rectangular transition proba-
bility kernels, extensions are possible that preserve the
computational complexity of the method while provid-

ing great generality.
Complex geometries can be obtained by producing

double cumulative functions at several orientations.
The transition kernels or the features underlying the
likelihood computation do not need to be uniform. For
example, one can apply double cumulative sums re-
cursively (cumulative sums of cumulative sums ...) to
obtain Gaussian-like transition kernels and Gabor-like
features. More complex likelihood-ratio functions are
also possible, using such kernels as object windowing
functions.

In this paper we treat objects a single blobs.
Multi-part objects can also be tracked using as many
likelihood-ratio maps as object parts. Coarse his-
togram matching can also be done using one likelihood-
ratio map per histogram bin. In a different paper we
showed how discriminative methods, like Gentle-Boost
can be used to learn complex likelihood-ratio maps that
can also be computed very efficiently [6].

8 A General Architecture for
Machine Perception and
Robotics

We described methods for solving the stochastic filter-
ing problem in order nh operations. This allows us
to work with tens of thousands of hidden states, and
solve large-scale non-linear filtering problems exactly in
real time. While we focused on visual tracking prob-
lems, the methods proposed here can be used in a wide
variety of real-time machine perception and robotics
problems.

The algorithms presented in this paper exploit the
fact that in many computer vision problems the com-
putation of likelihoods and the propagation of prob-
abilities are convolutional. The methods presented
here solve these convolutions in order nh operations.
Frequency domain methods could also be used, which
would work in order np log np operations.

HMMs are already the architecture of choice for
speech recognition problems. Working with a similar
architecture in vision facilitates approaching problems
that require combination of acoustic and visual infor-
mation (e.g., audio-visual tracking, audiovisual speech
recognition). Particle filter approximations are being
used in robotics for real-time inference and control
problems[7; 8]. The architecture presented here may
allow these problems to be solved more efficiently.

The proposed architecture shows a surprising resem-
blance to the functional architecture of visual cortex:
A set of topographical organized hyper-columns, where
each hyper-column has scaled and rotated replicas of
the same detectors. The hyper-columns are intercon-
nected by lateral connections (see Figure 6). The short
distance lateral connections in the G-flow filtering al-
gorithm take care of propagation of probability maps.
These maps represent the posterior distribution of hy-
potheses given an observed video sequence. We can
now efficiently simulate such systems on a grand scale.
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Figure 6: The optimal inference algorithm can be imple-
mented using a topographically organized set of columns,
where each column computes the likelihood ratio of rotated
and scaled versions of an image patch.

9 Appendix: Minimum Risk Es-
timation

For generality we allow different object landmarks to
have different weights, by using a normalized relevance
map w. Let u represent a point on the image plane.
Its standardized location with respect to the hypothesis
x, s is z = (u− x)/s. The weight of this point is given
by w(z). Let µx, σ2

x represent the mean and variance of
the hypothesis x, s with respect to the relevance map
w, i.e.

µx =
∫

u w(
u− x

s
)du (29)

σ2
x =

∫
(u− µx)2 w(

u− x

s
)du (30)

Now consider a different hypothesis x′, s′. According
to this hypothesis the landmark u from hypothesis x, s

is located at s′

s (u−x)+x′. The scaled average distance
from equivalent landmarks follows:

ρ2(x, s;x′, s′) =
1
σ2

x

∫
‖u− s′

s
(u−x)+x′‖2 w(

u− x

s
)du

(31)
This error function has an intuitive interpretation as
the expected distance between corresponding land-
marks in the two hypotheses: For example if ρ2 = 0.25
the average error is in the order of 0.5 times the scale
of the standard object. After some simple derivations
it can be shown that

ρ2(x, s;x′, s′) =
(

si − s′i
s

)2

+
(

µx − x′

σx

)2

(32)

For simplicity we can choose a relevance map such that
µx = x and σx = s, in which case

ρ2(x, s;x′, s′) =
(

si − s′i
s

)2

+
(

x− x′

s

)2

(33)

The error between two hypothesis (x, s) and (x′, s′)
is simply the sum of the squared scaled difference of

locations plus the squared scaled difference of the scales
between the two hypotheses.

The minimum risk hypothesis for this error func-
tion can be found by differentiating the posterior risk
with respect to x, s, setting it to zero and solving the
resulting equation. The results are as follows:

ŝ =
1

E(1/S | y1:t λ1:t)
; x̂ =

E(X/S | y1:t λ1:t)
E(1/S | y1:t λ1:t)

(34)
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