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Abstract

We present ongoing work on a project for automatic
recognition of spontaneous facial actions. Spontaneous fa-
cial expressions differ substantially from posed expressions,
similar to how spontaneous speech differs from directed
speech. Previous methods for automatic facial expression
recognition assumed images were collected in controlled
environments in which the subjects deliberately faced the
camera. Since people often nod or turn their heads, auto-
matic recognition of spontaneous facial behavior requires
methods for handling out-of-image-plane head rotations.
There are many promising approaches to address the prob-
lem of out-of-image plane rotations. In this paper we ex-
plore an approach based on 3-D warping of images into
canonical views. A front-end system was developed that
jointly estimates camera parameters, head geometry and 3-
D head pose across entire sequences of video images. First
a small set of images was used to estimate camera param-
eters and 3D face geometry. Markov chain Monte-Carlo
methods were then used to recover the most likely sequence
of 3D poses given a sequence of video images. Once the 3D
pose was known, we warped each image into frontal views
with a canonical face geometry. We evaluated the perfor-
mance of the approach as a front-end for a spontaneous ex-
pression recognition system using support vector machines
and hidden Markov models. This system employed general
purpose learning mechanisms that can be applied to recog-
nition of any facial movement. We showed that 3D tracking
and warping followed by machine learning techniques di-
rectly applied to the warped images, is a viable and promis-
ing technology for automatic facial expression recognition.
One exciting aspect of the approach presented here is that
information about movement dynamics emerged out of fil-
ters which were derived from the statistics of images.

1. Introduction

The Facial Action Coding System (FACS) developed by
Ekman and Friesen [6] provides an objective description of
facial behavior from video. It decomposes facial expres-
sions into action units (AUs) that roughly correspond to in-
dependent muscle movements in the face. FACS has already
proven a useful behavioral measure in studies of emotion,
communication, cognition, psychopathology, and child de-

velopment (see [7] for a review). FACS coding is presently
performed by trained human observers using visual inspec-
tion. The human coders decompose the expression in each
video frame into component actions (see Figure 1). A ma-
jor impediment to the widespread use of FACS is the time
required to train human experts and to manually score the
video tape. Approximately 300 hours of training are re-
quired to achieve minimal competency on FACS, and each
minute of video tape takes approximately two hours to score
thoroughly.

Much of the early work on computer vision applied to
facial expressions focused on recognizing a few prototyp-
ical expressions of emotion produced on command (e.g.
”smile”). More recently there has been an emergence of
groups that analyze facial expressing into elementary move-
ments. For example, Essa and Pentland [8] and Yacoob
and Davis [19] proposed methods to analyze expressions
into elementary movements using an animation style cod-
ing system inspired by FACS. Eric Petajan’s group has also
worked for many years on methods for automatic coding of
facial expressions in the style of MPEG4 [3]. While cod-
ing standards like MPEG4 are useful for animating facial
avatars, they are of limited use for behavioral research. For
example, MPEG4 codes movement of a set of facial fea-
ture points, but does not encode some behaviorally relevant
facial movements, such as the muscle that circles the eye
(orbicularis oculi). It also does not encode the wrinkles and
bulges that are critical for distinguishing some facial muscle
movements that are difficult to differentiate using motion
alone yet can have different behavioral implications (e.g.
see Figure 1b, AU 1 vs. 1+4). One other group has focused
on automatic FACS recognition as a tool for behavioral re-
search, lead by Jeff Cohn and Takeo Kanade. The work pre-
sented here was conducted in collaboration with that group.
We explored and compared approaches for automatic FACS
coding of spontaneous facial expressions from freely be-
having individuals. More details are available in [1, 2, 10].
Here we describe the system developed at UCSD.

The most critical difference between the present work
and previous work is the use of spontaneous facial expres-
sions. Most of the previous work employed datasets of
posed expressions collected under controlled imaging con-
ditions with subjects deliberately facing the camera. Ex-
tending these systems to spontaneous facial behavior is a
critical step forward for applications of this technology.
Psychophysical work has shown that spontaneous facial ex-
pressions differ from posed expressions in a number of ways



[5]. Subjects often contract different facial muscles when
asked to pose an emotion such as fear versus when they are
actually experiencing fear. In addition, the dynamics are
different. Spontaneous expressions have a fast and smooth
onset, with apex coordination, in which facial actions in dif-
ferent parts of the face peak at the same time. In posed
expressions, the onset tends to be slow and jerky, and the
actions typically do not peak simultaneously.

Spontaneous face data brings with it a number of techni-
cal issues that need to be addressed for computer recogni-
tion of facial actions. One of the most important technical
challenges is the presence of out-of-plane rotations due to
the fact that people often nod or turn their head as they com-
municate with others. This substantially changes the input
to the computer vision systems, and it also produces varia-
tions in lighting as the subject alters the orientation of his or
her head relative to the lighting source.
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There are a number of possible approaches to handling
head rotations. In this paper we explore an approach based
on 3D pose estimation and warping of face images into
canonical poses (e.g., frontal views). Since our goal is to
explore the potential of this approach as a front-end to fa-
cial expression recognition, we first tested it using 8 hand-
labeled facial landmarks. However the approach can be
generalized in a straightforward and principled manner to
work with automatic feature detectors.

2. Estimation of Face Geometry

We start with a canonical wire-mesh face model [18]
which is then modified to fit the specific head-shape of each
subject. To this effect 30 images are selected from each
subject to estimate the the face geometry and the position
of 8 features on these images is labeled by hand (ear lobes,
lateral and nasal corners of the eyes, nose tip, and base of
the center upper teeth). Based on those images we recov-
ered, the 3D positions of the 8 tracked features in object

coordinates. A scattered data interpolation technique [18]
was then used to modify the canonical face model to fit the
8 known 3D points and to interpolate the positions of all
the other vertices in the face model whose positions are un-
known. In particular, given a set of known displacements�� �  � !  "� away from the generic model feature po-
sitions "� , we computed the displacements for the uncon-
strained vertices# . We then applied a smooth vector-valued
function $ % & that we fit to the known vertices�� � ' % � &
from which we can compute�( � ' % ( &. Interpolation then
consists of applying

$ % & � )� *�+ %,, !  � ,,& (1)

to all vertices- in the model, where+ is a radial ba-
sis function. The coefficients*� are found by solving a
set of linear equations that includes the interpolation con-
straints�� � ' % � & and the constraints./ *� � 0 and./ *� 1� � 0.

3. 3D pose estimation

3-D pose estimation can be addressed from the point of
view of statistical inference. Given a sequence of image
measurements2 � %23 4 5 5 5 4 2 6 &, a fixed face geometry
and camera parameters, the goal is to find the most probable
sequence of pose parameters7 � %73 4 5 5 5 4 76 & representing
the rotation, scale and translation of the face on each image
frame. In probability theory the estimation of7 from 2 is
a known “stochastic filtering”. Here we explored a solution
to this problem using Markov Chain Monte-Carlo methods,
also known as condensation algorithms or particle filtering
methods, [12, 11, 4].
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The main advantage of probabilistic inference methods

is that they provide a principled approach to combine mul-
tiple sources of information, and to handle uncertainty due
to noise, clutter and occlusion. Markov Chain Monte-Carlo
methods provide approximate solutions to probabilistic in-
ference problems which are analytically intractable.

Since our main goal was to explore the use of 3D models
to handle out-of-plane rotations in expression recognition
problems, our first version of the system, which is the one
presented here, relies on knowledge of the position of facial
landmarks in the image plane. We are currently working
on extensions of the approach to rely on the output of auto-
matic feature detectors, instead of hand-labeled features. In
the current version of the system we used the 8 landmarks
mentioned Section 2.

Our approach works as follows. First the system is ini-
tialized with a set ofE particles. Each particle is param-
eterized using 7 numbers representing a hypothesis about
the position and orientation of a fixed 3D face model: 3
numbers describing translation along theF , G , andH axes
and 4 numbers describing a quaternion, which gives the an-
gle of rotation and the 3D vector around which the rota-
tion is performed. Since each particle has an associated 3D
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face model, we can then compute the projection of$ fa-
cial feature points in that model onto the image plane. The
likelihood of the particle given an image is assumed to be
an exponential function of the sum of squared differences
between the actual position of the$ features on the image
plane and the positions hypothesized by the particle. In fu-
ture versions this likelihood function will be based on the
output of automatic feature detectors. At each time step
each particle “reproduces” with probability proportionalto
the degree of fit to the image. After reproduction the particle
changes probabilistically in accordance to a face dynamics
model, and the likelihood of each particle given the image
is computed again. It can be shown [12] that asE I J the
proportion of particles in a particular states at a particular
time converges in distribution to the posterior probability of
the state given the image sequence up to that time

KLMNOP E6 %Q &
E � R %76 � Q ,2 3 4 5 5 5 4 2 6 & (2)

whereE6 %Q & represents the number of particles in stateQ at
time S. The estimate of the pose at timeS is obtained using
a weighted average of the positions hypothesized by theE
particles.

We compared the particle filtering approach to pose esti-
mation with a recent deterministic approach, known as the
OI algorithm [15], which is known to be very robust to the
effects of noise.

8 9T 9 UVB W=>VXYXZ<A [>B=<>?XZ \ AYX=?>V]
In the OI algorithm [15] the pose estimation problem is

formulated as that of minimizing an error metric based on
collinearity in object space. The method is iterative and
directly computes orthogonal rotation matrices which are
globally convergent. The error metric is

^� � %_ ! ` � & %a � b c& (3)

whered/ is given by

d/ � e �e1�
e1� e � (4)

ande � is the projection of the 3D points onto the normal-
ized image plane. In Eq. 3 �, a andc denote 3D feature
positions, the rotation matrix and translation vector, respec-
tively. A minimization of

f %a 4 c& � g)�hi ,,^ � ,,
j

(5)

is then performed. The algorithm is known to be very robust
to the effects of noise [15].

8 98 9 kBDlA>D
Performance of the particle filter was evaluated as a func-

tion of the number of particles used. Error was calculated
as the mean distance between the projected positions of the
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8 facial features back into the image plane and ground truth
positions obtained with manual feature labels. Figure 2a
shows mean error in facial feature positions as a function of
the number of particles used. Error decreases exponentially,
and 100 particles were sufficient to achieve 1-pixel accuracy
(similar accuracy to that achieved by human coders).

A particle filter with 100 particles was tested for robust-
ness to noise, and compared to the OI algorithm. Gaussian
noise was added to the positions of the 8 facial features.
Figure 2b gives error rates for both pose estimation algo-
rithms as a function of the variance of the Gaussian noise.
While the OI algorithm performed better when the uncer-
tainty about feature positions was very small (less than 2
pixels per feature). The particle filter algorithm performed
significantly better than OI for more realistic feature uncer-
tainty levels.

3



4. Automatic FACS recognition

The dataset consisted of 300 Gigabytes of 640 x 480
color images, 8 bits per pixels, 60 fields per second, 2:1 in-
terlaced. The video sequences contained out of plane head
rotation up to 75 degrees. There were 17 subjects: 3 Asian,
3 African American, and 11 Caucasians. Three subjects
wore glasses. The facial behaviors in the video sequences
were scored frame by frame by 2 teams experts on the FACS
system. The first team was lead by Mark Frank at Rutgers.
The second team was lead by Jeffrey Cohn at U. Pittsburgh.

������ r � p ��� ��
 � ��
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�� �

As a preliminary test of the ability to classify facial
movements in the rotated face data, three facial behaviors
were classified in the video sequences: Blink (AU 45 in
the FACS system), brow raise (joint expression of AU 1+2),
and brow lower (AU 4)3. (See Figure 1.) These facial ac-
tions were chosen for their frequency in the database, such
that sufficient training samples would be available, and also
for their relevance to applications such as monitoring of
alertness, anxiety, and confusion. Twelve subjects provided
spontaneous examples of brow raises, and nine subjects pro-
vided spontaneous examples of movements from the brow
lower category. Data from ten subjects was used to train
and test blinks. A fourth category consisted of randomly
selected image sequences from the experimental session,
matched by subject and sequence length.

Head pose was estimated in the video sequences using
a particle filter with 100 particles. Face images were then
warped onto a face model with canonical face geometry,
rotated to frontal, and then projected back into the image
plane, as illustrated in Figure 3. This alignment was used to
define and crop a subregion of the face image containing the
eyes and brows. The vertical position of the eyes was 0.67
of the window height. There were 105 pixels between thet

To increase the number of training samples, also included inthis cate-
gory was AU 9 (nose wrinkle) which also lowers the brows, and AU 1+4

eyes and 120 pixels from eyes to mouth. Pixel brightnesses
were linearly rescaled to [0,255]. Soft histogram equaliza-
tion was then performed on the image gray-levels by ap-
plying a logistic filter with parameters chosen to match the
mean and variance of the gray-levels in the neutral frame
[16]. The resulting images were then convolved with a bank
of Gabor kernels at 5 spatial frequencies and 8 orientations.
Output magnitudes were normalized to unit length and then
downsampled by a factor of 4.

Blinks: SVM’s were first trained to discriminate images
of the peak of blink sequences (as labeled by FACS coders)
from randomly selected images containing no blinks. Gen-
eralization to novel subjects was tested using leave-one-out
cross-validation. A nonlinear SVM applied to the Gabor
representations obtained 95.9% correct for discriminating
blinks from non-blinks when using the peak frames. The
nonlinear kernel was of the form3uvwx wherey is Euclidean
distance, andz is a constant. Herez � {. Consistent with
our previous findings [14], Gabor filters made the space
more linearly separable than the raw difference images. A
linear SVM on the Gabors performed significantly better
(93.5%) than a linear SVM applied directly to difference
images (78.3%). Nevertheless, a nonlinear SVM applied di-
rectly to the difference images performed similarly (95.9%)
to the nonlinear SVM that took Gabor representations as
input.

Blink trajectories: Figure 4a shows the time course of
SVM outputs for Blinks. The SVM output was the mar-
gin (distance along the normal to the class partition). Al-
though the SVM was not trained to measure the amount of
eye opening, it is an emergent property. In all time courses
shown, the SVM outputs are test outputs (the SVM was not
trained on the subject shown). Figure?? shows the SVM
trajectory when tested on a sequence with multiple peaks.

Classifying full sequences. A better test of action unit
recognition is for the case in which the location of the peak
frame is unknown. Hidden Markov Models (HMM’s) were
trained to classify action units from the trajectories of SVM
outputs. The HMM’s were trained on the outputs of the
SVM. For each example from the test subject in the leave-
one-out cross-validation, the output of the SVM was ob-
tained for the complete sequence. This produced a set of
“test” output sequences that were then used to train the
HMM’s. Two hidden Markov models, one for Blinks and
one for random matched sequences, were trained and tested
using leave-one-out cross-validation. A mixture of Gaus-
sians model was assumed. Test sequences were assigned
to the category for which the probability of the sequence
given the model was greatest. The number of states was
varied from 1-10, and the number of Gaussians was varied
from 1-7. Best performance of 98.2% correct was obtained
using 6 states and 7 Gaussians.

Brows: The goal was to discriminate three action units lo-
calized around the eyebrows. Since this is a 3-category task
and SVMs are originally designed for binary classification
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tasks, we trained a different SVM on each possible binary
decision task: Brow Raise (AU 1+2) versus matched ran-
dom sequences, Brows Lower (AU 4) versus another set of
matched random sequences, and Brow Raise versus Brows
Lower. The output of these three SVM’s was then fed to
an HMM for classification.� The input to the HMM con-
sisted of three values which were the outputs of each of the
three 2-category SVM’s. As for the blinks, the HMM’s were
trained on the “test” outputs of the SVM’s. The HMM’s
achieved 78.2% accuracy using 10 states, 7 Gaussians and
including the first derivatives of the observation sequence
in the input. Separate HMM’s were also trained to perform
each of the 2-category brow movement discriminations in
image sequences. These results are summarized in Table 1.

Brow movement trajectories: Figure ?? shows exam-
ple output trajectories for the SVM trained to discriminate
Brow Raise from Random matched sequences. As with
the blinks, we see that despite not being trained to indi-
cate AU intensity, an emergent property of the SVM out-
put was the magnitude of the brow raise. Maximum SVM
output for each sequence was positively correlated with ac-
tion unit intensity, as scored by the human FACS expert%� � �{� 4 S %{�& � � ��4- � � ��� ��&.

Contribution of 3D alignment to recognition: In order
to examine the benefit, or cost, of the 3D rotation, 2-D
aligned images were also generated. These images were
rotated in the plane so that the eyes were horizontal, and
then cropped and scaled identically to the 3D rotated im-
ages. The aspect ratio was adjusted so that there were 105
pixels between the eyes and 120 pixels from eyes to mouth.
A nonlinear SVM obtained 95.5% accuracy for detecting
blinks from non-blinks in individual 2D aligned images.
This was identical to performance using the 3-D rotations.
In contrast, the 3D rotations appear to have aided the de-
tection of brow raises. Performance of a nonlinear SVM
dropped from 88.5% to 83.3% when using the 2D aligned
images.

Action % Correct N
(HMM)

Blink vs. Non-blink 98.2 336
Brow Raise vs. Random 90.6 96
Brow Lower vs. Random 75.0 28
Brow Raise vs. Brow Lower 93.5 62
Brow Raise vs. Lower vs. Random 78.2 124

�
��� �� ����
�� �� ������� � 
 �� �������
����
�� ��� �����
 ���
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�
SVM theory can be extended in various ways to perform multiclass

decisions (e.g. [13]). In future work, a multiclass SVM willbe included as
input to dynamic models as well.

5



5. Conclusions

We explored an approach for handling out-of-plane head
rotations in automatic recognition of spontaneous facial ex-
pressions from freely behaving individuals. The approach
fits a 3D model of the face and rotates it back to a canoni-
cal pose (e.g., frontal view). We found that machine learn-
ing techniques applied directly to the warped images is a
promising technology for automatic coding of spontaneous
facial expressions. This approach employed general pur-
pose learning mechanisms that can be applied to the recog-
nition of any facial action. The approach is parsimonious
and does not require defining a different set of feature pa-
rameters or image operations for each facial action. One
exciting finding is the observation that important measure-
ments emerged out of filters derived from the statistics of
the images. For example, the output of the SVM filter
matched to the blink detector could be potentially used to
measure the dynamics of eyelid closure, even though the
system was not designed to explicitly detect the contours of
the eyelid and measure the closure. (See Figure 4.)

We found a particle filtering approach to 3D pose esti-
mation was more robust to noise than the IO algorithm, one
of the most robust deterministic pose estimation algorithms
[15]. Most importantly, generalization of the particle fil-
tering approach to use automatic feature detectors instead
of hand-labeled features is relatively straightforward. We
are presently developing automatic feature detectors [9] to
be integrated with this system. We are also combining the
particle filtering approach with a system for developed by
Matthew Brand for automatic real-time head pose estima-
tion based on optic flow [?]. The particle filters presented
here use very simple (zero drift) face dynamics. Another
advancement underway is to train diffusion networks [17]
to develop more realistic face dynamics models. The op-
tic flow measurements will be input to the face dynamics
model to refine the distribution of head poses at the next
time step.

While the database we used was rather large for current
digital video storage standards, in practice the number of
examples of each action unit in the database was relatively
small. This was the primary reason why we could only pro-
totype the system on the three actions which had the most
examples: Blinks (168 examples), Brow raise (48 exam-
ples), and Brow lower (14 examples). Inspection of the per-
formance of our system shows that 14 examples was suffi-
cient to successfully learn an action, an order of 50 exam-
ples was sufficient to achieve performance over 90%, and an
order of 150 examples was sufficient to achieve over 98%
accuracy and learn smooth trajectories.

All of the pieces of the puzzle are ready for the devel-
opment of automated systems that recognize spontaneous
facial actions at the level of detail required by FACS. Col-
lection of a much larger, realistic database to be shared by
the research community is a critical next step.
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