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Charles Darwin (1872/1998) was the first to fully recognize that facial expression is one
of the most powerful and immediate means for human beings to communicate their emotions,
intentions, and opinions to each other. In addition to providing information about affective state,
facial expressions also provide information about cognitive state, such as interest, boredom,
confusion, and stress, and conversational signals with information about speech emphasis and
syntax. Facial expressions also contain information about whether an expression of emotion is
posed or felt (Ekman, 2001; Frank, Ekman, & Friesen, 1993). In order to objectively measure the
richness and complexity of facial expressions, behavioral scientists have found it necessary to
develop objective coding standards. The Facial Action Coding System (FACS) from Ekman and
Friesen (1978) is arguably the most comprehensive and influential of such standards.  FACS is
based on the anatomy of the human face, and codes expressions in terms of component
movements, called “action units” (AUs).  Ekman and Friesen defined 46 AUs to describe each
independent movement of the face.  FACS measures all visible facial muscle movements,
including head and eye movements, and not just those presumed to be related to emotion.   When
learning FACS, a coder is trained to identify the characteristic pattern of bulges, wrinkles, and
movements for each facial AU.  The AUs approximate individual facial muscle movements but
there is not always a 1:1 correspondence.

FACS has been used to verify the physiological presence of emotion in a number of
studies, with high (over 75%) agreement  (e.g., Ekman, Friesen, & Ancoli, 1980; Ekman,
Levenson, & Friesen, 1983; Ekman, Davidson, & Friesen, 1990; Levenson, Ekman, & Friesen,
1990; Ekman, Friesen, & O’Sullivan, 1988).  Because it is comprehensive, FACS also allows for
the discovery of new patterns related to emotional or situational states. For example, using FACS
Ekman et al (1990) and Davidson et al (1990) found that smiles which featured both orbicularis
oculi (AU6), as well as zygomatic major action (AU12), were correlated with self-reports of
enjoyment, as well as different patterns of brain activity, whereas smiles that featured only
zygomatic major (AU12) were not.  Subsequent research demonstrated that the presence of smiles
that involve the orbicularis oculi (hereafter “enjoyment smiles”) on the part of a person who has



survived the death of their romantic partner predicts successful coping with that traumatic loss
(Bonnano & Keltner, 1997).  Other work has shown a similar pattern.  For example, infants show
enjoyment smiles to the presence of their mothers, but not to strangers (Fox & Davidson, 1988).
Mothers do not show as many enjoyment smiles to their difficult children compared to their non-
difficult children (Bugental, 1986). Research based upon FACS has also shown that facial
expressions can predict the onset and remission of depression, schizophrenia, and other
psychopathology (Ekman & Rosenberg, 1997), can discriminate suicidally from non-suicidally
depressed patients (Heller & Haynal, 1994), and can predict transient myocardial ischemia in
coronary patients (Rosenberg et al., 2001). FACS has also been able to identify patterns of facial
activity involved in alcohol intoxication that observers not trained in FACS failed to note
(Sayette, Smith, Breiner, & Wilson, 1992).   

Although FACS is an ideal system for the behavioral analysis of facial action patterns,
the process of  applying FACS to videotaped behavior is currently done by hand and  has been
identified as one of the main obstacles to doing research on emotion (Frank, 2002, Ekman et al,
1993).  FACS coding is currently performed by trained experts who make perceptual judgments
of video sequences, often frame by frame. It requires approximately 100 hours to train a person to
make these judgments reliably and pass a standardized test for reliability. It then typically takes
over two hours to code comprehensively one minute of video. Furthermore, although humans can
be trained to code reliably the morphology of facial expressions (which muscles are active) it is
very difficult for them to code the dynamics of the expression (the activation and movement
patterns of the muscles as a function of time). There is good evidence suggesting that such
expression dynamics, not just morphology, may provide important information (Ekman &
Friesen, 1982). For example, spontaneous expressions have a fast and smooth onset, with distinct
facial actions peaking simultaneously, whereas posed expressions tend to have slow and jerky
onsets, and the actions typically do not peak simultaneously (Frank, Ekman, & Friesen, 1993).

Figure 1: The Facial Action Coding System decomposes facial expressions into component
actions. The three individual brow region actions and selected combinations are illustrated. When
subjects pose fear they often perform 1+2 (top right), whereas spontaneous fear reliably elicits
1+2+4 (bottom right) (Ekman, 2001).



Within the past decade, significant advances in computer vision open up the possibility of
automatic coding of facial expressions at the level of detail required for such behavioral studies.
Automated systems would have a tremendous impact on basic research by making facial
expression measurement more accessible as a behavioral measure, and by providing data on the
dynamics of facial behavior at a resolution that was previously unavailable. Such systems would
also lay the foundations for computers that can understand this critical aspect of human
communication. Computer systems with this capability have a wide range of applications in basic
and applied research areas, including man-machine communication, security, law enforcement,
psychiatry, education, and telecommunications.

A number of ground breaking systems have appeared in the computer vision literature for
facial expression recognition which use a wide variety of approaches, including optic flow (Mase,
1991;Yacoob & Davis, 1996; Rosenblum, Yacoob, & Davis, 1996; Essa & Pentland, 1997),
tracking of high-level features (Tian, Kanade, & Cohn, 2001; Lien, Kanade, Cohn, & Li, 2000)
methods that match images to physical models of the facial skin and musculature (Mase 1991;
Terzopoulus & Waters, 1993; Li, Riovainen, & Forscheimer, 1993; Essa & Pentland, 1997),
methods based on statistical learning of images (Cottrell & Metcalfe, 1991; Padgett & Cottrell,
1997; Lanitis, Taylor, & Cootes, 1997; Bartlett et al., 2000) and methods based on biologically
inspired models of human vision (Zhang, Lyons, Schuster, & Akamatsu, 1998; Bartlett, 2001,
Bartlett, Movellan, & Sejnowski, 2002).    See Pantic (2000b) for a review.

Much of the early work on computer vision applied to facial expressions focused on
recognizing a few prototypical expressions of emotion produced on command (e.g., “smile”).
More recently there has been an emergence of groups that analyze facial expressions into
elementary components. For example Essa and Pentland (1997) and Yacoob and Davis (1996)
proposed  methods to analyze expressions using an animation-style  coding system inspired by
FACS.    Eric Petajan’s group has also worked for many years on methods for automatic coding
of facial expressions in the style of MPEG4 which codes movement of a set of facial feature
points (Doenges, Lavagetto, Osterman, Pandzic and Petajan, 1997). While coding standards like
MPEG4  are useful for animating facial avatars, behavioral research may require more
comprehensive information. For example, MPEG4 does not encode some behaviorally relevant
movements such as the contraction of the orbicularis oculi, which differentiates spontaneous from
posed smiles (Ekman, 2001). It also does not measure changes in surface texture such as
wrinkles, bulges, and shape changes that are critical for the definition of action units in the FACS
system.  For example, the vertical wrinkles and bulges between the brows are important for
distinguishing AU 1 alone from AU 1+4 (see Figure 1b), both of which entail upward movement
of the brows, but which can have different behavioral implications.

We present here an approach for developing a fully automatic FACS coding system. The
approach uses state of the art  machine learning techniques  that can be applied to recognition of
any facial action.  The techniques were tested on a small sample of facial actions, but can be
readily applied to recognition of other facial actions given a sample of images on which to train
the system. We are presently collaborating with Mark Frank to collect more training data (see
Afterword.) In this paper we show preliminary results for I. Recognition of posed facial actions in



controlled conditions, and II. Recognition of spontaneous facial actions in freely behaving
subjects.

Two other groups have focused on automatic FACS recognition as a tool for behavioral
research. One team, lead by Jeff Cohn and Takeo Kanade,  present an approach based on
traditional computer vision techniques such as using edge detection to extract contour-based
image features and motion tracking of those features using optic flow. A comparative analysis of
our approaches is available in (Bartlett et al, 2001; Cohn et al., 2001). Pantic & Rothcrantz
(2000a) use robust facial feature detection followed by an expert system to infer facial actions
from the geometry of the facial features. The approach presented here measures changes in facial
texture that include not only changes in position of feature points, but also higher resolution
changes in image texture such as those created by wrinkles, bulges, and changes in feature
shapes. We explore methods that merge machine learning and biologically inspired models of
human vision. Our approach differs from other groups in that instead of designing special purpose
image features for each facial action, we explore general purpose learning mechanisms that can
be applied to recognition of any facial action.

 Study I: Automatic FACS coding of posed facial actions, controlled conditions

A database of directed facial actions was collected by Paul Ekman and Joe Hager at the
University of California, San Francisco. The full database consists of 1100 image sequences
containing over 150 distinct actions and action combinations, and 24 subjects. These images were
collected in a constrained environment. Subjects deliberately faced the camera and held their
heads as still as possible. Each sequence contained 7 frames, beginning with a neutral expression
and ending with the action unit peak.  For this investigation, we used 111 sequences from 20
subjects and attempted to classify 12 actions: 6 upper face actions (Aus 1, 2, 4, 5, 6, and 7)  and 6
lower face actions (Aus 9, 10, 16, 17, 18, 20).  Upper and lower-face actions were analyzed
separately. A sample of facial actions from this database is shown in Figure 1b.

We developed and compared techniques for automatically recognizing these facial
actions by computer (Bartlett et al., 1996; Bartlett, Hager, Ekman, & Sejnowski, 1999; Donato,
Bartlett, Hager, Ekman, & Sejnowski, 1999; Bartlett, Donato, Hager, Ekman, & Sejnowski,
2000). Our work focused on comparing the effectiveness of different image representations, or
feature extraction methods, for facial action recognition. We compared image filters derived from
supervised and unsupervised machine learning techniques. These data-driven filters were
compared to Gabor filter banks, which closely model the response transfer function of simple
cells in primary visual cortex. In addition, we also examined motion representations based on
optic flow, and an explicit feature-extraction technique that measured facial wrinkles in specified
locations (Bartlett et. al. 1999; Donato et al. 1999). These techniques are briefly reviewed here.
More information is available in the journal papers cited above, and in Bartlett (2001).



Adaptive methods

In contrast to more traditional approaches to image analysis in which the relevant structure is
decided by the human user and measured using hand-crafted techniques, adaptive methods learn
about the image structure directly from the image ensemble. We draw upon principles of machine
learning and information theory to adapt processing to the immediate task environment. Adaptive
methods have proven highly successful for tasks such as recognizing facial identity (e.g. Brunelli
& Poggio, 1993; Turk & Pentland, 1991; Penev & Atick, 1996; Belhumeur et al., 1997; Bartlett,
Movellan, & Sejnowski, 2002; see Bartlett, 2001 for a review), and can be applied to recognizing
any expression dimension given a set of training images.

We compared four techniques for developing image filters adapted to the statistical
structure of face images. (See Figure 2.) The techniques were Principal Component Analysis
(PCA), often termed Eigenfaces (Turk & Pentland 1991), Local Feature Analysis (LFA) (Penev
& Atick, 1996), Fisher’s linear discriminants  (FLD), and Independent Component Analysis
(ICA). Except for FLD, all of these techniques are unsupervised; image representations are
developed without knowledge of the underlying action unit categories. Principal component
analysis, Local Feature Analysis and Fisher discriminant analysis are a function of the pixel by
pixel covariance matrix and thus insensitive to higher-order statistical structure.  Independent
component analysis is a generalization of PCA that learns the high-order relations between image
pixels, not just pair-wise linear dependencies. We employed a learning algorithm for ICA
developed in Terry Sejnowski's laboratory based on the principle of optimal information transfer
between neurons (Bell & Sejnowski, 1995;  Bartlett, Movellan, & Sejnowski, 2002).

a.   b.   c.   d.

Figure 2. Sample image filters for the upper face. a.  Eigenface (PCA). b. Independent component
analysis  (ICA) c. Gabor. d. Local Feature Analysis (LFA).

Predefined image features

Gabor wavelets

An alternative to the adaptive methods described above are wavelet decompositions based on
predefined families of image kernels. We employed Gabor kernels, which are 2-D sine waves
modulated by a Gaussian. Gabor kernels model the response functions of cells in the primate
visual cortex (Daugman, 1988), and have proven successful as a basis for recognizing facial
identity in images (Lades et al., 1993).



Explicit Feature Measures

A more traditional approach to computer vision is to apply hand-crafted image features explicitly
designed to measure components of the image that the engineer has decided are relevant. We
applied a method developed by Jan Larson (Bartlett et. al., 1996) for measuring changes in facial
wrinkling and eye opening. Facial wrinkling was measured by the sum of the squared derivatives
of the image pixels along line segments in 4 facial regions predicted to contain wrinkles due to
the facial actions in question. Eye opening was measured as the area of visible sclera. Changes in
wrinkling or eye opening were measured by subtracting baseline measured for the neutral image.
See Bartlett et al. (1999) for more information on this technique.

Optic Flow

The majority of the work on automatic facial expression recognition has focused on facial motion
analysis through optic flow estimation. Here, optic flow fields were calculated by employing a
correlation-based technique developed by Singh (1992). Optic flow fields were classified by
template matching. (See Donato et al., 1999, for more information).

Classification Procedure

The face was located in the first frame in each sequence using the centers of the eyes and
mouth. These coordinates were obtained manually by a mouse click.   The coordinates from
Frame 1 were used to register the subsequent frames in the sequence. The aspect ratios of the
faces were warped so that the eye and mouth centers coincided across all images.  The three
coordinates were then used to rotate the eyes to horizontal, scale, and finally crop a window of 60
x 90 pixels containing the upper or lower face.  To control for variations in lighting, logistic
thresholding and luminance scaling was performed (Movellan, 1995). Difference images were
obtained by subtracting the neutral expression in the first image of each sequence from the
subsequent images in the sequence. Individual frames of each action unit sequence were
otherwise analyzed separately, with the exception of optic flow which analyzed three consecutive
frames.

Each image analysis algorithm produced a feature vector f. We employed a simple
nearest neighbor classifier in which the similarity of a training feature vector ft and a novel
feature vector fn was measured as the cosine of the angle between them. The test vector was
assigned the class label of the training vector for which the cosine was highest. We also explored
template matching, where the templates were the mean feature vectors for each class.
Generalization to novel faces was evaluated using leave-one-out cross-validation.



Human Subject Comparisons

The performance of human subjects provided benchmarks for the performances of the automated
systems. Naïve subjects benchmarked the difficulty of the visual classification task. The
agreement rates of FACS experts benchmarked how close we were to the goal of replacing expert
human coders with an automated system. Naïve subjects were 10 adult volunteers with no prior
knowledge of facial expression measurement. Upper and lower facial actions were tested
separately. Subjects were provided with a guide sheet which gave an example of each of the 6
lower or upper facial actions along with written descriptions from Ekman & Friesen (1978). Each
subject was given a training session in which the facial actions were described and demonstrated,
and visual cues were pointed out in the example images.  The subject kept the guide sheet as a
reference during the task. Face images were preprocessed identically to how they had been for the
automated systems, and then printed using a high resolution laser printer.  Face images were
presented in pairs, with the neutral image and the test image presented side by side. Subjects
made a 6-alternative forced choice on 93 pairs of upper face and 93 pairs of lower face actions.
Expert subjects were 4 certified FACS coders. Expert subjects were not given additional training
or a guide sheet.

Overall Findings

 Image decomposition with gray-level image filters outperformed explicit extraction of facial
wrinkles or motion flow fields.  Best performance was obtained with the Gabor wavelet
decomposition and independent component analysis, each of which gave 96% accuracy for
classifying the 12 facial actions (see Table 1). This performance equaled the agreement rates of
expert human subjects on this set of images. The Gabor and ICA representations were both
sensitive to high-order dependencies among the pixels (Field, 1994; Simoncelli, 1997), and have
relationships to visual cortical neurons (Daugman, 1988; Bell & Sejnowski, 1997). See (Bartlett,
2001) for a more detailed discussion.   We also obtained evidence that high spatial
frequencies are important for classifying facial actions.  Classification with the three highest
frequencies of the Gabor representation (15,18,21 cycles/face) was 93% compared to 84% with
the three lowest frequencies (9,12,15 cycles/face).
 

Computational
Analysis

Eigenfaces 79.3  +4
Local Feature Analysis 81.1  +4
Independent Component Analysis 95.5  +2
Fisher’s Linear Discriminant 75.7  +4
Gabor Wavelet Decomposition 95.5  +2
Optic Flow 85.6  +3
Explicit Features (wrinkles) 57.1  +6

Human
Subjects

Naïve 77.9  +3
Expert 94.1  +2



Table 1: Summary of results for recognition of directed facial actions.  Performance is for novel
subjects on frame 5. Values are percent agreement with FACS labels in the database.

We also investigated combining multiple sources of information in a single classifier.
Combining the wrinkle measurements with PCA in a three layer perceptron resulted in a 0.3
percentage point improvement in performance over PCA alone (Bartlett et al., 1999).

In addition, we trained a dedicated system to distinguish felt from unfelt smiles
(Littlewort-Ford, Bartlett, & Movellan, 2001) based on the findings of Ekman, Friesen, and
O’Sullivan (1988) that felt smiles include the contraction of the orbicularis oculi. This system
was trained on two FACS-coded databases of images, the DFAT-504 and the Ekman-Hager
databases. There were 157 examples of smiles scored as containing both AU 12 (zygomatic
major) and AU 6  (orbicularis oculi) and 72 examples of smiles scored as containing 12 but not
AU 6. This system obtained 87% correct discrimination of felt from unfelt smiles. This is
encouraging given that non-expert humans detected AU 6 about 50% of the time and false
alarmed about 25% of the time on a 6-alternative forced choice (Bartlett et al., 1999).

Study II: Automatic FACS coding of spontaneous facial expressions1

Prior to 2000, work in automatic facial expression recognition was based on datasets of posed
expressions collected under controlled conditions with subjects deliberately facing the camera at
all times. In 2000-2001 our group at UCSD, along with the Cohn/Kanade group at CMU,
undertook the first attempt that we know of to automate FACS coding of spontaneous facial
expressions in freely behaving individuals (Bartlett et. al, 2001; Cohn et al. 2001).  Extending
these systems to spontaneous facial behavior was a critical step forward towards development of
tools with practical applications in behavioral research.

Spontaneous facial expressions differ substantially from posed expressions, similar to
how continuous, spontaneous speech differs from isolated words produced on command.
Spontaneous facial expressions are mediated by a distinct neural pathway from posed
expressions.  The pyramidal motor system, originating in the cortical motor strip, drives voluntary
facial actions, whereas involuntary, emotional facial expressions originate subcortically  and
involve the basal ganglia, limbic system, and the cingulate motor area (e.g. Rinn, 1984).
Psychophysical work has shown that spontaneous facial expressions differ from posed
expressions in a number of ways (Ekman, 2001).  Subjects often contract different facial muscles
when asked to pose an emotion such as fear versus when they are actually experiencing fear. (See
Figure 1.) In addition, the dynamics are different. Spontaneous expressions have a fast and
smooth onset, with apex coordination, in which muscle contractions in different parts of the face
peak at the same time.  In posed expressions, the onset tends to be slow and jerky, and the muscle
contractions typically do not peak simultaneously.

The goal of this study was to classify facial actions in twenty subjects who participated in
a high stakes mock crime experiment previously conducted by Mark Frank and Paul Ekman
(Frank and Ekman, 1997). The results were evaluated by a team of computer vision experts
(Yaser Yacoob, Pietro Perona) and behavioral experts (Paul Ekman, Mark Frank). These experts



produced a report identifying the feasibility of this technology and the steps necessary for future
progress.

Factorizing rigid head motion from nonrigid facial deformations

The most difficult technical challenge that came with spontaneous behavior was the presence of
out-of-plane rotations due to the fact that people often nod or turn their head as they communicate
with others.  Our approach to expression recognition is based on statistical methods applied
directly to filter bank image representations. While in principle such methods may be able to
learn the invariances underlying out-of-plane rotations, the amount of data needed to learn such
invariances was not available to us. Instead, we addressed this issue by means of deformable 3D
face models. We fit 3D face models to the image plane, texture those models using the original
image frame, then rotate the model to frontal views, warp it to a canonical face geometry, and
then render the model back into the image plane. (See Figures 3-5.) This allowed us to factor out
image variation due to rigid head rotations from variations due to nonrigid face deformations. The
rigid transformations were encoded by the rotation and translation parameters of the 3D model.
These parameters are retained for analysis of the relation of rigid head dynamics to emotional and
cognitive state.

Since our goal was to explore the use of 3D models to handle out-of-plane rotations for
expression recognition, we first tested the system using hand-labeling to give the position of 8
facial landmarks. The average deviation between human coders was 1/5 of an iris. We are
currently obtaining similar precision using automatic feature detectors (See Afterword).

a.     b. 

Figure 3: Head pose estimation. a. First camera parameters and face geometry are jointly
estimated using an iterative least squares technique  b. Next head pose is estimated in each frame
using stochastic particle filtering. Each particle is a head model at a particular orientation and
scale.



When landmark positions in the image plane are known, the problem of 3D pose
estimation is relatively easy to solve. We begin with a canonical wire-mesh face model and adapt
it to the face of a particular individual by using 30 image frames in which 8 facial features have
been labeled by hand. Using an iterative least squares triangulation technique, we jointly estimate
camera parameters and the 3D coordinates of these 8 features. A scattered data interpolation
technique is then used to modify the canonical 3D face model so that it fits the 8 feature positions
(Pighin et al., 1998). Once camera parameters and 3D face geometry are known, we used a
stochastic particle filtering approach (Kitagawa, 1996) to estimate the most likely rotation and
translation parameters of the 3D face model in each video frame. (See Braathen, Bartlett,
Littlewort, & Movellan, 2001).

 Action unit recognition

Database of spontaneous facial expressions

We employed a dataset of spontaneous facial expressions from freely behaving individuals. The
dataset  consisted of 300 Gigabytes of 640 x 480 color images, 8 bits per  pixels, 60 fields per
second, 2:1 interlaced.  The video sequences  contained out of plane head rotation up to 75
degrees. There were 17  subjects: 3 Asian, 3 African American, and 11 Caucasians. Three
subjects wore glasses. The facial behaviors in one minute of video  per subject were scored frame
by frame by 2 teams experts on the FACS  system, one lead by Mark Frank at Rutgers, and
another lead by  Jeffrey Cohn at U. Pittsburgh.
While the database we used was rather large for current digital video storage standards, in
practice the number of spontaneous examples of each action unit in the database was relatively
small.  Hence, we prototyped the system on the three actions which had the most examples:
Blinks (AU 45 in the FACS system) for which we used 168 examples provided by 10 subjects,
Brow raises (AU 1+2) for which we had 48 total examples provided by 12 subjects, and Brow
lower (AU 4) for which we had 14 total examples provided by 12 subjects. Negative examples for
each category consisted of randomly selected sequences matched by subject and sequence length.
These three facial actions have relevance to applications such as monitoring of alertness, anxiety,
and confusion (Holland 1972, Karson, 1988; Orden, Jung & McKeig, 2000; Ekman, 2001).

The system presented here employs general purpose learning mechanisms that can be
applied to recognition of any facial action once sufficient training data is available.  There is no
need to develop special purpose feature measures to recognize additional facial actions.

Recognition system

An overview of the recognition system is illustrated in Figures 4 and 5. Head pose was estimated
in the video sequences using a particle filter with 100 particles.  Face images were then warped
onto a face model with canonical face geometry, rotated to frontal, and then projected back into
the image plane. This alignment was used to define and crop a subregion of the face image
containing the eyes and brows. The vertical position of the eyes was 0.67 of the window height.



There were 105 pixels between the eyes and 120 pixels from eyes to mouth. Pixel brightnesses
were linearly rescaled to [0,255]. Soft histogram equalization was then performed on the image
gray-levels by applying a logistic filter with parameters chosen to match the mean and variance of
the gray-levels in the neutral frame (Movellan, 1995).

The resulting images were then convolved with a bank of Gabor kernels at 5 spatial
frequencies and 8 orientations. Output magnitudes were normalized to unit length and then
downsampled by a factor of 4. The Gabor representations were then channeled to a bank of
support vector machines (SVM's).  Nonlinear SVM's were trained to recognize facial actions in
individual video frames. The training samples for the SVM's were the action peaks as identified
by the FACS experts, and negative examples were randomly selected frames matched by subject.
Generalization to novel subjects was tested using leave-one-out cross-validation. The SVM
output was the margin (distance along the normal to the class partition).  Trajectories of SVM
outputs for the full video sequence of test subjects were then channeled to hidden Markov models
(HMM's).  HMMs are probabilistic dynamical models that learn probability distributions of
sequences. They are the dominant approach in current speech recognition systems, where the task
is to recognize sequences of sounds. HMMs were trained to learn the sequences of SVM outputs
typically produced for each AU. One HMM was trained on a single AU unit and thus that HMM
can be considered as an expert for that AU. A similar approach is used in speech recognition
where each HMM becomes an expert on a given phoneme.  At test time a new sequence was
presented and fed to each HMM to get an estimate of the likelihood of each sequence given each
possible AU under consideration. The AU corresponding to the HMM that provided maximum
likelihood was chosen. Note the approach classifies  facial actions without using information
about which frame contained the action peak. Generalization to novel subjects was again tested
using leave-one-out cross-validation.

Figure 4: Flow diagram of recognition system. First, head pose is estimated, and images are
warped to frontal views and canonical face geometry. The warped images are then passed through



a bank of Gabor filters. SVM's are then trained to classify facial actions from the Gabor
representation in individual video frames. The output trajectories of the SVM's for full video
sequences are then channeled to hidden Markov models.

Figure 5: User interface for the FACS recognition system. Bottom right: Frame from the dataset.
Middle right: Estimate of head pose. Center: Warped to frontal view and conical geometry. Top
right: The curve shows the output of the blink detector for the video sequence. This frame is in
the relaxation phase of a blink.

Results

Classifying individual frames with SVM's

SVM's were first trained to discriminate images containing the peak of blink sequences from
randomly selected images containing no blinks. A nonlinear SVM applied to the Gabor
representations obtained 95.9% correct for discriminating blinks from non-blinks for the peak
frames. The nonlinear kernel was of the form 1/(k+d)2 where d is Euclidean distance, and k is a
constant. Here k=4.



Recovering FACS dynamics

Figure 6a shows the  time course of SVM outputs for complete sequences of blinks.  Although the
SVM was only trained to discriminate open from closed eyes, its output produced a continuous
trajectory that correlated well with the amount of eye opening at each video frame. The SVM
outputs provide information about FACS dynamics that was previously unavailable by human
coding due to time constraints. Current coding methods provide only the beginning and end of the
action, along with the location and magnitude of the action unit peak. This information about
dynamics may be useful for future behavioral studies.

a.       b.

c.

Figure 6: a. Blink trajectories of SVM outputs for four different subjects. Star indicates the
location of the AU peak as coded by the human FACS expert. b. SVM output trajectory for a
blink with multiple peaks (flutter). c. Brow raise trajectories of SVM outputs for one subject.
Letters A-D indicate the intensity of the AU as coded by the human FACS expert, and are placed
at the peak frame.

One approach to detecting action units in continuous video would be to simply choose a threshold
and decide that an action unit is present if the output of an SVM reaches that threshold. However,
even when the output does not reach threshold, there may be information in the output trajectory
to indicate an action unit. Figure 6c illustrates a case in point. Choosing a threshold of 0 would



miss the actions labeled intensity B.  However, the action can be detected by examining the
pattern of rise and fall of the sub-threshold output. To capture these dynamics we used the HMM
approach previously described.  Two hidden Markov models, one for Blinks and one for random
sequences matched by subject and length, were trained and tested using leave-one-out cross-
validation. The number of states was varied from 1-10 and the number of Gaussian mixtures per
state vas varied from 1-7. Best performance of 98.2% correct was obtained using 6 hidden states
and 7 Gaussians per state. .

Brow movement discrimination

The goal was to discriminate three action units localized around the eyebrows.  Since this is a 3-
category task and SVMs are originally designed for binary classification tasks, we trained a
different SVM on each possible binary decision task: Brow Raise (AU 1+2) versus matched
random sequences, Brow Lower (AU 4) versus another set of matched random sequences, and
Brow Raise versus Brow Lower.  The output of these three SVM's was then fed to an HMM for
classification. The input to the HMM consisted of three values which were the outputs of each of
the three 2-category SVM's. As for the blinks, the HMM's were trained on the ``test'' outputs of
the SVM's.  The HMM's achieved 78.2% accuracy using 10 states, 7 Gaussians per state and
including the first derivatives of the observation sequence in the input. Separate HMM's were also
trained to perform each of the 2-category brow movement discriminations in image sequences.
These results are summarized in Table 2.

Figure 6c shows example output trajectories for the SVM trained to discriminate Brow
Raise from Random matched sequences.  As with the blinks, we see that despite not being trained
to indicate AU intensity, an emergent property of the SVM output was the magnitude of the brow
raise.  Maximum SVM output for each sequence was positively correlated with action unit
intensity, as scored by the human FACS expert (r = .43, t(42) = 3.1, p = 0.0017).

Action Percent Correct
(HMM)

N

 Blink vs. Matched Random Seq. 98.2 168
Brow Raise vs. Matched Random Seq. 90.6 48
Brow Lower vs. Matched Random Seq. 75.0 14
Brow Raise vs. Brow Lower 93.5 31
Brow Raise vs. Lower vs. Random 78.2 62

Table 2:  Summary of results. All performances are for generalization to novel subjects. Random:
Random sequences matched by subject and length. N: Total number of positive (and also
negative) examples.

The contribution of Gabor filtering of the image was examined by comparing linear and
nonlinear SVM's applied directly to the difference images versus to Gabor outputs.  Consistent
with our previous findings (Littlewort, Bartlett & Movellan, 2001), Gabor filters made the space



more linearly separable than the raw difference images. For blink detection, a linear SVM on the
Gabors performed significantly better (93.5%) than a linear SVM applied directly to difference
images (78.3%).  Using a nonlinear SVM with difference images improved performance
substantially to 95.9%, whereas the nonlinear SVM on Gabors gave only a small increment in
performance, also to 95.9%. A similar pattern was obtained for the brow movements, except that
nonlinear SVMs applied directly to difference images did not perform as well as nonlinear SVM's
applied to Gabors. The details of this analysis, and also an analysis of the contribution of SVM's
to system performance, are available in Bartlett et al., (2001).

Conclusions

The results of Study I provided guidance as to which image representations, or feature extraction
methods,  are most effective for facial action recognition. We found that Gabor wavelets and
Independent Component Analysis gave best performance.  These methods rely on precise
alignment of the face image. Out-of-plane head rotations present a major challenge.

Study II explored an approach for handling out-of-plane head rotations in automatic
recognition of spontaneous facial expressions from freely behaving individuals. The approach fits
a 3D model of the face and rotates it back to a canonical pose (e.g., frontal view).  We found that
machine learning techniques applied directly to the warped images is a promising approach for
automatic coding of spontaneous facial expressions.

This approach employed general purpose machine learning techniques that can be applied
to the recognition of any facial action. The approach is parsimonious and does not require
defining a different set of feature parameters or image operations for each facial action.  While
the database we used was rather large for current digital video storage standards, in practice the
number of spontaneous examples of each action unit in the database was relatively small. We
therefore prototyped the system on the three actions which had the most examples. Inspection of
the performance of our system shows that 14 examples was sufficient to successfully learn an
action, an order of 50 examples was sufficient to achieve performance over 90%, and an order of
150 examples was sufficient to achieve over 98% accuracy and learn smooth trajectories.  Based
on these results, we estimate that a database of 250 minutes of coded, spontaneous behavior
would be sufficient to train the system on the vast majority of facial actions.

One exciting finding is the observation that important measurements emerged out of
filters derived from the statistics of the images. For example, the output of the SVM filter
matched to the blink detector could be potentially used to measure the dynamics of eyelid closure,
even though the system was not designed to explicitly detect the contours of the eyelid and
measure the closure. (See Figure 6.)

The results presented here employed hand-labeled feature points for the head pose
tracking step. We are presently developing a fully automated head pose tracker (see Afterword).

All of the pieces are in place for the development of automated systems that recognize
spontaneous facial actions at the level of detail required by FACS. Collection of a much larger,
realistic database to be shared by the research community is a critical next step.
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1. This section originally appeared in the following: Bartlett, M.S., Littlewort, G., Braathen, B.,
Sejnowski, T.J., & Movellan, J.R. (2003). A prototype for automatic recognition of spontaneous
facial actions. In S. Becker & K. Obermayer, (Eds.) Advances in Neural
Information Processing Systems, Vol 15. MIT Press. Reprinted with permission.
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