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Abstract

Computer animated agents and robots bring a social dimensibu-
man computer interaction and force us to think in new waysiahow
computers could be used in daily life. Face to face commtpicas
a real-time process operating at a time scale of less thanande In
this paper we present progress on a perceptual primitivettnaatically
detect frontal faces in the video stream and code them wéihere to 7
dimensions in real time: neutral, anger, disgust, fear, $aginess, sur-
prise. The face finder employs a cascade of feature detex@orsd with
boosting techniques [13, 2]. The expression recognizeta@ma@ novel
combination of Adaboost and SVM'’s. The generalization enfance
to new subjects for a 7-way forced choice was 93.3% and 97%ecior
on two publicly available datasets. The outputs of the diasshange
smoothly as a function of time, providing a potentially \alhle repre-
sentation to code facial expression dynamics in a fully euatiic and
unobtrusive manner. The system was deployed and evaluatedefa-
suring spontaneous facial expressions in the field in anicgijn for
automatic assessment of human-robot interaction.

1 Introduction

Computer animated agents and robots bring a social dimetsibuman computer inter-
action and force us to think in new ways about how computenfddoe used in daily life.
Face to face communication is a real-time process operatiagtime scale of less than
a second. Thus fulfilling the idea of machines that interacefto face with us requires
development of robust real-time perceptive primitivesthis paper we present first steps
towards the development of one such primitive: a systemahttmatically finds faces in
the visual video stream and codes facial expression dyrsamieal time. The system au-
tomatically detects frontal faces and codes them with retdp&’ dimensions: Joy, sadness,
surprise, anger, disgust, fear, and neutral. Speed andeagare enhanced by a noveltech-
nigue that combines feature selection based on Adabodsfedture integration based on
support vector machines. We host an online demo of the syatéittp:/mplab.ucsd.edu.



The system was trained and tested on two publicly avaliadtasgts of facial expressions
collected by experimental psychologists expert in facéddvior. In addition, we deployed
and evaluated the system in an application for recogniziog&neous facial expressions
from continuous video in the field. We assess the system agteothéor automatic mea-
surement of human-robot interaction.

2 Face detection

We developed a real-time face-detection system based grcébable of detection and
false positive rates equivalent to the best published te$ll, 12, 10, 13]. The system
consists of a cascade of classifiers trained by boostingnigabs. Each classifier employs
integral image filters reminiscent of Haar Basis functiansich can be computed very fast
at any location and scale in constant time (see Figure 1) 2th»a 24 pixel window, there
are over 160,000 possible filters of this type. For each sitaglee cascade, a subset of
features are chosen using a feature selection procedurd basidaboost [3].

We enhance the approach in [13] in the following ways: (1) ©adeature is selected by
boosting, we refine the selection by finding the best perfognsingle-feature classifier
from a new set of filters generated by shifting and scalingctiesen filter by two pixels

in each direction, as well as composite filters made by réflgetach shifted and scaled
feature horizontally about the center and superimposirmithe original. This can be
thought of as a single generation genetic algorithm, andushfaster than exhaustively
searching for the best classifier among all 160,000 posHitelies and their reflection-based
cousins.

(2) While [13] use Adaboost in their feature selection aildpon, which requires binary
classifiers, we employed Gentleboost, described in [4]clwhises real valued features.
Figure 2 shows the first two filters chosen by the system aldtigthe real valued output
of the weak learners (or tuning curves) built on those filtdlgte the bimodal distribution
of filter 2.

(3) We have also developed a training procedure so thatedtdr single feature, the system
can decide whether to test another feature or to make a decisthis system retains

information about the continuous outputs of each featuteatier rather than converting

to binary decisions at each stage of the cascade. Preliynieaults show potential for

dramatic improvements in speed with no loss of accuracy inecurrent system.

The face detector was trained on 5000 faces and millions offace patches from about
8000 images collected from the web by Compaqg Research Liahigs Accuracy on the
CMU-MIT dataset (a standard, public data set for benchmarkiontal face detection
systems) is comparable to [13]. Because the strong classd#ly in the sequence need
very few features to achieve good performance (the firsestag rejec60% of the non-
faces using only features, using only 20 simple operations, or about 60 mrc@essor
instructions), the average number of features that need &valuated for each window is
very small, making the overall system very fast. The souomedor the face detector is
freely available at http://www.sourceforge.net/progéadlmogorov.

3 Facial Expression Classification

3.1 Dataset

The facial expression system was trained and tested on QuthiKanade’s DFAT-504
dataset [6]. This dataset consists of 100 university stisdemging in age from 18 to 30
years. 65% were female, 15% were African-American, and 3%evwsian or Latino.
Videos were recoded in analog S-video using a camera lodatectly in front of the sub-
ject. Subjects were instructed by an experimenter to perfoseries of 23 facial expres-
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Figure 1: Integral image filters (after Viola & Jones, 2003])1 a. The value of the pixel
at(z,y) is the sum of all the pixels above and to the left. b. The sunhefdixels within
rectangleD can be computed as+ 1 — (2 + 3). (c) Each feature is computed by taking
the difference of the sums of the pixels in the white boxesgregl boxes. Features include
those shown in (c), as in [13], plus (d) the same featuresrsupesed on their reflection
about the Y axis.
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Figure 2: The first two features (a,c) and their respectiméntyicurves (b,d). Each feature
is shown over the average face. The first tuning curve shostsatbark horizontal region
over a bright horizontal region in the center of the windowevidence for a face, and for
non-face otherwise. The output of the second filter is birhd8lath a strong positive and
a strong negative output is evidence for a face, while outfmsger to zero is evidence for
non-face.

sions. Subjects began and ended each display with a neateal Before performing each
display, an experimenter described and modeled the detispldy. Image sequences from
neutral to target display were digitized into 640 by 480 pateays with 8-bit precision for
grayscale values.

For our study, we selected 313 sequences from the datasetorili selection criterion
was that a sequence be labeled as one of the 6 basic emotioasefuences came from
90 subjects, with 1 to 6 emotions per subject. The first andilames (neutral and peak)
were used as training images and for testing generalizadioew subjects, for a total of
625 examples. The trained classifiers were later applidutemtire sequence.

All faces in this dataset were successfully detected. Thenaatically located faces were
rescaled to 48x48 pixels.The typical distance betweenehéecs of the eyes was roughly
24 pixels. A comparison was also made at double resoluti6r9d@). No further registra-
tion was performed. Other approaches to automatic faciaession recognition include
explicit detection and alignment of internal facial feasir The recognition system pre-
sented here performs well without that step, providing ssierable savings in processing
time. The images were converted into a Gabor magnitude septation, using a bank of
Gabor filters at 8 orientations and 5 spatial frequenciels(gixels per cycle at 1/2 octave
steps) [7].



4 SVM's and Adaboost

SVM performance was compared to Adaboost for emotion dleasbn. The system per-
formed a 7-way forced choice between the following emotiategories: Happiness, sad-
ness, surprise, disgust, fear, anger, neutral. The clzesifhn was performed in two stages.
First, seven binary classifiers were trained to discringiretch emotion from everything
else. The emotion category decision was then implementetibgsing the classifier with
the maximum output for the test example.

Support vector machines (SVM's) are well suited to this thekause the high dimen-
sionality of the Gabor representation does not affect imgitime for kernel classifiers.
Linear, polynomial, and RBF kernels with Laplacian, and &an basis functions were
explored. Linear and RBF kernels employing a unit-width &#an performed best, and
are presented here. Generalization to novel subjects w@&sitesing leave-one-subject-out
cross-validation. Results are presented in Table 1.

The features employed for the Adaboost emotion classifiee wee individual Gabor fil-
ters. There were 48x48x40 = 92160 possible features. A sob#gese filters was chosen
using Adaboost. On each training round, the threshold aald smrameter of each filter
was optimized and the feature that provided best performanahe boosted distribution
was chosen.

During Adaboost, training for each emotion classifier coudid until the distributions for

the positive and negative samples were separated by a gpprpomal to the widths of

the two distributions. The total number of filters selectsithg this procedure was 538.
Since Adaboost is significantly slower to train than SVM'g did not do 'leave one sub-
ject out’ cross validation. Instead we separated the stdjaandomly into ten groups of
roughly equal size and did 'leave one group out’ cross vébida SVM performance for

this training strategy is shown for comparison.

Results are shown in Table 1. The generalization performaBis.0%, was comparable
to linear SVM performance on the leave-group-out testingagigm, but Adaboost was
substantially faster, as shown in Table 2. Here, the systdoulated the output of Gabor
filters less efficiently, as the convolutions were done inepspace rather than Fourier
space, but the use of 200 times fewer Gabor filters neveghetsulted in a substantial
speed benefit.

5 AdaSVM’'s

Adaboost provides an added value of choosing which feaaremost informative to test
at each step in the cascade. Figure 3a illustrates the firsid®Geatures chosen for each
emotion. The chosen features show no preference for dirediut the highest frequencies
are chosen more often. Figure 3b shows the number of choaturds at each of the 5
wavelengths used.

A combination approach, in which the Gabor Features chogéaboost were used as a
reduced representation for training SVM’s (AdaSVM's) eerformed Adaboost by 3.8 per-
cent points, a difference that was statistically signift§as1.99, p=0.02). AdaSVM’s out-
performed SVM'’s by an average of 2.7 percent points, an ingareent that was marginally
significant (z = 1.55, p = 0.06).

After examination of the frequency distribution of the Gablter selected by Adaboost, it
became apparent that higher spatial frequency Gabors ghdrhiesolution images could
potentially improve performance. Indeed, by doubling #sotution to 96x96 and increas-
ing the number of Gabor wavelengths from 5 to 9 so that theprspad 2:32 pixels in 1/2
octave steps improved performance of the nonlinear AdaS¥®I3t3% correct. As the
resolution goes up, the speed benefit of AdaSVM's becomes mxage apparent. At the
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Figure 3: a. Gabors selected by Adaboost for each expresgitite dots indicate loca-
tions of all selected Gabors. Below each expression is adicembination of the real part
of the first 5 Adaboost features selected for that expressiaces shown are a mean of 10
individuals. b. Wavelength distribution of features s&deldoy Adaboost.

higher resolution, the full Gabor representation incrddsg a factor of 7, whereas the
number of Gabors selected by Adaboost only increased byter faicl.75.

Performance of the system was also evaluated on a secondlpabhilable dataset, Pic-
tures of Facial Affect[1]. We obtained 97% accuracy for gefization to novel subjects,
trained by leave-one-subject-out cross-validation. ihébout 10 percentage points higher
than the best previously reported results on this datasél.[9

An emergent property was that the outputs of the classifiangl smoothly as a function

of time, providing a potentially valuable representatioicdde facial expression dynamics
in a fully automatic and unobtrusive manner. (See Figurdrbthe next section, we apply

this system to assessing spontaneous facial expressitiresfield.

Leave-group-out  Leave-subject-out
Adaboost SVM| SVM AdaSVM

85.0 84.8
86.9

86.2 88.8
88.0 90.7

Linear
RBF

Table 1: Performance of Adaboost,SVM's and AdaSVM'’s (48ikd8&ges).

SVM Adaboost AdaSVM
Lin RBF | Lin RBF

Time t t 90t 0.01t | 0.01t 0.0125t
Time t t 90t 0.16t | 0.16t 0.2t
Memory| m  90m 3m 3m 3.3m

Table 2: Processing time and memory considerations. Tinmeludes the extra time to
calculate the outputs of the 538 Gabors in pixel space fobAdat and AdaSVM, rather
than the full FFT employed by the SVM’s.



6 Deployment and evaluation: Automatic Evaluation of
Human-Robot Interaction

We are currently evaluating the system as a tool for autaalftimeasuring the quality
of human-robot social interaction. This test involves gatton of spontaneous facial
expressions in the continuous video stream during uncainstl interaction with RoboVie,
a social robot under development at ATR and the Universif@sdka [5]. This study was
conducted at ATR in Kyoto, Japan. 14 participants, male antafe, were instructed to
interact with RoboVie for 5 minutes. Their facial expressiavere recorded via 4 video
cameras. The study was followed by a questionnaire in witietparticipants were asked
to evaluate different aspects of their interaction with Rdie.
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Figure 4: Human response during interaction with the RobaWubot at ATR is measured
by automatic expression analysis.

Faces were automatically detected and facial expressiassified in the continuous video
streams of each of the four cameras. With the multi-camedigm, one or more cameras
often provides a better view than the others. When the faogtaged, partially occluded,
or misaligned, the expression classification is less ridialh confidence measure from
the face detection step consisted of the final unthreshaldgult of the cascade passed
through a softmax transform over the four cameras. This oreasdicated how much like
a frontal face the system determined the selected windaw &ach camera to be.

We compared the system’s expression labels with a form efrgtéruth from human judg-
ment. Four naive human observers were presented with tlee@idf each subject at 1/3
speed. The observersindicated the amount of happinessidhative subject in each video
by turning a dial.

The outputs of the four cameras were integrated by trainiivgar regression on 32 num-
bers, the continuous outputs of the seven emotion classifiee margin) plus the confi-
dence measure from the face detector for each of the fourreamie predict the human
facial expression judgments. Figure 5 compares the huntgmjants with the automated
system. Preliminary results are promising. The automatsis predicted the human ex-
pression judgments with a correlation coefficient of 0.8fiolh was within the agreement
range of the four human observérs.

!These are results from one subject. Test results based ounbjects will be available in one
week. We are also comparing facial expression measurerbgriieth human and computer to the
self-report questionnaires.
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Figure 5: Human labels (blue/dark) compared to automatstésylabels (red/light) for
'joy’ (one subject, one observer).

7 Conclusions

Computer animated agents and robots bring a social dimetsibuman computer inter-
action and force us to think in new ways about how computentddee used in daily life.
Social robots and agents designed to recognize facial ssipre might provide a much
more interesting and engaging social interaction, whiehlenefit applications from au-
tomated tutors to entertainment robots. Face to face corwaition is a real-time process
operating at a time scale of less than a second. The levelagfrtainty at this time scale
is considerable, making it necessary for humans and mazhimely on sensory rich per-
ceptual primitives rather than slow symbolic inferencecesses. In this paper we present
progress on one such perceptual primitive: Real time reitiogrof facial expressions.

Our results suggest that user independent fully automatittime coding of basic ex-
pressions is an achievable goal with present computer pawégast for applications in
which frontal views or multiple cameras can be assumed. Geofbrmance results were
obtained for directly processing the output of an autorfatie detector without the need
for explicit detection and registration of facial features novel classification technique
was presented that combines feature selection based oroéstabith feature integration
based on support vector machines. The AdaSVM'’s outperforAdaboost and SVM’s
alone, and gave a considerable advantage in speed over S\&tsng performance re-
sults, 93% and 97% accuracy for generalization to novelesiibj were presented for two
publicly available datasets of facial expressions cadlddiy experimental psychologists
expert in facial expressions.

We introduced a technique for automatically evaluatinggbality of human-robot inter-
action based on the analysis of facial expressions. Thisnesived recognition of spon-
taneous facial expressions in the continuous video straamgiunconstrained behavior.
The system predicted human judgements of joy with a coroslatf 0.87.

Within the past decade, significant advances in machinaileg@and machine perception
open up the possibility of automatic analysis of facial egsions. Automated systems
will have a tremendous impact on basic research by makinglfaxpression measurement
more accessible as a behavioral measure, and by providiagpddahe dynamics of facial
behavior at a resolution that was previously unavailablechSsystems will also lay the
foundations for computers that can understand this ckriispect of human communica-
tion. Computer systems with this capability have a wide eanigapplications in basic and
applied research areas, including man-machine commiovicaecurity, law enforcement,
psychiatry, education, and telecommunications.
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