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Abstract

Neural models of contextual integration typically incorporate a mean firing rate repre-
sentation. We examine representation of the full spike count distribution, and its usefulness
in explaining contextual integration of color stimuli in primary visual cortex. Specifically,
we demonstrate that a factorizable model conditioned on thenumber of spikes can account
for both the onset and sustained portions of the response. Wealso consider a simplified
factorizable model, that parametrizes the mean of a Gaussian distribution and incorporates
a logistic nonlinearity. The model can account for the sustained response but does not fair
as well in accounting for onset nonlinearities. We discuss implications for neural coding.
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Sensory neurons exhibit striking nonlinear behaviors in the integration of contextual
information. For example, it has been widely documented that the response of a neuron to
an optimal center stimulus inside the classical receptive field can be nonlinearly modulated
by a surround stimulus that by itself exerts no response in the neuron (e.g., [1, 2]). However,
the computational nature of this interaction for a range of center and surround stimuli is not
well understood. Here we focus on contextual integration ofcolor in primary visual cortex
(area V1) [3].

Neural responses are often analyzed and modeled according to the mean firing rate.
But when a neuron is presented with multiple stimulus repeats, one can also characterize
the fluctuations around the mean firing rate, and more generally, a spike count distribution.
Specifically, we examine a neural model that is factorizablein the spike count domain: con-
ditioned on each spike count (say 0 spikes, 1 spike, and so on)the probability of response
can be factorized into a component selectively determined by the center, and a component
selectively determined by the surround. Similar models have been developed by Morton
and Massaro to explain a wide range of information integration data in the psychophysical
realm [4, 5], and hence have been calledMorton Massaro [6, 7].

We demonstrate the ability of the Morton Massaro model to account for color con-
textual effects in V1 neurons, in comparison to a control model. The control is chosen to
exemplify that there exists a model with the same number of free parameters as Morton



Massaro, that cannot account for the data. This illustratesthat the Morton Massaro model
can explain the data not merely due to flexibility in its number of free parameters. An earlier
version of this work is described in Movellan et al. [7]. We also consider a parametric spike
count distribution model, theGaussian logistic model, that conforms to Morton Massaro
factorizable coding, but contains significantly fewer parameters. Both factorizable models
account well for the sustained response, including suppression when the center matches
the surround color; Morton Massaro fairs better in characterizing the onset of the response,
including suppression when the center matches the surroundcolor, and excitation when the
center is opposite the surround color.

Methods

Animal experimental methods and preparation are describedin detail in Wachtler et al.
[3]. Data were collected from awake fixating rhesus monkeys.Stimuli were homogenous
isoluminant color squares centered on and at least twice thesize of the estimated receptive
field of the neuron. A background stimulus surrounding the center was either color or
neutral gray. The color surround was typically chosen from the colors to which the neuron
showed a clear response. For each trial, one of eight center stimuli and one of the two
surround stimuli were presented for 500 milliseconds. A total of 94 units were recorded,
and 20 units were chosen with strongest background effect and a minimum of 16 trials
per condition. Spike histograms were computed for spike times at the onset (a window at
50-100 milliseconds following stimulus presentation) andthe sustained response (100-200
milliseconds).

Typical nonlinearities observed in the mean firing of V1 neurons for a neutral gray
versus color surround are described in [3]. The color surround often induces most suppres-
sion when the center is matched to the surround color. In addition, excitation for the color
surround condition is sometimes observed when the center isthe opposite color of the sur-
round. We find that such excitation is particularly prominent during the early stages (onset)
of the response, albeit that the color surround alone does not elicit a response. The combi-
nation of excitation and suppression cannot be explained bya multiplicative (factorizable)
model in the mean firing rate domain (data not shown here).

Alternatively, we consider models of the spike count distribution. For each center
and surround stimulus, a spike count distribution is computed by counting in a given time
window the number of stimulus repeats that lead to 0 spikes, 1spike, 2 spikes and so on.

The Morton Massaro model is defined as follows:

P (r|c, s) =
C(c, r)S(s, r)

∑
k C(c, k)S(s, k)

(1)

whereP (r|c, s) is the probability ofr spikes for centerc and surrounds, C(c, r) represents
the support of the center component, andS(s, r) the support of the surround component.
That is, conditioned on the number of spikesr, the response probability can be factorized
into a component dependent on the center, and a component dependent on the surround.
This form of model can be understood in the context of a Bayesian system:
P (r|c, s) = P(c,s|r)P(r)∑

k
P(c,s|k)

. We assume conditional independence of center and surround

given the response:P (c, s|r) = P (c|r)P (s|r); and transform the conditional probabil-
ities P (c|r)P (s|r) into joint probabilitiesP (c, r)P (s, r) and priorP (r) (equivalently
for the denominator). This effectively yields equation (1), with the termC(c, r)S(s, r)
absorbing both the joint probabilities and prior.
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We examine a control model for comparison:

P (r|c, s) =
C(c, r) + S(s, r)

∑
k C(c, k) + S(s, k)

(2)

with the same number of parameters as the Morton Massaro model.

We also introduce a parametric model, the Gaussian logisticmodel, in which the spike
count distribution for centerc and surrounds is given by a Gaussian distribution passed
through a logistic nonlinearity:

R(s, c) = logistic(X(s) + X(c)) (3)

whereX(s) ∼ N (µ(s);σ), andX(c) ∼ N (µ(c);σ) are Gaussian distributions with mean
µ and standard deviationσ; and logistic(Y ) = 1/(1 + exp(−(Y − θ) ∗ α)) includes
thresholdθ and gainα. Thus, the mean of the input to the logistic function changeswith
c and s. Also, the logistic function defined for values between 0 and1, is scaled to go
between 0 and the maximal number of spike counts.

Note that this formulation does not include the number of spikes as a free parameter.
Therefore, equation (3) is not conditioned on the number of spikes, as are equations (1)
and (2). In addition, one can prove from the properties of a Gaussian distribution that this
simplified model adheres to Morton Massaro factorizability. Nevertheless, the parametrized
model is more constrained and does not necessarily entail the full capabilities of Morton
Massaro. For this data set and up to 9 spikes, there are overall 144 data points, 81 free
parameters in the Morton Massaro and Control models, and only 13 free parameters in the
Gaussian logistic model.

Results

We fit each of the V1 neurons with the Morton Massaro, the control, and the Gaussian logis-
tic model. Figure 1 depicts the V1 spike count distribution and estimated Gaussian logistic
model fit for an example neuron. The logistic function provides a nonlinear distortion of the
initial Gaussian distribution. For example, when a Gaussian distribution is passed through
a logistic nonlinearity, low values of the distribution arepushed towards zero, resulting in
higher kurtosis. This property is apparent in the data, and well captured by the Gaussian
logistic model (also by the more general Morton Massaro model, see [7]).

Another aspect of interest is whether the models can capturemean firing rate nonlin-
earities. From the model fits of the spike count distribution, one can compute the mean
tuning curves. Figure 2 plots the mean tuning curves and model fits for the example neuron
for the sustained and onset response. The tuning curves are plotted in polar coordinates
along an isoluminant plane, in which the radius correspondsto the strength of the mean
spike rate. Each polar plot compares the response of the neuron for a color surround versus
a gray surround. Both factorizable models account for the sustained response, in which
there is suppression for center matching the color surround; Morton Massaro also captures
the nonlinearity apparent at the onset, including both suppression as before, and excitation
for center opposite the color surround. For comparison, thecontrol model with the same
number of free parameters as Morton Massaro cannot account for the mean tuning curve
data.

We also compare the Chi-square values of the 20 V1 neurons forthe different models
for the onset and sustained response. Figure 3 shows scatterplots of the normalized (by
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Fig. 1: Spike count distribution representation and Gaussian logistic model fit for example
V1 neuron for window 100-200 msec. Each histogram is computed for a given center and
surround condition. First row corresponds to 8 color centerstimuli on neutral gray surround;
second row corresponds to the same stimuli on color surround. Data are given by open
symbols and model fits by solid lines. Error bars are obtainedfrom bootstrapping.
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Fig. 2: Mean spike counts of data and model fits of example V1 neuron. Top row: mean
tuning curves computed for sustained response (100-200 msec); Bottom row: mean tun-
ing curves computed for onset (50-100 msec). Mean spike counts are calculated from the
estimated spike count distributions in Figure 1, and plotted as tuning curves in polar coor-
dinates along the (L-M,S) plane. Data are given by open symbols and model fits by solid
lines. Gray corresponds to neutral gray surround, and blackto color surround. Black square
indicates the background color for the color surround condition. Note that for the control
model sustained response, the gray and black lines largely overlap.

the degrees of freedom) Chi-square values for all 20 neuronsfor the different models. One
can set a critical value, signifying significant deviationsfrom the model. During sustained
response, 2 neurons show significant deviations to the Morton Massaro model (chi-square
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Fig. 3: Scatter plots of normalized Chi-square values for the 20 neurons as a function of the
different models. Top: sustained response; bottom: onset.To compare across models, we
subtract from each Chi-square value the corresponding degrees of freedom, and normalize
the axis between 0 and 1. Y axis always corresponds to normalized Morton Massaro Chi-
square; the X axis corresponds to either the Gaussian logistic (left) or Control model (right).
Points below unit slope line indicate a lower normalized Chi-square value for the Morton
Massaro model.

test,144 − 81 = 63 degrees of freedom,p < 0.05); 4 to the Gaussian logistic (144 − 13 =
131 degrees of freedom,p < 0.05); and 12 to the control model (144 − 81 = 63 degrees
of freedom,p < 0.05). At onset, 5 show significant deviations to the Morton Massaro
model; 11 to the Gaussian logistic; and 9 to the control model. The Morton Massaro model
performs better than the Gaussian logistic and control for both the sustained and onset
response, as seen by the number of significant deviations, and by most points falling below
the unit slope line in the scatter plots. Both factorizable models perform better than the
control model for the sustained response.

Discussion

We have shown that a factorizable operation combining center and surround information per
each number of spikes, as in the Morton Massaro model, can account for contextual color
nonlinearities in area V1. In contrast, a control model withthe same number of parame-
ters as Morton Massaro could not explain the data. These results suggest that the number
of spikes might play an important role in neural representations, and that factorizable cod-
ing conditioned on the number of spikes might constitute a general principle for cortical
processing.

The Gaussian logistic model offers a step forward towards thinking about neural im-
plementations. However, although the Gaussian logistic model conforms to spike count
distribution factorizability, it is more constrained in its computation per number of spikes.
In practice, it could not account as well for the combinationof excitation and suppression
often apparent at early stages of the response. We are investigating in greater detail those
cases in which there are significant deviations from the model. Deviations from the model
might occur if the classical receptive field was underestimated experimentally. We are also
examining variations of the parametric model, and how thesemight relate to divisive nor-
malization models that have been proposed for the mean firingrate (e.g., [1, 8]).

This framework for thinking about spike count distributions and factorizability can be
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applied to a number of future directions. In the modeling perspective, it will be pertinent
to construct more realistic neural circuitry that can account for the data. Morton Massaro
factorizable codes are often described as feedforward, butmore recent work has demon-
strated that feedback implementations can in fact be consistent with this form of factoriz-
ability [6]. Additionally, we have tested the model under two time windows (termed onset
and sustained), but a more complete model ought to account dynamically for the response
over time. Experimentally, factorizable models should be examined across other stimulus
attributes and neural areas, with the goal of understandingthe generality of spike count
factorizability. We have also found that many experiments either include too few stimulus
repeats, or do not explore sufficiently combinations of contextual stimuli–our results em-
phasize the need to increase both. Theoretically, it has been suggested that a role of early
sensory processing might be to increase independence between neuronal responses, when
exposed to natural stimuli (e.g., [9, 10, 11, 12]). The line of work presented here and in [7]
suggests an alternative (but not mutually exclusive) notion of efficiency: that when condi-
tioning on the number of spikes, external aspects of stimuliin the world are independent.
These ideas can be explored through statistical analysis ofnatural scenes.

References

[1] J R Cavanaugh, W Bair, and J A Movshon. Nature and interaction of signals in the receptive
field surround in macaque V1 neurons.Journal of Neurophysiology, 88(5):2530–2556, 2002.

[2] J Allman, F Miezin, and E McGuinness. Direction- and velocity-specific responses from
beyond the classical receptive field in the middle temporal visual area.Perception, 14:105–126,
1985.

[3] T Wachtler, T J Sejnowski, and T D Albright. Representation of color stimuli in awake
macaque primary visual cortex.Neuron, 37:681–691, 2003.

[4] D W Massaro.Perceiving talking faces. MIT Press, Cambridge, MA, 1989.

[5] J Morton. The interaction of information in word recognitiom. Psychological review, 76:165–
178, 1969.

[6] J R Movellan and J L McClelland. The Morton Massaro law of information integration: im-
plications for models of perception.Psychological Review, 108:113–148, 2001.

[7] J R Movellan, T Wachtler, T D Albright, and T J Sejnowski. Morton-style factorial coding
of color in primary visual cortex. InAdv. in Neural Info. Proc. Syst., volume 15. MIT Press,
2002.

[8] D J Heeger. Normalization of cell responses in cat striate cortex.Visual Neuroscience, 9:181–
198, 1992.

[9] F Attneave. Some informational aspects of visual perception. Psych. Rev., 61:183–193, 1954.

[10] H B Barlow. Possible principles underlying the transformation of sensory messages. In W A
Rosenblith, editor,Sensory Communication, pages 217–234. MIT Press, Cambridge, MA,
1961.

[11] A J Bell and T J Sejnowski. The ’independent components’of natural scenes are edge filters.
Vision Research, 37(23):3327–3338, 1997.

[12] O Schwartz and E P Simoncelli. Natural signal statistics and sensory gain control.Nature
Neuroscience, 4(8):819–825, August 2001.

6


