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Abstract—A number of current face recognition algorithms use  (ICs). Barlow also argued that such representations are advan-
face representations found by unsupervised statistical methods. tageous for encoding complex objects that are characterized by
Typically these methods find a set of basis images and represe”thigh-order dependencies. Atick and Redlich have also argued

faces as a linear combination of those images. Principal compo- - . .
nent analysis (PCA) is a popular example of such methods. The fS(?JrasluS(;f;treer};rES]entatlons as a general coding strategy for the vi

basis images found by PCA depend only on pairwise relationships
between pixels in the image database. In a task such as face Principal component analysis (PCA) is a popular unsuper-
recognition, in which important information may be contained in  vised statistical method to find useful image representations.
the high-order relationships among pixels, it seems reasonable to Consider a set of, basis images each of which haspixels.
expect that better basis images may be found by methods sensitive gtandard basis set consists of a single active pixel with inten-
to these high-order statistics. Independent component analysis sitv 1. where each basis imade has a different active pixel. An
(ICA), a generalization of PCA, is one such method. We used a ,y . . . 9 ) PIXEL. Any
version of ICA derived from the principle of optimal information ~ 9iven image withn pixels can be decomposed as a linear com-
transfer through sigmoidal neurons. ICA was performed on face bination of the standard basis images. In fact, the piXG' values
images in the FERET database under two different architectures, of an image can then be seen as the coordinates of that image
one which treated the images as random variables and the pixels with respect to the standard basis. The goal in PCA is to find a
as outcomes, and a second which treated the pixels as randomupatiar set of basis images so that in this new basis, the image
variables and the images as outcomes. The first architecture found coordinates (the PCA coefficients) are uncorrelated, i.e., they
spatially local basis images for the faces. The second architecture ) . v
produced a factorial face code. Both ICA representations were Cannot be linearly predicted from each other. PCA can, thus, be
superior to representations based on PCA for recognizing faces Seen as partially implementing Barlow’s ideas: Dependencies
across days and changes in expression. A classifier that combinedthat show up in the joint distribution of pixels are separated out
the two ICA representations gave the best performance. into the marginal distributions of PCA coefficients. However,
Index Terms—Eigenfaces, face recognition, independent com- PCA can only separate pairwise linear dependencies between
ponent analysis (ICA), principal component analysis (PCA), pixels. High-order dependencies will still show in the joint dis-

unsupervised learning. tribution of PCA coefficients, and, thus, will not be properly
separated.
|. INTRODUCTION Some of the most successful representations for face recog-

. . . ._nition, such as eigenfaces [57], holons [15], and local feature
EDUNPANCY in the sen_sorylnput contains structural Ir]'analysis [50] are based on PCA. In a task such as face recog-
formation about the environment. Barlow has argued th

) ftion, much of the important information may be contained
such redundancy provides knowledge [5] and that the role of t, Cihe high-order relationships among the image pixels, and

fﬁ nso(rjy systgm 1S to develop fa<t:t(()jr!alt rgpcrjesentgtlops in wh flis, it is important to investigate whether generalizations of
ese dependencies are separated Into Independen comporg@E which are sensitive to high-order relationships, not just

second-order relationships, are advantageous. Independent
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pixels as random variables and the images as outcémed.the nonlinear transfer functiofiis the same as the cumula-
Matlab code for the ICA representations is available &te density functions of the underlying ICs (up to scaling and
http://inc.ucsd.edu/~marni. translation) it can be shown that maximizing the joint entropy
Face recognition performance was tested using the FEREfTthe outputs inY” also minimizes the mutual information be-
database [52]. Face recognition performances using the I¢peen the individual outputs itV [12], [42]. In practice, the
representations were benchmarked by comparing them to gegistic transfer function has been found sufficient to separate
formances using PCA, which is equivalent to the “eigenface8txtures of natural signals with sparse distributions including

representation [51], [57]. The two ICA representations weRPUnd sources [11]. _ _ ,
then combined in a single classifier The algorithm is speeded up by including a “sphering” step
' prior to learning [12]. The row means & are subtracted, and

then X is passed through the whitening mat#iiX., which is

Il 1CA twice the inverse square réadf the covariance matrix
There are a number of algorithms for performing ICA [11], s
[13], [14], [25]. We chose the infomax algorithm proposed by W. =2 (Cou(X))~ (/2. (4)

Bell and Sej ki [11], which derived f th inciple_ . . -
ell and Sejnowski [11], which was derived from the princip %’hlsremovestheflrstandthesecond-orderstausncsofthedata;

of optimal information transfer in neurons with sigmoida th th d . it dth .
transfer functions [27]. The algorithm is motivated as follow 0 € mean and covariances are setlo zero ana the variances

Let X be ann-dimensional 4-D) random vector representing aare equalized. When the inputs to ICA are the “sphered” data,

distribution of inputs in the environment. (Here, boldface ca ghe full transform matri¥¥; is the product of the sphering ma-

tals denote random variables, whereas plain text capitals der%'féand the matrix learned by ICA

matrices). LetV be ann x n invertible matrix,U = WX and W, =WW.. (5)

Y = f(U) ann-D random variable representing the outputs

of n-neurons. Each component ¢f = (fi,...,f,) is an MacKay [36] and Pearlmutter [48] showed that the ICA algo-
invertible squashing function, mapping real numbers into thghm converges to the maximum likelihood estimatelBf !

[0, 1] interval. Typically, the logistic function is used for the following generative model of the data:

i) = 1 @ X=wrs ©
_ _ o _ whereS = (S4,...,S,) is a vector of independent random
TheU,, ..., U, variables are linear combinations of inputs angariaples, called the sources, with cumulative distributions equal
can be interpreted as presynaptic activations-oeurons. The g 1. in other words, using logistic activation functions corre-
Yy,..., Y, variables can be interpreted as postsynaptic activgsonds to assuming logistic random sources and using the stan-
tion rates and are bounded by the interval]. The goalin Bell gard cumulative Gaussian distribution as activation functions
and Sejnowski’s algorithm is to maximize the mutual i”form"’corresponds to assuming Gaussian random sources.Whus,
tion between the environme and the output of the neuralihe inverse of the weight matrix in Bell and Sejnowski's algo-
network’Y .. This is achieved by performing gradient ascent ofthm, can be interpreted as the source mixing matrix and the
the entropy of the output with respect to the weight mallfix {7 — WX variables can be interpreted as the maximum-likeli-
The gradient update rule for the weight matii¥,is as follows:  hood (ML) estimates of the sources that generated the data.

AW « Vi H(Y) = (WH) ™' + E(Y'XT) (2) A. ICA and Other Statistical Techniques

whereY’ = f(U;)/f/(U,), the ratio between the second and CA and PCA: PCA can be derived as a special case of ICA
first partial derivatives of the activation functioff, stands for Which uses Gaussian source models. In such case the mixing
transpose £ for expected valuef(Y) is the entropy of the matrix W is unidentifiable in the sense that there is an infinite
random vectoly, andVy-H (Y) is the gradient of the entropy number of equally good ML solutions. Among all possible ML

in matrix form, i.e., the cell in row, column; of this matrix solutions, PCA chooses an orthogonal matrix which is optimal
is the derivative ofH(Y) with respect tolV;;. Computation N the following sense: 1) Regardless of the distributiorXof

of the matrix inverse can be avoided by employing the naturg is the I|n_ear comb|r_1at|on_0f input that allows optimal linear
gradient[1], which amounts to multiplying the absolute gradiefgconstruction of the input in the mean square sense; and 2)

by WTW, resulting in the following learning rule [12]: fpr U,4,... U, fixed, Uk+1' allows opti'mal' linear regonstruc-
tion among the class of linear combinationsXfwhich are

AW x Vg HY)WTW = (I + YUTYW (3) uncorrelated withUy - - - Uy. If the sources are Gaussian, the
likelihood of the data depends only on first- and second-order
wherel is the identity matrix. The logistic transfer function (1)statistics (the covariance matrix). In PCA, the row$iofare, in
givesY, = (1 — 2Y,). fact, the eigenvectors of the covariance matrix of the data.
When there are multiple inputs and outputs, maximizing the Second-order statistics capture the amplitude spectrum of
joint entropy of the outpulY’ encourages the individual out-images but not their phase spectrum. The high-order statistics
puts to move toward statistical independence. When the fooapture the phase spectrum [12], [19]. For a given sample

IPreliminary versions of this work appear in [7] and [9]. A longer discussion 2We use the principal square root, which is the unique square root for which
of unsupervised learning for face recognition appears in [6]. every eigenvalue has nonnegative real part.
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of natural images, we can scramble their phase spectru
while maintaining their power spectrum. This will dramatically
alter the appearance of the images but will not change the
second-order statistics. The phase spectrum, not the pow§
spectrum, contains the structural information in images the
drives human perception. For example, as illustrated in Fig. : 3
a face image synthesized from the amplitude spectrum of fa
A and the phase spectrum of face B will be perceived as ¢
image of face B [45], [53]. The fact that PCA is only sensitive
to the power spectrum of images suggests that it might n
be particularly well suited for representing natural images.

The assumption of Gaussian sources implicit in PCA make
it inadequate when the true sources are non-Gaussian. In p §4 ;
ticular, it has been empirically observed that many naturz i
signals, including speech, natural images, and EEG are bet
described as linear combinations of sources with long taile
distributions [11], [19]. These sources are called “high-kur-
tosis,” “sparse,” or “super-Gaussian” sources. Logistic randofig. 1. (left) Two face images. (Center) The two faces with scrambled phase.

; ; ight) Reconstructions with the amplitude of the original face and the phase of
variables are a SpECIa| case of Sparse source models. \N_?p\g%ther face. Faces images are from the FERET face database, reprinted with

sparse source models are appropriate, ICA has the followigiGmission from J. Phillips.
potential advantages over PCA: 1) It provides a better proba-

bilistic model of the data, which better identifies where the data )
concentrate im-dimensional space. 2) It uniquely identifies Y/hen the sources models are sparse, ICA is closely related

the mixing matrix¥. 3) It finds a not-necessarily orthogonal® the so called nonorthogonal “rotation” methods in PCA and
basis which may reconstruct the data better than PCA in ifactor analysis. The goal of these rotation methods is to find di-

presence of noise. 4) It is sensitive to high-order statistics fRCtions with high concentrations of data, something very sim-
the data, not just the covariance matrix. ilar to what ICA does when the sources are sparse. In such cases,

. . . . . ICA can be seen as a theoretically sound probabilistic method
Fig. 2 illustrates these points with an example. The figuie & 4 interesting nonorthogonal “rotations.”
shows samples from a three-dimensional (3-D) distribution |z ang Cluster AnalysisCluster analysis is a technique for

qonstructed by Iinea_rly mixing two high-kurtosis sources. Thﬁwding regions inn-dimensional space with large concentra-
figure shows the basis vectors found by PCA and by ICA on thigy s ¢ gata. These regions are called “clusters.” Typically, the

problem. Since the three ICA basis vectors are nonorthogongli, statistic of interest in cluster analysis is the center of those

tr;]ey cha}nge thg relatl\ge dlstangellbeUNefeT fdatal po[?ts. _T i§sters. When the source models are sparse, ICA finds direc-
change in metric may be potentially useful for classificatiogy, g along which significant concentrations of data points are
algorithms, like nearest neighbor, that make decisions basedo%@erved Thus, when using sparse sources, ICA can be seen
relative distances between points. The ICA basis also alters nga form. of cluéter analysis. However, the en,1phasis in ICA is

h . it q | b , rather than specific locations of
such as cosines. Moreover, if an undercomplete basis Se];gh data density. Fig. 2 illustrates this point. Note how the data

. i

chosen, FfCA.and ICA may span Qn‘ferer)t subspaces. F ncentrates along the ICA solutions, not the PCA solutions.
example, in Fig. 2, when only two dimensions are selectedyie 4150 that in this case, all the clusters have equal mean, and
PCA and ICA choose different subspaces. thus are better characterized by their orientation rather than their

The metric induced by ICA is superior to PCA in the sensgosition in space.
that it may provide a representation more robust to the effectit should be noted that ICA is a very general technique. When
of noise [42]. It is, therefore, possible for ICA to be better thaguper-Gaussian sources are used, ICA can be seen as doing
PCA for reconstruction in noisy or limited precision environsomething akin to nonorthogonal PCA and to cluster analysis,
ments. For example, in the problem presented in Fig. 2, wiewever, when the source models are sub-Gaussian, the rela-
found that if only 12 bits are allowed to represent the PCA anidnship between these techniques is less clear. See [30] for a
ICA coefficients, linear reconstructions based on ICA are 3 dfiscussion of ICA in the context of sub-Gaussian sources.
better than reconstructions based on PCA (the noise power is re-
duced by more than half). A similar _result was obtained for PC@ Two Architectures for Performing ICA on Images
and ICA subspaces. If only four bits are allowed to represent
the first 2 PCA and ICA coefficients, ICA reconstructions are Let X be a data matrix witm, rows andn. columns. We
3 dB better than PCA reconstructions. In some problems, oc&n think of each column of as outcomes (independent trials)
can think of the actual inputs as noisy versions of some canari-a random experiment. We think of th#h row of X as the
ical inputs. For example, variations in lighting and expressiospecific value taken by a random varialXg acrossn. inde-
can be seen as noisy versions of the canonical image of a perg@mdent trials. This defines an empirical probability distribution
Having input representations which are robust to noise may gor X, ...X,, inwhich each column ok is given probability
tentially give us representations that better reflect the data. massl/n.. Independence is then defined with respect to such
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Fig. 2. (top) Example 3-D data distribution and corresponding PC and IC axes. Each axis is a column of the mixirig’méatiaxind by PCA or ICA. Note the

PC axes are orthogonal while the IC axes are not. If only two components are allowed, ICA chooses a different subspace than PCA. (bottom lédt) &fistribut
the first PCA coordinates of the data. (bottom right) Distribution of the first ICA coordinates of the data. Note that since the ICA axes are noslpriatice
distances between points are different in PCA than in ICA, as are the angles between points.

a distribution. For example, we say that roiandj of X are Architecture I Architecture I
independent if it is not possible to predict the values taken b [mage Sources of Facei Sourcesof
X; across columns from the corresponding values takeX by ., zuﬁ o Pixel 1 O—_ W1 o

Y 12
L.e., Face2 O O u Pixel 2 O b o)
QO . . & U
P(X; =u,X; =v) =P(X; =u)P(X; =v) for all u, Facen O 5 Pixeln O o
v eR 7
() (€Y (©

whereP is the empirical distribution as in (7). Image 1 « < Pixeli Pixel1 + < Imagei

Our goal in this paper is to find a good set of basis image
to represent a database of faces. We organize each image in
database as a long vector with as many dimensions as numt
of pixels in the image. There are at least two ways in which IC/
can be applied to this problem.

1) We can organize our database into a ma¥riwhere each
row vector is a different image. This approach is illus- Image 3
trated in (Fig. 3 left). In this approach, images are random (b) (d)
variables and plxels_ are trials. In this gpproach, it ma!‘%ﬁg. 3. Two architectures for performing ICA on images. (a) Architecture |
sense to talk about independence of images or functioBsinding statistically independent basis images. Performing source separation
of images. Two imagesand; are independent if when on the face images produced IC images in the rows ofb) The gray values

: : s ; ; pixel location: are plotted for each face image. ICA in architecture | finds
moving across_ plxels{ itis I’.10t possible to predictthe val eight vectors in the directions of statistical dependencies among the pixel
taken by the pixel on imaggbased on the value taken byiocations. (c) Architecture Ii for finding a factorial code. Performing source
the same pixel on imag[e A similar approach was usedseparation on the pixels produced a factorial code in the columns of the output
by Bell and Sejnowski for sound source separation [1lg1atrix,U. (d) Each face image is plotted according to the gray values taken on at
. ach pixel location. ICA in architecture 1l finds weight vectors in the directions
for EEG analysis [37], and fo'_' fMRI [39]. _ of statistical dependencies among the face images.

2) We can transposkE and organize our data so that images
are in the columns oX. This approach is illustrated in
(Fig. 3 right). In this approach, pixels are random vari-
ables and images are trials. Here, it makes sense to tald’he face images employed for this research were a subset
about independence of pixels or functions of pixels. F@f the FERET face database [52]. The data set contained im-
example, pixeli and j would be independent if when ages of 425 individuals. There were up to four frontal views of
moving across the entire set of images it is not possibé@ch individual: A neutral expression and a change of expres-
to predict the value taken by pixélbased on the corre- sion from one session, and a neutral expression and change of
sponding value taken by pixg¢lon the same image. Thisexpression from a second session that occurred up to two years
approach was inspired by Bell and Sejnowski’'s work oafter the first. Examples of the four views are shown in Fig. 6.
the ICs of natural images [12]. The algorithms were trained on a single frontal view of each

* Pixel 2

1. | MAGE DATA
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2 Fig. 6. Example from the FERET database of the four frontal image viewing
2 conditions: neutral expression and change of expression from session 1; neutral
expression and change of expression from session 2. Reprinted with permission
? from Jonathan Phillips.
Sources  Unknown Face Learned  Separated TABLE |
Mixing Images Weights  Outputs IMAGE SETS USED FORTRAINING AND TESTING
Process
Fig. 4. Image synthesis model for Architecture I. To find a set of IC images _128¢ Set Condition No. Images
the images inX are considered to be a linear combination of statistically
independent basis images, whereA is an unknown mixing matrix. The basis
images were estimated as the learned ICA output Training Set | Session I 50% neutral 50% other | 425

Test Set 1 Same Day Different Expression 421

;Xqﬁ Test Set 2 Different Day Same Expression 45
- — Test Set 3 Different Day Different Expression 43
. JEE u

—_— 2 — +.

.
- ? —

t4 ICA representation = ( by, by, ..., by )

Learned  Separated . . o . .
g;ﬁ‘rzg:m g:sli(:?r::ges ii‘;eges Filters Solt)urces Fig. 7. The independent basis image representation consisted of the

coefficientsb, for the linear combination of independent basis imageshat

_ ) ) comprised each face image

Fig.5. Image synthesis model for Architecture Il, based on [43] and [44]. Each

image in the dataset was considered to be a linear combination of underlying . . .

basis images in the matrit. The basis images were each associated with a In this approach, ICA finds a matrid’ such that the rows

set of independent “causes,” given by a vector of coefficientS.iThe basis of [/ = WX are as statistically independent as possible. The

i i =w:! W, i i . . .

s were estimated by i whereW is the learned ICA weight o, -0a images estimated by the row#/cdre then used as basis
images to represent faces. Face image representations consist of

o - . the coordinates of these images with respect to the image basis

individual. The training set was comprised of 50% neutral ex- .. S ;
S T defined by the rows a7, as shown in Fig. 7. These coordinates

pression images and 50% change of expression images. The al- d . e N

orithms were tested for recognition under three different cofl-. contained in the mixing matrix = W, -

g 9 The number of ICs found by the ICA algorithm corresponds

ditions: same session, different expression; different day, same, dimensionality of the input. Since we had 425 images in
expression; and different day, different expression (see Table ’

) ) ) the training set, the algorithm would attempt to separate 425
Coordinates for eye and mouth locations were provided wi . . .
s. Although we found in previous work that performance im-

the FERET database. These coordinates were used to center thé . .
. ) proved with the number of components separated, 425 was in-
face images, and then crop and scale them to<680 pixels.

. . ' tractable under our present memory limitations. In order to have
Scaling was based on the area of the triangle defined by the eyes . )
. : ; -control over the number of ICs extracted by the algorithm, in-
and mouth. The luminance was normalized by linearly rescalin ; S
. . stead of performing ICA on the,. original images, we per-
each image to the interval [0, 255]. For the subsequent analy§8§

. : . fmed ICA on a set ofn. linear combinations of those images,
each image was represented as a 3000—dimensional vector glven : )
. | . wherem < n,.. Recall that the image synthesis model assumes
by the luminance value at each pixel location. . : . o
that the images inX are a linear combination of a set of un-
known statistically independent sources. The image synthesis
model is unaffected by replacing the original images with some
other linear combination of the images.
Adopting a method that has been applied to ICA of fMRI
As described earlier, the goal in this approach is to find data [39], we chose for these linear combinations the/firftC
set of statistically independent basis images. We organize #igenvectors of the image set. PCA on the image set in which the
data matrixX so that the images are in rows and the pixels apixel locations are treated as observations and each face image
in columns, i.e. X has 425 rows and 3000 columns, and eacmeasure, gives the linear combination of the parameters (im-

image has zero mean. ages) that accounts for the maximum variability in the observa-

IV. ARCHITECTURE I:
STATISTICALLY INDEPENDENT BASIS
IMAGES
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tions (pixels). The use of PCA vectors in the input did not throv
away the high-order relationships. These relationships still
isted in the data but were not separated.
Let P,, denote the matrix containing the first PC axes in
its columns. We performed ICA oRZ, producing a matrix of
m independent source images in the rowg/ofin this imple-
mentation, the coefficients for the linear combination of basis
images inU that comprised the face images.ihwere deter-
mined as follows.
The PC representation of the set of zero-mean images in
based onP,, is defined ask,, = X P,,. A minimum squared
error approximation of{ is obtained byX = R,, PL.
The ICA algorithm produced a matri¥; = W W such that
WP =U
P =w;'U. (8)
Therefore
X =R, P¥
X =R, W, 'U. (9)
whereW  was the sphering matrix defined in (4). Hence, the
rows of R, W; ' contained the coefficients for the linear com-_ _ ) _ _ _
bination of statistically independent sourdéshat comprised Fig. 8. Twenty-five ICs of the image set obtained by Architecture I, which
5 5 L . . provide a set of statistically independent basis images (roWsiofFig. 4). ICs
X, whereX was a minimum squared error approximatiolXaf  are ordered by the class discriminability ratio(4).
just as in PCA. The IC representation of the face images based
'?hn trgfosrgt ofv\jesrfat\)tls:g:l:yxdefte;]r;dar:t:&ature Imageswas, t0 0.0001. Training took 90 minutes on a Dec Alpha 2100a. Fol-
€ 9 y ows o lowing training, a set of statistically independent source images
B =R,W;". (10) were contained in the rows of the output mathix
Fig. 8 shows a subset of 25 basis images (i.e., rowg)of
A representation for test images was obtained by using the Pese images can be interpreted as follows: Each row of the

representation based on the training images to olitais = mixing matrix W found by ICA represents a cluster of pixels
Xtest P, @nd then computing that have similar behavior across images. Each row oflthe
. matrix tell us how close each pixel is to the clusiédentified
Biest = Reest Wy (11)  pyICA. Since we use a sparse independent source model, these

Note that the PCA step is not required for the ICA representatigf’ils's.'mtar‘]s.geS are expecte:ihtot ?ﬁ sgar;e _and mdep_ﬁnhdent. Slparse-
of faces. It was employed to serve two purposes: 1) to reduce fifees In this case means that the basis images will have a large

number of sources to a tractable number and 2) to provide ac H_mber of pt|?<els cllose tl?l Zfr?har:?ha erCV\'/Aplers with Iarglje p|03|—|
venient method for calculating representations of test imag - € ornegative values. Note that the 'mages are aiso loca

Without the PCA stepB = WI_I andB,... — Xtest(U)T-s egions with nonzero pixels are nearby). This is because a ma-

The PC axes of the training set were found by calculating tﬁ%ﬂty of th_e statistical dependgnc_:les are in spatially proximal
. . . : . p|?<el locations. A set of PC basis images (PCA axes) are shown
eigenvectors of the pixelwise covariance matrix over the set.0

face images. ICA was then performed on the first= 200 of IN'Fig. 9 for comparison.
these eigenvectors, where the first 200 PCs accounted for oxer o . ;

o . : . Face Recognition Performance: Architecture |
98% of the variance in the imagésThe 1x 3000 eigenvec- g. ) )
tors in Psgo comprised the rows of the 2003000 input matrix ~ Face recognition performance was evaluated for the coeffi-
X. The input matrixX was spheredaccording to (4), and the cient vectors by the nearest neighbor algorithm, using cosines

The learning rate was initialized at 0.0005 and annealed doW#re assigned the class label of the coefficient vector in the
training set that was most similar as evaluated by the cosine of
3B,..: could potentially be obtained without calculating a pseudoinverse Bhe angle between them
normalizing the length of the rows &éf, thereby makind’ approximately or-

thonormal, and calculatingcs; = Xtese U”. However, if ICA did not remove btest * Dirain
all of the second-order dependencies thewill not be precisely orthonormal. c= W (12)
4In pilot work, we found that face recognition performance improved with ” t'35t|||| trai“”

the number of components separated. We chose 200 components as the | . :
number o Separate within our processing mitations. ¥%5Ck recognition performance for the PC representation was

5Although PCA already removed the covariances in the data, the varian@é@lu?ted _by an identical procedure, using the PC coefficients
were not equalized. We, therefore, retained the sphering step. contained in the rows aRsqg.
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Fig. 9. First 25 PC axes of the image set (column®yfordered left to right,
top to bottom, by the magnitude of the corresponding eigenvalue.

In experiments to date,
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Fig. 10. Percent correct face recognition for the ICA representation,
Architecture |, using 200 ICs, the PCA representation using 200 PCs, and the
PCA representation using 20 PCs. Groups are performances for Test Set 1, Test
Set 2, and Test Set 3. Error bars are one standard deviation of the estimate of
the success rate for a Bernoulli distribution.

over all three test set%(= 2.5, p < 0.05) for Test Sets 1 and
2,and ¢ = 2.4 < 0.05), p < 0.05) for Test Set 3.

Recognition performance using different numbers of ICs was
also examined by performing ICA on 20 to 200 image mixtures
in steps of 20. Best performance was obtained by separating
200 ICs. In general, the more ICs were separated, the better
the recognition performance. The basis images also became in-

ICA performs significantly bettegeasingly spatially local as the number of separated compo-

using cosines rather than Euclidean distance as the similag{ynts increased.
measure, whereas PCA performs the same for both. A cosine
similarity measure is equivalent to length-normalizing thB. Subspace Selection

vectors prior to measuring Euclidean distance when doing

nearest neighbor

2 (a,y) =[x|? + Iyl — 2x -y
=I1x[I” + [lyII” = 2lxlly ] cos(c).
Thus, if ||| =[ly]l = 1

miny d*(z, y) = maxy cos(a). (13)

When all 200 components were retained, then PCA and ICA
were working in the same subspace. However, as illustrated in
Fig. 2, when subsets of axes are selected, then ICA chooses a
different subspace from PCA. The full benefit of ICA may not
be tapped until ICA-defined subspaces are explored.

Face recognition performances for the PCA and ICA repre-
sentations were next compared by selecting subsets of the 200
components by class discriminability. Lebe the overall mean

Such contrast normalization is consistent with neural mOdeﬁa Coefﬂcienbk across all facesy arm. be the mean for person

of primary visual cortex [23]. Cosine similarity measures w

€I For both the PCA and ICA representations, we calculated the

previously found to be effective for computational models ghtio of between-class to within-class variabilitfor each co-

language [24] and face processing [46].
Fig. 10 gives face recognition performance with both the |

efficient
CA

. .. Obetween
and the PCA-based representations. Recognition performance o= —seen (14)

is also shown for the PCA-based representation using the first

Owithin

20 PC vectors, which was the eigenface representation usedereoseeween = > ;(T; — 7)? is the variance of thg class

Pentlandet al. [51]. Best performance for PCA was obtain

edneans, andihin = »_; >_;(zi; — T;)* is the sum of the

using 200 coefficients. Excluding the first one, two, or three PQ@ariances within each class.

did not improve PCA performance, nor did selecting interme- The class discriminability analysis was carried out using the
diate ranges of components from 20 through 200. There wad&subjects for which four frontal view images were available.
trend for the ICA representation to give superior face recogrihe ratiosr were calculated separately for each test set, ex-
tion performance to the PCA representation with 200 compohluding the testimages from the analysis. Both the PCA and ICA
nents. The difference in performance was statistically signifioefficients were then ordered by the magnitude.qfFig. 11

cant for Test Set 34 = 1.94, p = 0.05). The difference in

top) compares the discriminability of the ICA coefficients to the

performance between the ICA representation and the eigenf&8@A coefficients. The ICA coefficients consistently had greater
representation with 20 components was statistically significatiass discriminability than the PCA coefficients.
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ICA factorial representation = (uy, uy, ..., up)

Fig. 12. The factorial code representation consisted of the independent
coefficients,u, for the linear combination of basis imagesdrthat comprised
each face image.

V. ARCHITECTUREII: A FACTORIAL FACE CODE

The goal in Architecture | was to use ICA to find a set of
spatially independent basis images. Although the basis images
0 20 40 &0 8 100 120 140 160 180 200 obtained in that architecture are approximately independent, the
Component number coefficients that code each face are not necessarily independent.

' ' Architecture Il uses ICAto find a representation in which the co-
%0 r 1 efficients used to code images are statistically independent, i.e.,
a factorial face code. Barlow and Atick have discussed advan-
tages of factorial codes for encoding complex objects that are
characterized by high-order combinations of features [2], [5].
These include fact that the probability of any combination of
features can be obtained from their marginal probabilities.

To achieve this goal, we organize the data makiso that
rows represent different pixels and columns represent different
images. [See (Fig. 3 right)]. This corresponds to treating the
columns of4 £ Wfl as a set of basis images. (See Fig. 5).
The ICA representations are in columnsléf= W;X. Each
column ofU contains the coefficients of the basis imagesiin
for reconstructing each image i (Fig. 12). ICA attempts to
make the outputd/, as independent as possible. Heriéas a
factorial code for the face images. The representational code for

] ) S ] test images is obtained by
Fig. 11. Selection of components by class discriminability, Architecture II.

Top: Discriminability of the ICA coefficients (solid lines) and discriminability WiXiest = Utest (15)
of the PCA components (dotted lines) for the three test cases. Components ;

were sorted by the magnitude of Bottom: Improvement in face recognition where X . is the zero-meanmatrix of test images, ant/;
performance for the ICA and PCA representations using subsets of component%h . ht trix f db f . ICA th, traini
selected by the class discriminability The improvement is indicated by the IS the weight matrix round by perrorming on the training

gray segments at the top of the bars. images.
In order to reduce the dimensionality of the input, instead of

Face classification performance was compared using t%%rformmg ICA directly on the 3000 image pixels, ICA was

k most discriminable components of each representatitﬁ)rﬁrformed on the first 200 PCA coefficients of the face images.

(Fig. 11 bottom) shows the best classification performan%‘ﬁ.e first 200 PCs accounted for over 98% of the variance in
obtained for the PCA and ICA representations, which w e images. These coefficienti,, comprised the columns of

with the 60 most discriminable components for the IC e input data matrix, where each coefficient had zero mean.

. o he Architecture Il representation for the training images was
representation, and the 140 most discriminable components jor P 9 g

the PCA representation. Selecting subsets of coefficients t:)ye refore contained in the columns(f where
class discriminability improved the performance of the ICA WiR3 = U. (16)

representation, but had little effect on the performance of t . . L
PCA representation. The ICA representation again outpgf-]e ICA weight matrix}¥; was 200x 200, resulting in 200

coefficients inU for each face image, consisting of the outputs

formed the PCA representation. The difference in recognitio ' . :
performance between the ICA and PCA representations V\?gseach of the ICA filters. The architecture Il representation for

significant for Test Set 2 and Test Set 3, the two conditiog>t 'Mages was obtained in the columng/at,; as follows:
that required recognition of images collected on a different day WiRiestt = Upost- a7

from the training setf{ = 2.9, p < 0.05; Z = 3.4, p < 0.01), . . . .
respectively, when both subspaces were selected under ﬂ?ﬁ basis |mAages:1for this representatlc_)n_ conS|st_ed of the
umns ofA = W, ~. A sample of the basis images is shown

criterion of class discriminability. Here, the ICA-defined*®
subspace encoded more information about facial identity thamHere, each pixel has zero mean.
PCA-defined subspace. 7An image filter f(x) is defined asf(x) = w - x.
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Fig. 14. Recognition performance of the factorial code ICA representation
(ICA2) using all 200 coefficients, compared to the ICA independent basis
representation (ICA1), and the PCA representation, also with 200 coefficients.

Yool
Fig. 13. Basis images for the ICA-factorial representation (columns & g 60
W) obtained with Architecture I1. S 50

ER
in Fig. 13, where the PC reconstructidpyy, was used to é

visualize them. In this approach, each column of the mixing 30
matrix W—! found by ICA attempts to get close to a cluster 2
of images that look similar across pixels. Thus, this approact
tends to generate basis images that look more face-like tha

the basis images generated by PCA, in that the bases found k 0
ICA will average only images that look alike. Unlike the ICA TestSet 1 pep,p;
output U, the algorithm does not force the columns 4fto

be either sparse or independent. Indeed, the basis images ifig. 15. Improvement in recognition performance of the two ICA

have more global properties than the basis images in the |%9Qresent§tions _and }_he PCA represe'ntation by _selecting subsets of components
. . . y class discriminability. Gray extensions show improvement over recognition
output of Architecture | shown in Fig. 8. performance using all 200 coefficients.

3 Diff Day
Diff Expr

Same Day ) Diff Day

Same Expr

A. Face Recognition Performance: Architecture I representation by class discriminability had little effect on the

Face recognition performance was again evaluated by tleeognition performance using the ICA-factorial representation
nearest neighbor procedure using cosines as the similafgge Fig. 15). The difference in performance between ICA1 and
measure. Fig. 14 compares the face recognition performanCa2 for Test Set 3 following the discriminability analysis just
using the ICA factorial code representation obtained witimisses significanceq = 1.88, p = 0.06).

Architecture Il to the independent basis representation obtainedn this implementation, we separated 200 components using

with Architecture | and to the PCA representation, each wi#5 samples, which was a bare minimum. Test images were not
200 coefficients. Again, there was a trend for the ICA-factorialsed to learn the ICs, and thus our recognition results were not
representation (ICA2) to outperform the PCA representation fdue to overlearning. Nevertheless, in order to determine whether
recognizing faces across days. The difference in performartbe findings were an artifact due to small sample size, recog-

for Test Set 2 is significant{ = 2.7, p < 0.01). There was nition performances were also tested after separating 85 rather
no significant difference in the performances of the two IChan 200 components and, hence, estimating fewer weight pa-
representations. rameters. The same overall pattern of results was obtained when

Class discriminability of the 200 ICA factorial coefficients85 components were separated. Both ICA representations sig-
was calculated according to (14). Unlike the coefficients in théficantly outperformed the PCA representation on Test Sets 2
independent basis representation, the ICA-factorial coefficiersisd 3. With 85 ICs, ICAL1 obtained 87%, 62%, 58% correct
did not differ substantially from each other according tperformance, respectively, on Test Sets 1, 2, and 3, ICA2 ob-
discriminability . Selection of subsets of components for thined 85%, 76%, and 56% correct performance, whereas PCA
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o012k Fig. 17. Kurtosis (sparseness) of ICA and PCA representations.

independent sources, the presence of sub-Gaussian sources, or
the large number of free parameters to be estimated relative to
the number of training images.

Fig. 16 (b) compares the mutual information between the
coding variablesn the ICA factorial representation obtained
with Architecture Il, the PCA representation, and gray-level im-
ages. For gray-level images, mutual information was calculated

(b) between pairs of pixel locations. For the PCA representation,
Fig. 16. Pairwise mutual information. (a) Mean mutual information betwegmutual information was calculated between pairs of PC coeffi-

basis images. Mutual information was measured between pairs of gray-le¥pbnts, and for the ICA factorial representation, mutual informa-
images, PC images, and independent basis images obtained by Architectuye |,

(b) Mean mutual information between coding variables. Mutual information wa®" WasS Ca_ICUIated be_tween pairs of coeﬁlc_lantAgaln, Fher_e
measured between pairs of image pixels in gray-level images, PCA coefficiemtgre considerable high-order dependencies remaining in the

and ICA coefficients obtained by Architecture II. PCA representation that were reduced by more than 50% by the
information maximization algorithm. The ICA representations

obtained 85%, 56%, and 44% correct, respectively. Again, altained in these simulations are most accurately described not

found for 200 separated components, selection of subsetsasf‘independent,” but as “redundancy reduced,” where the re-

components by class discriminability improved the performandendancy is less than half that in the PC representation.

of ICAL to 86%, 78%, and 65%, respectively, and had little ef-

fect on the performances with the PCA and ICA2 represent: Sparseness

tions. This suggests that the results were not simply an artifac

due to small sample size.

Mean Mutual Information
I(u “ 2
o

o

S
Pixels
PCA

Coding variables

Field [19] has argued that sparse distributed representations
are advantageous for coding visual stimuli. Sparse representa-
tions are characterized by highly kurtotic response distributions,
in which a large concentration of values are near zero, with rare
A. Mutual Information occurrences of large positive or negative values in the tails. In
A measure of the statistical dependencies of the face rep?g—Ch a code, the redundancy of the input is transformed into

sentations was obtained by calculating the mean mutual infg)[?-e redundancy (_)f the response pgtterns of the' the |nd!V|dan
tputs. Maximizing sparseness without loss of information is

mation between pairs of 50 basis images. Mutual informatiGi'P lent to the mini i des di d by Barl
was calculated as equivalent to the minimum entropy codes discussed by Barlow

[5].¢

I(Uy,Uy) = H(Uy) + H(Uy) — H(Uy, Uy) (18) Given the relationship between sparse codes and minimum
entropy, the advantages for sparse codes as outlined by Field

whereH (U;) = —E (log(Fu, (Ui)))- _ _ [19] mirror the arguments for independence presented by
Fig. 16 (a) compares the mutual information betweegaioy [5]. Codes that minimize the number of active neurons
basis imagegor the original gray-level images, the PC basigan pe useful in the detection of suspicious coincidences.
images, and the ICA basis images obtained in Architecturedecayse a nonzero response of each unit is relatively rare,
Principal component (PC) images are uncorrelated, but thefigh_order relations become increasingly rare, and therefore,

are remaining high-order dependencies. The informatiofyre informative when they are present in the stimulus. Field
maximization algorithm decreased these residual dependencies

by more than 50%. The remaining dependence may be due
y 9 P y t‘S?nformation maximization is consistent with minimum entropy coding. By

? mismatch between the logistic tr_anSfer fl_mCtion _employ%ximizing thegjoint entropy of the output, the entropies of tinelividual out-
in the learning rule and the cumulative density function of theuts tend to be minimized.

VI. EXAMINATION OF THE ICA REPRESENTATIONS
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Fig. 18. Recognition successes and failures. {left) Two face image pairs
which both ICA algorithms correctly recognized. (right) Two face image pairs 20 -
that were misidentified by both ICA algorithms. Images from the FERET face
database were reprinted with permission from J. Phillips. 10 -
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) ) ) ) Test Set 1 Same Day ) Diff Day 3 Diff Day
contrasts this with a compact code such as PCs, in which a few Diff Expr Same Expr Diff Expr
units have a relatively high probability of response, and there- N _ B
fore, high-order combinations among this group are relatvefii 1%, Face recoanon permance of the cmbined, (CA clasifer
common. In a sparse distributed code, different objects are rep-
resented by which units are active, rather than by how mu%h: 3.4, p < 0.001; Z = 2.8, p < 0.01), respectively. Exam-
they are active. These representations have an added advan{gae ¢ g\ ccesses and failures of the two algorithms are shown
in signal-to-noise, since one need only determine which u”lF?Fig. 18.
are active without regard to the precise level of activity. An ad- When the two algorithms made errors, however, they did not
ditional gdvantag_e ,Of sparse coding for face represer)tation%'&ign the same incorrect identity. Out of a total of 62 common
storage in associative memory systems. Networks with Spagge, s hetween the two systems, only once did both algorithms
inputs can store more memories and provide more effective ffegjon the same incorrect identity. The two representations can,
trieval with partial information [10], [47]. - therefore, used in conjunction to provide a reliability measure,
The probability densities for the values of the coefficients Qo re classifications are accepted only if both algorithms gave
the tWO, ICA representations and the PCA representation 3@ same answer. The ICA recognition system using this relia-
shown in Fig. 17. The sparseness of the face representatiig, criterion gave a performance of 100%, 100%, and 97% for
were examined by measuring the kurtosis of the distributionge i ee test sets, respectively, which is an overall classification
Kurtosis is defined as the ratio of the fourth moment of the di erformance of 99.8%. 400 out of the total of 500 test images
tribution to the_ square pf the second moment, normalizedto z Qt criterion.
for the Gaussian distribution by subtracting 3 Because the confusions made by the two algorithms differed,
S (b; — b)* a combined classifier was employed in which the similarity be-
Kurtosis — _3 (19) tween a test image and a gallery image was defined asc,,
~\? wherec; ande, correspond to the similarity measurén (12)
> (bi — b)2> for ICA1 and ICA2, respectively. Class discriminability analysis
‘ was carried out on ICA1 and ICA2 before calculatingande,.
The kurtosis of the PCA representation was measured for the Bérformance of the combined classifier is shown in Fig. 19. The
coefficients. The PCs of the face images had a kurtosis of 0.28mbined classifier improved performance to 91.0%, 88.9%,
The coefficients), of the independent basis representation froeind 81.0% for the three test cases, respectively. The difference in
Architecture | had a kurtosis of 1.25. Although the basis imagg&rformance between the combined ICA classifier and PCA was
in Architecture | had a sparse distribution of gray-level valuesignificant for all three test setg(= 2.7, p < 0.01; Z = 3.7,
the face coefficients with respect to this basis were not sparge< 0.001; Z = 3.7; p < 0.001).
In contrast, the coefficients of the ICA factorial code repre-
sentation from Architecture Il were highly kurtotic at 102.9. VIIIl. DISCUSSION

Much of the information that perceptually distinguishes faces
V. COMBINED ICA RECOGNITION SYSTEM is contained in the higher order statistics of the images, i.e., the
Given that the two ICA representations gave similar recoghase spectrum. The basis images developed by PCA depend
nition performances, we examined whether the two represendaly on second-order images statistics and, thus, it is desirable
tions gave similar patterns of errors on the face images. Theéodind generalizations of PCA that are sensitive to higher order
was a significant tendency for the two algorithms to misclassifgnage statistics. In this paper, we explored one such general-
the same images. The probability that the ICA-factorial reprezation: Bell and Sejnowski’s ICA algorithm. We explored two
sentation (ICA2) made an error given that the ICA1 represedifferent architectures for developing image representations of
tation made an error was 0.72, 0.88, and 0.89, respectively, faces using ICA. Architecture | treated images as random vari-
the three test sets. These conditional error rates were sigrafdles and pixels as random trials. This architecture was related
cantly higher than the marginal error ratés£ 7.4, p < 0.001; to the one used by Bell and Sejnowski to separate mixtures of
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auditory signals into independent sound sources. Under this @presentation than the Architecture | representation given its
chitecture, ICA found a basis set of statistically independent ireparse, factorial properties. Due to the difference in architec-
ages. The images in this basis set were sparse and localizetlire, the ICA-factorial representation always had fewer training
space, resembling facial features. Architecture |l treated pixalamples to estimate the same number of free parameters as the
as random variables and images as random trials. Under thisAschitecture | representation. Fig. 16 shows that the residual de-
chitecture, the image coefficients were approximately indepgmendencies in the ICA-factorial representation were higher than
dent, resulting in a factorial face code. in the Architecture | representation. The ICA-factorial repre-

Both ICA representations outperformed the “eigenface” regentation may prove to have a greater advantage given a much
resentation [57], which was based on PC analysis, for recdgtger training set of images. Indeed, this prediction has born
nizing images of faces Samp|ed on a different day from tl'%lt in recent eXperimentS with a Iarger set of FERET face im-
training images. A classifier that combined the two ICA repades [17]. It also is possible that the factorial code representa-
resentations outperformed eigenfaces on all test sets. Since [€Q may prove advantageous with more powerful recognition
allows the basis images to be nonorthogonal, the angles and 8RRgines than nearest neighbor on cosines, such as a Bayesian
tances between images differ between ICA and PCA. Moreovglassifier. An image set containing many more frontal view im-
when subsets of axes are selected, ICA defines a different s@ges of each subject collected on different days will be needed
space than PCA. We found that when selecting axes accordifidest that hypothesis.
to the criterion of class discriminability, ICA-defined subspaces In this paper, the number of sources was controlled by re-

encoded more information about facial identity than PCA-déllicing the dimensionality of the data through PCA prior to per-
fined subspaces. forming ICA. There are two limitations to this approach [55].

ICA representations are designed to maximize informatio € firSt is the reverse dimensionality problem. It may not be
transmission in the presence of noise and, thus, they maypé’ﬁs'ble to linearly separate the independent sources in smaller

more robust to variations such as lighting conditions, changesi spaces. Slnc_:e _vve_retalne(_j 2.00 d|men3|0_ns, this may ’?Ot have
hair, make-up, and facial expression, which can be conside n a serious limitation of this implementation. Second, it may

forms of noise with respect to the main source of informatioft be desirable to throw away subspaces of the data with low

in our face database: the person’s identity. The robust recog‘f’ﬁ‘?—"ver suchas the higher PCs. Although low in power, these sub-

tion across different days is particularly encouraging, since mc?%aces rgay contaltn ICs i'?n dd th_l? pLoperty o;the dbata we seek 'Z
applications of automated face recognition contain the noise In- ependence, not amplitude. 1echniqués have been propose

herent to identifying images collected on a different day fro r separating sources on projection planes without discarding
the sample images any ICs of the data [55]. Techniques for estimating the number

h f1h . in thi of ICs in a dataset have also recently been proposed [26], [40].
The purpose of the comparison in this paper was to examinery information maximization algorithm employed to per-

ICA and PCA-based representations under identical conditio g N "
%rm ICA in this paper assumed that the underlying “causes
A number of methods have been presented for enhanc%-‘ hap ying

. L the pixel gray-levels in face images had a super-Gaussian
recognition performance with eigenfaces (€.g., [41] and [51 eaky) response distribution. Many natural signals, such as

ICA represe_ntations can be used in .place of eigenfacess nd sources, have been shown to have a super-Gaussian
these_technlques. It'is an open question as to whether tha%(:t'ribution [11]. We employed a logistic source model which
techniques would enhance performa}nce W'.th PCA and | s shown in practice to be sufficient to separate natural
equally, or whether there would be mtergctlons between t ﬁgnals with super-Gaussian distributions [11]. The under-
type of enhancement and the representation. lying “causes” of the pixel gray-levels in the face images
A number of research groups have independently tested §t@ unknown, and it is possible that better results could have
ICA representations presented here and in [9]. Liu and Wegheen obtained with other source models. In particular, any
sler [35], and Yuen and Lai [61] both supported our findings thalh-Gaussian sources would have remained mixed. Methods
ICA outperformed PCA. Moghaddam [41] employed Euclideagy separating sub-Gaussian sources through information
distance as the similarity measure instead of cosines. Consisigakimization have been developed [30]. A future direction of
with our findings, there was no significant difference betweefjs research is to examine sub-Gaussian components of face
PCA and ICA using Euclidean distance as the similarity Megnages.
sure. Cosines were not tested in that paper. A thorough comparthe information maximization algorithm employed in this
ison of ICA and PCA using a large set of similarity measuregork also assumed that the pixel values in face images were
was recently conducted in [17], and supported the advantageyeherated from a linear mixing process. This linear approxima-
ICA for face recognition. tion has been shown to hold true for the effect of lighting on face
In Section V, ICA provided a set of statistically independeninages [21]. Other influences, such as changes in pose and ex-
coefficients for coding the images. It has been argued that symession may be linearly approximated only to a limited extent.
a factorial code is advantageous for encoding complex objebtsnlinear ICA in the absence of prior constraints is an ill-condi-
that are characterized by high-order combinations of featuréisned problem, but some progress has been made by assuming
since the prior probability of any combination of features can tzelinear mixing process followed by parametric nonlinear func-
obtained from their individual probabilities [2], [5]. Accordingtions [31], [59]. An algorithm for nonlinear ICA based on kernel
to the arguments of both Field [19] and Barlow [5], the ICA-facmethods has also recently been presented [4]. Kernel methods
torial representation (Architecture 1) is a more optimal objedtave already shown to improve face recognition performance
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with PCA and Fisherfaces [60]. Another future direction of thiand object representations in the brain. Barlow [5] and Atick
research is to examine nonlinear ICA representations of facg®] have argued for redundancy reduction as a general coding
Unlike PCA, the ICA using Architecture | found a spatiallystrategy in the brain. This notion is supported by the findings
local face representation. Local feature analysis (LFA) [50] aled Bell and Sejnowski [12] that image bases that produce
finds local basis images for faces, but using second-order statstependent outputs from natural scenes are local oriented
tics. The LFA basis images are found by performing whitenirgpatially opponent filters similar to the response properties
(4) on the PC axes, followed by a rotation to topographic corref V1 simple cells. Olshausen and Field [43], [44] obtained
spondence with pixel location. The LFA kernels are not sensitiaesimilar result with a sparseness objective, where there is a
to the high-order dependencies in the face image ensemble, elode information theoretic relationship between sparseness
in tests to date, recognition performance with LFA kernels hasid independence [5], [12]. Conversely, it has also been shown
not significantly improved upon PCA [16]. Interestingly, downthat Gabor filters, which closely model the responses of V1
sampling methods based on sequential information maximizample cells, separate high-order dependencies [18], [19], [54].
tion significantly improve performance with LFA [49]. (See [6] for a more detailed discussion). In support of the
ICA outputs using Architecture | were sparse in space (withielationship between Gabor filters and ICA, the Gabor and
image across pixels) while the ICA outputs using Architectul€A Architecture | representations significantly outperformed
Il were sparse across images. Hence Architecture | produgedre than eight other image representations on a task of
local basis images, but the face codes were not sparse, whaleial expression recognition, and performed equally well to
Architecture Il produced sparse face codes, but with holistgach other [8], [16]. There is also psychophysical support
basis images. A representation that has recently appearedointhe relevance of independence to face representations in
the literature, nonnegative matrix factorization (NMF) [28]the brain. The ICA Architecture | representation gave better
produced local basis images and sparse face codésle this correspondence with human perception of facial similarity than
representation is interesting from a theoretical perspectivepitth PCA and nonnegative matrix factorization [22].
has not yet proven useful for recognition. Another innovative Desirable filters may be those that are adapted to the patterns
face representation employs products of experts in restrictedinterest and capture interesting structure [33]. The more
Boltzmann machines (RBMs). This representation also fintlse dependencies that are encoded, the more structure that is
local features when nonnegative weight constraints are elearned. Information theory provides a means for capturing
ployed [56]. In experiments to date, RBMs outperformeihteresting structure. Information maximization leads to an
PCA for recognizing faces across changes in expressionefiicient code of the environment, resulting in more learned
addition/removal of glasses, but performed more poorly fetructure. Such mechanisms predict neural codes in both vision
recognizing faces across different days. It is an open quest{d2], [43], [58] and audition [32]. The research presented here
as to whether sparseness and local features are desirédumd that face representations in which high-order dependen-
objectives for face recognition in and of themselves. Hereies are separated into individual coefficients gave superior
these properties emerged from an objective of independenceecognition performance to representations which only separate
Capturing more likelihood may be a good principle for genesecond-order redundancies.
ating unsupervised representations which can be later used for
classification. As mentioned in Section Il, PCA and ICA can ACKNOWLEDGMENT

be derived as generative models of the data, where PCA USes, - authors are grateful to M. Lades, M. McKeown, M. Gray

Gaussian sources, and ICA typically uses sparse sources. It hac?T-W Lee for helpful discussions on this topic, and valuable
been shown that for many natural signals, ICA is a better modae - '

in that it assigns higher likelihood to the data than PCA [325;lomments on earlier drafts of this paper.
The ICA basis dimensions presented here may have captured
more likelihood of the face images than PCA, which provides

a possible explanation for the superior performance of ICA for [1] S. Amari, A. Cichocki, and H. H. Yang, *A new learning algorithm for
blind signal separation,” iAdvances in Neural Information Processing

face recognition in this study. Systems Cambridge, MA: MIT Press, 1996, vol. 8.
The ICA representations have a degree of biological rele-[2] J. J. Atick, “Could information theory provide an ecological theory of

; ; g ; ; sensory processingMNetwork vol. 3, pp. 213-251, 1992.
vance. The information maximization Ieammg algo”thm was [3] J.J. Atick and A. N. Redlich, “What does the retina know about natural

developed from the principle of optimal information transfer in scenes?,Neural Comput.vol. 4, pp. 196-210, 1992. _
neurons with sigmoidal transfer functions. It contains a Hebbian[4] F.R.Bach and M. 1. Jordan, “Kernel independent component analysis,”

. . J. Machine Learning Resvol. 3, pp. 1-48, 2002.
correlational term between the nonlinearly transformed outputs,, - 5 Barlow, “Unsupervised learningNeural Comput.vol. 1, pp.

and weighted feedback from the linear outputs [12]. The biolog- =~ 295-311, 1989.
ical plausibility of the learning algorithm, however, is limited by [61 M. S. Bartlett, Face Image Analysis by Unsupervised

fact that the | . lei | L L ¥ . les f Learning Boston, MA: Kluwer, 2001, vol. 612, Kluwer International
act that the learning rule IS nonlocal. Local learning rules tor Series on Engineering and Computer Science.

ICA are presently under development [34], [38]. [71 ——. “Face Image Analysis by Unsupervised Learning and Redundancy

The principle of independence, if not the specific Iearning ?gggction,” Ph.D. dissertation, Univ. California-San Diego, La Jolla,

algorithm employed here [12], may have relevance to faceg) m.s. Bartlett, G. L. Donato, J. R. Movellan, J. C. Hager, P. Ekman, and
T. J. Sejnowski, “lmage representations for facial expression coding,” in
9Although the NMF codes were sparse, they were not a minimum entropy Advances in Neural Information Processing Systesns\. Solla, T. K.
code (an independent code) as the objective function did not maximize sparse-  Leen, and K.-R. Muller, Eds. Cambridge, MA: MIT Press, 2000, vol.
ness while preserving information. 12.
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