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Abstract

We present a fully automatic approach to learning the
personal facial attractiveness preferences of individual
users directly from example images. The target application
is computer assisted search of partners in online dating ser-
vices. The proposed approach is based on the use of ε-SVMs
to learn a regression function that maps low level image
features onto attractiveness ratings. We present empirical
results based on a dataset of images collected from a large
online dating site. Our system achieved correlations of up to
0.45 (Pearson correlation) on the attractiveness predictions
for individual users. We show evidence that the approach
learned not just a universal sense of attraction shared by
multiple users, but capitalized on the preferences of individ-
ual subjects. Our results are promising and could already
be used to facilitate the personalized search of partners in
online dating.

1. Introduction

Every day, millions of users log on to Internet dating
sites to make one of the most important decisions in their
life: choosing a partner. To this end, users are confronted
with the difficult task of data-mining the wealth of choices
available in dating sites. These sites usually contain textual
information, such as age, hobbies, and personal interests to
assist users making their choices. However critical sources
of information such as a person’s physical attractiveness are
beyond current search tools. This is because many of the
things that determine our attraction towards specific faces
are subtle and difficult to verbalize.

Recent machine vision research [1–4] has tackled the
problem of predicting the attractiveness of faces averaged
over a large universe of observers. While there are faces that
many people find particularly attractive, in practice people
differ greatly on their individual preferences. In fact some
users from online dating sites may not be interested on part-

ners that may appear attractive to too many people. In this
paper, we explore the use of computer vision and machine
learning methods to learn the preferences of individual users
directly from labeled face images. While computer vision
and machine learning applications to face processing have
a recent history of success, to our knowledge the problem
of learning to predict individual users’ attraction to other
face images has never previously been approached in the
literature. Thus, it is unclear whether this problem is solv-
able with current methods, and if so, which image repre-
sentations, learning algorithms, and training set sizes are
most appropriate. In this paper we present empirical results
comparing the performance of a variety of low level repre-
sentations such as PCA, Gabor filter banks, and Gaussian
RBFs. We also investigate image representations based on
higher-level features, such as automated analysis of facial
expressions.

2. Related Work

Relatively little machine learning research has been con-
ducted on the specific task of attractiveness prediction, and
all the existing literature has focused on prediction of uni-
versal attractiveness. Aarabi, et al [3] used k-nearest neigh-
bors to classify face images as belonging to one of four
ratings of beauty. The feature vectors consisted of 8 ge-
ometric ratios of distances between certain fiducial points
(eyes, brows, and mouth) of the face. On a validation set of
40 images, their system achieved 91% correct classification.
When fiducial points were inaccurately registered, however,
the performance sank to 37%.

White, et al [2] used ridge regression, a Gaussian RBF
kernel, and textural facial features to predict the mean at-
tractiveness scores assigned to 4000 face images down-
loaded from hotornot.com. They experimented with
several textural features and achieved their best perfor-
mance, corresponding to a Pearson coefficient of 0.37, using
kernel PCA on the face pixels.

Eisenthal, et al [4] compared three alternative classifica-
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tion methods – SVMs, k nearest neighbors, and standard
linear regression – to classify face images as either “at-
tractive” or “unattractive.” Linear regression and SVMs
performed best and were reported to exhibit similar accu-
racy. They found that geometric features based on pairwise
distances between fiducial points were superior to textural
features such as eigenface projections (Pearson coefficients
of 0.6 and 0.45, respectively). They tested on two small
databases, each containing 92 images, of young women
from the USA and Israel posing neutral facial expressions.

Kagian, et al [1] used standard linear regression to pre-
dict mean attractiveness scores on the same female Israeli
database. The human coders labeled each image with an
attractiveness score in 1-7 range. By using 90 principal
components of 6972 distance vectors between 84 fiducial
point locations, some of which were labeled manually, they
achieved a Pearson correlation of 0.82 with mean attractive-
ness scores labeled by humans.

From this literature several trends can be observed: First,
all previous approaches to attractiveness prediction focused
on learning attractiveness scores averaged across people.
In contrast, here we focus on the potentially more difficult
problem of learning an individual’s notion of facial attrac-
tiveness. Second, all of the above described systems ex-
cept [2] were tested on very small image databases of less
than 100 individuals. For our application, we are interested
in heterogeneous datasets consisting of at least 1000 peo-
ple. Finally, there exists a performance/robustness trade-off
when using geometric features: while image features based
on relative positions of fiducial points achieved the high-
est accuracy in [4] and [1], some of the facial feature points
needed to be manually adjusted. Moreover, [3] reported that
accuracy can suffer considerably when fiducial points are
inaccurately located. In our research, since we are inter-
ested in approaches that can work automatically with cur-
rent technology, we thus concentrate more on textural fea-
tures (e.g., eigenface projections, Gabor decompositions).

3. Our Approach
The approach investigated in this paper is to learn a per-

sonalized attractiveness function based on example face im-
ages labeled by individuals for their degree of attractive-
ness. The images were 36x36 pixels, and the attractiveness
function was learned using ε-SVMs applied to the following
image feature types (see Figure 1):

1. Eigenface projections [5] have a long-standing history
in the field of face analysis. Typically, each face image
to be analyzed is projected onto the N eigenface pro-
jections with highest associated eigenvalues, where N
is optimized for the particular application.

2. Gabor filters have a proven track record in object de-
tection [6] and expression recognition [7]. Their use in

Figure 1. An illustration of the various alternative feature types
we used for personalized attractiveness prediction. Top-left: four
sample Gabor filters. Top-right: the four eigenface projections
with highest associated variance. Bottom-left: Geometric features
derived from relative distances between fiducial points. Bottom-
right: grid of cells within which histogram of oriented gradient
(EOH) features are extracted.

automated beauty detection was also suggested by [4].

3. Edge orientation histograms (EOH) have garnered
considerable interest for object recognition [8] as well
as object detection [9] in recent years. Particular forms
of EOH features can capture local symmetry in face
appearance; given the reported importance of symme-
try in facial beauty [10], they may be particularly use-
ful for attractiveness detection.

4. Geometric features: We experimented with geometric
features based on the pairwise distances, angles, and
PCA projections of distance vectors between fiducial
points. We used fiducial points which can be reliably
detected using current technology, i.e., corners of the
eyes, and centers of mouth and nose.

3.1. Regression

During preliminary experimentation with standard linear
regression, ridge regression, multinomial logistic regres-
sion, and ε-SVM regression, we found that ε-SVMs worked
best and thus used ε-SVMs in our experiments. In its lin-
ear form y = wT x + b, the ε-SVM seeks to minimize the
L2 norm of the weight vector w subject to the constraints
that each predicted output value y can be no more than ε
distance from its true value in the training set. So long as
the error between the predicted and actual output values is
at most ε, the exact error is irrelevant [11, 12].



3.2. Implementation Details

All face patches were downscaled from 96x96 (for hu-
man coding) to 36x36 for automated analysis. Then, one or
more sets of features were extracted, and either a regressor
was trained (training phase) or the attractiveness score of
the face patch was predicted (prediction phase). When pre-
dicting attractiveness scores, the real numbers returned by
the regressor were linearly scaled to integers in {−1, 0, 1, 2}
based on the minimum and maximum real values in the par-
ticular cross-validation fold.

For the extraction of EOH features, each face image
was decomposed into an 12x12 grid of square cells, each
3 pixels wide, as illustrated in Figure 1. For the first EOH
feature type, a histogram spanning 8 different orientation
bins (22.5deg) was calculated within each cell, and the his-
tograms over all cells were concatenated to form the fea-
ture vector. For the second EOH feature type, the same his-
tograms were computed in all cells. Each cell was paired
with its bilaterally symmetric neighbor (reflected across the
middle vertical line in the figure). For each orientation bin
i ∈ {1, . . . , 8} in the left cell in each pair, one feature value
was computed as the difference in total gradient in bin i of
the left cell and bin 8− (i− 1) of the right cell.

Gabor features were extracted by filtering each face
patch with 40 Gabor filters at 5 different spatial frequen-
cies and 8 orientations, as in [13]. The Gabor decomposi-
tions for each face patch were concatenated and then down-
sampled by a factor of 36.

For eigenface analysis, we varied the num-
ber of highest-variance eigenface projections over
{100, 150, 200, 250, 300, 500} and found that 250 yielded
the best results.

Finally, for the ε-SVM regression, we used the libsvm
SVM implementation [14]. We let ε = 0.001 and used a
Gaussian RBF kernel.

4. Experiment Design
4.1. Data Set

Face images for our experiment were taken from the
GENKI database [15], which consists of nearly 70,000 face
images collected from the Web. The persons in GENKI
span a wide range of ages (though all persons are at least
18 years old), imaging conditions, and ethnicities. All im-
ages are labeled for 3-D pose (yaw, pitch, roll) and for 2-D
locations of fiducial points (eye corners, mouth, and nose).
We randomly selected 1000 males and 1000 females from
this database whose yaw, pitch, and roll parameters were all
in [−4, 4] degrees of frontal. In this sample, approximately
80% of the individuals were white, 10% were Asian, 5%
were Latin, and 5% were African/Black. Using automati-
cally detected fiducial point coordinates (using the system
in [16]), the faces were converted to grayscale, rotated to

a canonical rotation, and scaled to 96x96 pixels (for cod-
ing) or 36x36 pixels (for automated attractiveness analysis).
Faces were cropped close to the face contour so that little
hair was visible. Although hair may likely influence per-
ceptions of a person’s attractiveness, in this experiment we
wished to concentrate solely on predicting the attractiveness
of the face itself.

4.2. Procedure

4.2.1 Data Collection

We collected facial preference data from 8 human coders,
7 of whom are graduate students and 1 of whom is a sys-
tem administrator at our institution. Coders were instructed
to rate faces in terms of how interested they would be in
approaching each person in the database for a date. The
ages of the coders varied from early 20’s to mid 30’s. Six
of the coders were male, and two were female. Two of the
male coders labeled faces of other males (homosexual pref-
erence). The other six coders labeled faces of the opposite
sex. Seven of the coders were Caucasian, and one was a
Latin male.

Preference data consisted of attractiveness ratings as-
signed to 1000 different faces of the user’s preferred gen-
der. The coders did not have access to any biographical
information (e.g., hobbies, interests, occupation, age) of the
people they were rating. Ratings consisted of integers in
{−1, 0, 1, 2} with the following interpretation:

-1 Definitely not interested in meeting the
person for a date

0 Not interested in meeting the person
1 Interested in meeting the person
2 Definitely interested in meeting the person

Each coder assigned attractiveness ratings to all 1000 im-
ages of his/her preferred gender by clicking the mouse on
the corresponding face image. The default rating assigned
to each face (before the coder adjusted it using the mouse)
was 0.

During the coding process, each human coder was pre-
sented with 40 montages of 25 faces each (pre-cropped and
normalized) in 5x5 tile format. Only one montage appeared
on the screen at a given moment. The coder could cycle
through the different attractiveness ratings of each face by
clicking the mouse. The user could advance to the next
montage by using the keyboard. No time limit was imposed,
but coders typically required about 45-60 minutes to label
1000 faces of their preferred gender.

In order to measure the consistency of each subject rela-
tive to him/herself, we asked each coder three months later
to re-label a subset of 100 randomly selected faces (from the
original 1000). These second sets of labels were used only
for self-consistency assessment, not for training or valida-
tion of the attractiveness regression function.



Correlations with Human Labels of Attractiveness
Coder # Self-Correlation ε-SVM Predictions

Users Preferring Males
1 0.64 0.23
2 0.57 0.21
3 0.67 0.28
4 0.49 0.24

Users Preferring Females
5 0.38 0.13
6 0.43 0.30
7 0.64 0.40
8 0.78 0.45

Avg 0.58 0.28

Table 1. Correlation coefficients of predicted attractiveness scores
for each human coder. Results shown are for PCA-based features
and ε-SVMs.

4.2.2 Training and Validation

For each user, the 1000 labeled images were divided into
five disjoint cross-validation folds of 200 faces each. Each
regressor was trained on four of the five folds and then
tested on the remaining fold. For each person, performance
was computed as the average (over all five folds) Pear-
son correlation of predicted attractiveness with the human-
labeled ratings.

5. Results

5.1. Correlation with Humans

Using Gabor features and ε-SVM regression, our fully
automated system achieved the correlations with human rat-
ings shown in Table 1. The average correlation (over all 8
subjects) of predicted attractiveness scores with human rat-
ings was 0.28. This result is based on a fully automatable
system and is comparable with the average inter-subject
rank correlation between attractiveness labels (Spearman
correlation of 0.30). The average self-consistency correla-
tion was 0.58, which underlines the difficulty of the per-
sonalized attractiveness prediction problem. The accuracy
of the automated prediction was highly correlated with the
self-consistency of the subjects (r = 0.71), i.e., it was eas-
ier to predict the preferences of those subjects that had make
more consistent choices. For coders 7 and 8, the ε-SVM
achieved a correlation substantially higher than inter-human
correlation – our system achieved 0.40 and 0.45 correlation
with ground-truth rankings, respectively. While this result
can certainly be improved upon, we believe it is a valuable
first step towards viable personalized attractiveness predic-
tion.

A plausible hypothesis is that our system had just learned
features that are universally liked, rather than learning the

Feature Type Analysis
Feature Type Set Correlation
{ Gabor } 0.28
{ PCA } 0.26
{ EOH } 0.24
{ Geom } 0.08

Table 2. Analysis of the effect of feature type on the mean Pearson
correlation (over all human coders). Gabor features delivered the
best performance. Adding a second feature type did not increase
performance.

preferences of individual users. To test this hypothesis we
calculated for each person the correlation between his/her
preferences and the preferences predicted by the system for
other people who preferred the same gender. The results
indicated that the system was tapping on personal prefer-
ences. The mean correlation for predictors trained on other
users was 0.22, whereas the mean correlation for predictors
trained on the same users was 0.28, a 25% improvement,
which was statistically significant (t(7) = 2.57, p < 0.04).

5.2. Feature Type Analysis

Results of the feature type analysis are shown in Table
2. Gabor decompositions achieved the highest accuracy at
a correlation of 0.28 using a fully automatic approach. For
comparison, we also performed the same experiment using
human-labeled fiducial points for image registration, PCA
and Gabor features tied for best performance, with mean
correlation of 0.30. This suggests that Gabor features may
be more robust to imprecise image alignment and thus per-
haps more suitable for automated attractiveness detection
than PCA features.

Among the three varieties of geometric features we used
– distance-vector magnitudes, angles between distance vec-
tors, and PCA projections of distance vectors – we found
that distance vectors by themselves performed the best.
However, no geometric feature was nearly as predictive of
facial attractiveness as the Gabor features. This result is
contrary to previous research on using geometric features
for universal attractiveness prediction [1, 4]. A possible
explanation is that, in earlier work, some fiducial points
were labeled manually, thus enabling a far greater number
of them. It is conceivable that, as the field of automatic
fiducial point detection progresses, such geometric features
may once again prove useful.

We also tried augmenting the Gabor feature set with
some of the other feature types. No significant performance
gain was observed.

5.3. Finding the Attractive Faces

In an online dating setting, the user is usually more in-
terested in finding “attractive” people rather than “unattrac-



Proportion of Faces
Correctly Predicted to be Attractive

Coder # Predicted by ε-SVM Baseline
Users Preferring Males

1 0.12 0.09
2 0.10 0.08
3 0.16 0.11
4 0.21 0.18

Users Preferring Females
5 0.06 0.04
6 0.33 0.24
7 0.37 0.20
8 0.40 0.30

Avg 0.22 0.16

Table 3. Fraction of people correctly predicted to be attractive by
our ε-SVM system using PCA features compared to the baseline
probability of attractiveness obtained by a random sample (the
status-quo of online dating sites). For several users, our system
nearly doubled the proportion of attractive faces.

tive” people. Typically, the user can specify certain search
parameters regarding geographical location, age group, and
preferred gender, and the dating website then returns a set
of faces matching these basic criteria for the user’s review.
To our knowledge, no currently available online dating ser-
vice uses any form of automated attractiveness detection;
hence, beyond the initial search criteria, the probability that
the querying user will find the returned set of faces attrac-
tive is equivalent to a random draw. Our system can be used
to improve on this random draw significantly by either sort-
ing the faces in decreasing order of attractiveness, or by set-
ting a threshold and classifying faces as either “attractive”
or “non-attractive.” We took the latter approach by setting
the threshold at 0.5 and measured the accuracy of our sys-
tem using the Proportion of Faces Correctly Predicted to be
Attractive (PFCPA), which is equivalent to the true positive
rate when the learned regression function is given a particu-
lar threshold (0.5) for binary classification (attractive versus
non-attractive).

Results using the ε-SVMs on eigenface (PCA) features
are shown in Table 3. As shown in the table, the PFCPA us-
ing our system was higher than the baseline (random sam-
ple, as in contemporary online dating sites) for all human
subjects in our experiment. For several users, the percent-
age of “attractive” people returned using our system was
nearly double that of a random sample, The average in-
crease in PFCPA over random selection was 0.06, which
is statistically significant (t(7) = 3.6, p < 0.01) . These
results suggest that personalized attractiveness prediction,
though a nascent research topic, can already be effectively
used to improve users’ online dating experiences.

Correlations of AU Intensities
with Attractiveness Labels

AU Correlation
Users Preferring Males

4 −0.09
9 −0.14

Users Preferring Females
4 −0.17
5 +0.11
9 −0.18

17 −0.13

Table 4. The statistically significant correlations between Action
Unit (AU) intensities and attractiveness labels for each gender. The
correlations between each user’s set of attractiveness labels and the
AU intensities were averaged across all 4 coders for each gender.

6. High-level Features: Facial Expression

In the research presented above, low-level image features
were used to predict the attractiveness of faces for a particu-
lar user’s taste. It is conceivable, however, that higher-level
features such as facial expression cues may be more suit-
able for automatic attractiveness prediction. In this section,
we investigate the usefulness of detecting the facial “action
units” of the Facial Action Coding System (FACS, [17]) for
predicting facial attractiveness. FACS decomposes human
facial expressions into 46 component movements, which
roughly correspond to individual facial muscles. These el-
ementary movements are called action units (AUs) and can
be regarded as the “phonemes” of facial expression. A par-
ticular facial expression can be described by the set of AUs
it contains and their associated intensities, rated on a 5 point
scale. Recent years have seen considerable progress in the
development of automatic AU detectors; in this study, we
use one particular such system, CERT, which achieves state-
of-the-art accuracy both for a variety of AUs [7] and for the
detection of social smiles [15]. CERT operates on either
video or photographs on a frame-by-frame basis.

Using CERT we automatically detected the intensities of
AUs 1, 2, 4, 5, 9, 10, 12, 14, 15, 17, 20, and of the “smile”
value for all the face images in our experiment. Then, for
each of the 4 human coders that labeled the attractiveness
of a particular gender, we correlated the detected AU inten-
sities with the human labels of attractiveness. To first gain
a sense of any impact of AU intensity on universal percep-
tion of attractiveness, we averaged the correlations across
all four coders for each gender and considered the average
correlation to be statistically significant for a particular gen-
der if p < 0.05 across all four coders.

Table 4 shows the AUs with which the 4 sets of attrac-
tiveness labels for each gender were significantly correlated.
For both genders, there was a significant negative corre-



AU 4 (Brow lowerer) AU 5 (Upper lid raiser)
Negative correlation Positive correlation

AU 9 (Nose wrinkler) AU 17 (Chin raiser)
Negative correlation Negative correlation

Figure 2. Samples of each of the AUs with which the faces in our
study were significantly correlated. Images were taken from the
webpage of [18].

lation with both AU 4, “brow lowerer,” and AU 9, “nose
wrinkler” (see Figure 2 for an illustration). Moreover, for
female faces, there was also a negative correlation with AU
17. These AUs are all associated with negative emotion [17]
and it is thus not unexpected that a negative correlation ex-
ists.

Action unit 5, with which female attractiveness labels
were positively correlated, tends to expose the eyes; previ-
ous research has found a positive correlation between pupil
size and sexual arousal of the observer [19], and it is possi-
ble that these two effects (eye widening and pupil dilation)
are related.

To our surprise, the attractiveness labels were not sig-
nificantly correlated with detected smile intensity, despite
the fact that a wide range of intensity values, and substan-
tial number of both smiles and non-smiles occurred in the
dataset. However, recent empirical research has shown that
the effect of smile on attractiveness perception is subtle and
context dependent. For example, smiling faces are on aver-
age judged as being more attractive than neutral expression
faces on images of faces with direct gaze. By contrast, for
judgments of faces with averted gaze, attractiveness prefer-
ences are stronger for faces with neutral expressions than
smiling faces [20]. In addition, smiles correlate with other
factors in interesting ways. For example, in our dataset of
images from online dating sites, we found that older males
tended to smile more than younger males. Moreover older
males tended to be ranked as less attractive than younger
males. In addition, many of the most attractive individuals
in the dataset seemed to adopt the “cool” facial expression
typically seen in high-fashion models. These and other sub-
tle effects may help explain the lack of empirical correlation

between smile value and attractiveness.

6.1. Using Facial Expression for Personalized Pre-
diction

In order to test the usefulness of AU features for person-
alized attractiveness prediction, we created a new feature
type, “AU”, and then ran the same experiment as in Section
4.2.1. Preliminary results indicate that AU features only
improved marginally the accuracy of the prediction, from
0.281 for Gabor features alone to 0.284 for Gabor + AU. We
were surprised by the fact that the performance improve-
ment was so small and are currently investigating whether
this results holds when using other learning architectures.

7. Conclusion
Physical attraction plays a critical role in the choice of

partners, yet current online dating services have no way to
use this source of information to assist their users. This is
partly due to the fact that many of the things that determine
our attraction towards others are subtle and difficult to ver-
balize.

Here we explored an approach to learn a user’s prefer-
ences based on example labeled images. Overall, our re-
sults, while preliminary, show that automated personalized
prediction of facial attractiveness is feasible with current
technology. Our system achieved Pearson correlations up
to 0.45 with human ratings of attractiveness. While not per-
fect, the system could already be used to help users search
for potential partners.

There are many obvious ways in which our results could
be potentially improved in the near future. For example,
collaborative filtering techniques could be used so that rank-
ings of attractiveness can implicitly be learned from other
users for which preference models already exist. Another
technique likely to result in significant improvements is the
use of active learning to ask the user to label only those im-
ages that may be particularly informative to learn his/her
preferences. Overall, the results presented in this document
are encouraging and suggest a new potential application of
modern computer vision technology to assist millions of
people make one of the most important decisions in their
lives.
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