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Abstract—Modeling eye-movements during search is important
for building intelligent robotic vision systems, and for under-
standing how humans select relevant information and structure
behavior in real time. Previous models of visual search (VS) rely
on the idea of “saliency maps” which indicate likely locations
for targets of interest. In these models the eyes move to locations
with maximum saliency. This approach has several drawbacks:
(1) It assumes that oculomotor control is a greedy process, i.e.,
every eye movement is planned as if no further eye movements
would be possible after it. (2) It does not account for temporal
dynamics and how information is integrated as over time. (3) It
does not provide a formal basis to understand how optimal search
should vary as a function of the operating characteristics of the
visual system. To address these limitations, we reformulate the
problem of VS as an Information-gathering Partially Observable
Markov Decision Process (I-POMDP). We find that the optimal
control law depends heavily on the Foveal-Peripheral Operating
Characteristic (FPOC) of the visual system.

I. INTRODUCTION

Personal robots must juggle the varied demands of every-
day life in an intelligent way. To do this effectively, they
must continuously make choices about which sensory data
can be ignored and which data must be processed. Camera
movements are a prototypical attentional control mechanism,
selecting small regions of the visual world to process moment-
to-moment. Moreover, personal robots that move their sensors
in a purposive manner tend to appear intelligent and lifelike
to the humans interacting with them (Figure 1b).

Studying human eye-movement highlights principles that
may be important for robots. Past years have seen a large
growth of publications on computational models of visual
search that rely on the idea of visual saliency. These models
are evaluated in terms of how well they describe where humans
tend to fixate within an image or video (Figure 1a). Recently,
these models have become fast enough to run in low-end
computers in real time and at little computational cost, while
maintaining competitive accuracy [1]. This makes it possible to
provide robots with principled mechanisms to choose where
to look, and still have processing power left over for other
tasks.

Models of visual salience can usually be categorized as
descriptive, or prescriptive. Descriptive models try to match
human data directly, either by following psychological theories
(e.g. [2] which models Feature-Integration-Theory [3]), or by
directly fitting models to human data [4].

(a) Example Saliency Map (b) Robot Joint Attention

Fig. 1: (a) The saliency-map approach to robot eye-movements
models where humans would look in an image. Top: The original
image is the input to a saliency algorithm. Bottom: Bright regions
are found salient by the algorithm. (b) When robots move their eyes
in a fashion similar to humans, compelling feelings of intelligence
are created, and joint attention is observed.

In contrast, prescriptive saliency models try to uncover the
underlying computational objectives that organize oculomo-
tor control. A popular choice is to frame the goal of eye-
movement as Visual Search (VS), i.e. finding targets within a
visual array. These models postulate that an intelligent agent
should fixate its visual sensors on regions of the array where
the target is most likely to be, given visual features across
the whole array. Under this class of models saliency for each
pixel x in the visual array is related to probability that it is
rendered by a class of interest, Cx = 1. This can be framed
mathematically as

Salience(x) = p(Cx = 1|Image)

=
p(Image|Cx = 1)p(Cx = 1)

p(Image)
(1)

Many salience algorithms, e.g. [5]–[8], can be seen as special
cases of this framework. See [1] for a more thorough review.

While the above framework is compelling and predicts well
where on average humans will look in unconstrained tasks,
it has important limitations: (1) The framework is atemporal,
i.e. it gives no principled account for the order of saccades.
(2) There is no mechanism for integrating information across



fixations. After a robot saccades, how does it update its
saliency map based on what it saw? In fact, saliency models
always fixate the same maximally salient location unless
Inhibition of Return (IOR) is added. In practice, this means
salience is subtracted around the currently fixated location.
The use of IOR is an ad hoc procedure rather than an
emerging property derived from a formal computational frame-
work. (3) Existing salience models are not explicit in their
assumptions of the Foveal-Peripheral Operating Characteristic
(FPOC) of the visual system. As such they cannot account
for how behavior should differ across systems with different
FPOCs, like human infants, human adults, and robots. (4)
Many existing saliency models assume what appears to be
a reasonable control strategy: foveation of the most probable
target locations. However it is possible that one can gain more
information, in the long run, by foveating less probable target
locations.

To address these limitations, we frame oculomotor control
as a problem in stochastic optimal control. We start with
a psychophysical model of visual perception proposed by
Najemnik & Geisler [9] and reformulate it as an Information-
gathering Partially Observable Markov Decision Process (I-
POMDP). We design an I-POMDP with parameters fit to
human data, as well as one designed to model robotic vision.
We find that for both cases the optimal control laws avoid
foveating locations where targets are likely to be. This suggests
that postulates accepted by most of the current models of
visual search may not be optimal. The proposed approach
explains how looking behavior changes with the characteristics
of the visual system, in particular the relative resolution of
the foveal and peripheral regions. This argues against the
“one-size-fits-all” approach taken previously that assumed that
robotic eye-movement strategies should be the same as those
in humans.

II. VISUAL SEARCH MODEL

Najemnik & Geisler [9] modeled VS as a control strategy
designed to detect the location of a visual target under sensor
uncertainty. This model assumes that there are N locations
in the visual array where a visual target can appear. These
locations have some spatial layout, e.g. on points of a grid. At
every timestep, an agent can choose one of the points in the
visual array to fixate. The agent will get information about
whether or not the target is located near the fixation point
with high certainty, and at increasingly distant points with
decreasing certainty. An important limitation of their approach
is that it assumes a greedy control strategy, i.e., each eye
movement is planned under the assumption that no further
eye movements will be possible.

Here we extend Najemik & Geisler’s framework and refor-
mulate it as a POMDP in which the primary goal is to gather
information. We refer to this approach as I-POMDP. The new
formulation allows us to answer questions about the moment-
to-moment temporal dynamics of optimal eye-movement. A
POMDP is defined by the following elements [10] (with their
correspondences in the VS model):

• S: A set of states that cannot be directly observed by the
agent (St = i ∈ {1 : N} corresponds to the event that
the target is at location i at time t).

• A: A set of actions that the agent can take (At = k ∈
{1 : N} corresponds to the event that the agent’s center
of fixation is at location k at time t).

• O: A set of observations that can be made by the agent
( ~Ot ∈ RN is a vector with elements Ojt that correspond
to noisy sensor evidence at time t about whether or not
the target is at location j in the visual array).

• p(St+1|St, At): Dynamics – How the state changes based
on the agent’s actions. (In the current task the visual target
does not move, so p(St+1|St, At) = 1 if St+1 = St, 0
otherwise. I.e., the state transition matrix is the identity
matrix).

• p(Ot|St, At): Observation model – How states and ac-
tions combine to yield observations (Section II-A).

A critical concept in POMDPs is the “Belief State” vector
~Bt ∈ [0, 1]N , in which the ith element Bit represents the
probability that the target is in visual array location i given
all of the agent’s previous eye movements and observations,
i.e., Bit

def= p(St = i|A1:t−1, O1:t−1). A well known result in
the theory of POMDPs specifies that the belief state vector
at time t can be calculated based only on a single previous
eye movement At−1, a single observation of the visual array
~Ot−1, and the previous belief vector ~Bt−1. Specifically,

Bit ∝ p( ~Ot|St = i, At−1)
N∑
j=1

p(St = i|At−1, St−1 = j)Bjt−1

In the current task the target never moves, and this becomes

Bit ∝ p( ~Ot|St = i, At−1)Bit−1 (2)

Equation (2) tells us that the belief state encodes all the
relevant history of an agent’s actions and observations. Thus
by maintaining a representation the same size as a single
observation, an agent can remember all that’s relevant from
all previous observations.

A. Observation Model

We formalize the operation of the visual array according to a
signal-detection model adapted from [9]. A noisy observation
ojt ∈ R is sampled at each potential target location j at each
timestep t. In locations without a target, an observation is
drawn from a “no activity” Gaussian distribution, which has
zero-mean. Only the single observation directly at the target
location is drawn from the “activity” Gaussian, which has a
mean that increases as the target approaches the foveal region

p(ojt |St 6= j, At = k) = N(µ = 0, σ2 = 1) (3)
p(ojt |St = j, At = k) = N(µ = dj,k, σ

2 = 1) (4)

where dj,k is the Foveal-Peripheral Operating Characteristic
(FPOC) of location j given that the retina is centered at k. This
number indicates how easy it is to discriminate an observation
rendered by the target according to (4) from an observation
rendered by the background according to (3). In humans the
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Fig. 2: The Visual Search POMDP: (a) Before the agent has looked at the visual array, it thinks the target could be at any location with equal
likelihood. (b) At time t, the target (star) is located at St = i. Without knowing where the target is, the agent chooses a location At = k to
fixate (eye). This yields evidence about the location of the target with varying degrees of certainty dj,k at each location j (circles). (c) The
eccentricity of the target from the center of fixation determines how easy it is to distinguish from background noise observed throughout
the visual field. We use an FPOC fit by [9] to human subjects’ data. (d) Activation levels αi,k [Equation (5)] based on observations drawn
according to the observation model [Equations (3)&(4)]. Blue circles (positive values) are more likely to be caused by a target; red circles
(negative values) are more likely to be the result of only noise. Large red values near fixation provide strong evidence that the target is
not where the agent is currently fixating. (e) The observation is combined with the Prior using Equation (6) to yield a new estimate of the
likelihood of the target’s location. This posterior exhibits IOR in that regions around the previous fixation have depressed probability if the
object of interest is not seen there.

FPOC dj,k decreases with increased distance of location j
from the current point of fixation k, meaning farther from
the point of fixation it becomes harder to discriminate an
observation caused by a target-based activity from one caused
by noise alone. We used an FPOC function that was fit to
human data by [9] (Figure 2c).

Under Geisler’s model, the individual observations Ojt are
conditionally independent given the external scene,1 and so

p(~ot|St = i, At = k) =
N∏
j=1

p(ojt |St = i, At = k)

=1/
√

2π exp((oit − di,k)2/2)
∏
j 6=i

1/
√

2π exp((ojt )
2/2)

=
exp((oit − di,k)2/2)

exp((oit)2/2)
Z

= exp(αi,kdi,k) Z; αi,k
def= (oit − di,k/2) (5)

where Z is identical for all i, k. Combining this with Equation
2 yields the proportional belief update

Bit ∝ exp(αi,kdi,k)Bit−1 (6)

The “activation value” αi,k gives intuition about belief updates
in the I-POMDP: if αi,k for an element i of the observation
vector is positive, the belief that the target is at location i will
increase, while if it is negative, the agent will infer a reduced
probability that the target is at location i.2 (Figure 2d).

Note the simplicity of the belief update, Equation (6). Even
though the I-POMDP has a large state, observation, and action
space, updating beliefs is computationally quick. To calculate
the relative probability that an entire observation vector was
caused by a state, we need constant time (only a single element

1Note this does not require that the observations are independent. The
assumption would be satisfied, for example, if the sensors were noisy and
the noise in each sensory element were independent.

2Before renormalization.

of that observation vector is considered). Thus the process of
computing the belief update for all all beliefs grows linearly.

III. LEARNING WHERE TO LOOK

We formulate VS as the process of gathering information
about the location of the target of interest. According to the
Infomax Principle [11], this is equivalent to minimizing the
long term entropy of the belief-state ~Bt. Thus, our goal is to
learn a policy π( ~Bt) → At+1 that optimally decreases of ~Bt
in at most T timesteps, where T is a planning horizon. I.e., it
maximizes

V ( ~Bt:T ) =
T∑
j=t

R( ~Bj) (7)

R( ~Bt)
def=

∑
i

Bit logBit (8)

Algorithms for learning exactly optimal policies in POMDPs
exist, but are only feasible with few states, actions, and ob-
servations [10]. Point-based methods can learn approximately
optimal policies for POMDPs with many states and actions,
but require few observations [12]. The I-POMDP model has
anRN observation space, which is very large. Moreover, these
algorithms capitalize on the guarantee of traditional POMDPs
that the reward function be linear in the belief vector ~Bt;
I-POMDPs allow non-belief-linear reward functions like the
Infomax Reward function, Equation (8).

A. Policy Gradient

Due to the limitations of these approaches, here we consider
function approximation methods which find locally optimal
policy functions over a parameterized family of functions
[13]. In particular we investigated Policy-Gradient methods
which perform stochastic gradient ascent on the empirical



value function

∇θE[V (S)|θ] = ∇θ
∑
s

V (s)p(s|π(s; θ))

=
∑
s

[(∑
i

r(si)

)(∑
i

∇θp(si|π(s; θ)
p(~si|π(s; θ))

)
p(s)

]
(9)

An unbiased estimate of this gradient can be obtained by
sampling state trajectories ~s. For episodic problems, this
results in a simple update procedure:

1) Set t = 0; Initialize X , the state of the MDP; Set ~z = ~0
2) For each state transition X → X ′ under policy π(X; θ)

• If X ′ is a final state or t = T , go to 1
• Set ~z ← ~z + β∇θp(X

′|X,π(s;θ))
p(X′|X,π(s;θ))

• Set ~θ ← ~θ + γtr(X ′)~z
• Set t← t+ 1
• Set X ← X ′

where γt is a learning rate which can anneal over time, and β
is a “bias-variance trade-off” parameter similar to λ in TD(λ).

B. Policy Gradient with Logistic Policies

We chose to parameterize the policy as a logistic function:

p(At+1 = i| ~Bt; θ) =
exp(θi · ~Bt)∑n
j=1 exp(θj ·Bt)

(10)

This class of functions can be thought of as a neural network,
with an input layer (the belief vector) projecting to an output
layer in which each unit represents the probability of fixating a
given location. The model is parameterized by θ, an N×N ma-
trix, where N is the size of the visual array. Logistic policies
extend many of the policies assumed in previous models (e.g.,
greedy search, random search) while allowing an intuitive
examination of the learned policy. For example, a reasonable
policy might be “look directly where the probability of the
target is largest.” We could verify whether this policy was
optimal by examining the learned parameter matrix for very
large values on the diagonal. This would mean that high belief
that a target is at a given location leads to a high probability
of fixating that location. Meanwhile connections to nodes at
farther distances would taper off.

C. Shift & Rotation Invariance

Logistic policies can have many parameters. For an 11×11
visual array, there are 121×121 = 14, 641 parameters. Figure
3 shows that it is indeed possible to learn a good policy in
such a situation, but it takes a long time. The search space
can be reduced to 61 parameters by exploiting the shift-
and rotation-invariances of most visual search problems. This
approach results in a convolutional policy which is defined
by a rotationally symmetric two-dimensional kernel. Under
convolutional policies of this type the value of a belief map
is obtained by filtering with a filter whose impulse response
equals the policy’s two-dimensional kernel.

Gradients for a convolutional policy can be learned via
weight-sharing, by tying the parameters of all connections
to locations equidistant from the point of fixation. Learning
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Fig. 3: Policy gradient enables learning even when there are 14,641
parameters. Learning is 20 times faster when we use weight sharing
to exploit invariances, reducing the number of parameters to 61. The
original learning curve is duplicated in blue in “With Weight Sharing”
to highlight this timescale difference.

converges much faster (Figure 3). For the remainder of this
paper, we use convolutional logistic policies learned by policy
gradient with weight-sharing. We learn similar control laws
regardless of initial parameters and visual array size, and so
the approach seems robust to local minima in parameter space.

IV. EXPERIMENTS

To compute policies, we used a time-horizon T that was
the same as the number of states N ; the reward went to 0
long before T , approximating undiscounted infinite horizon.
The parameter β was 0.75, γ was 0.02, and gradients were
pooled across 150 episodes per epoch. We manipulated

• Size of visual array: The visual array size was 7× 7 or
11× 11, with N = 49 and N = 121 respectively.

• Reward Function: We compared the Infomax reward
function with that postulated in Saliency literature.

• Visual System Properties: In addition to using an FPOC
from psychophysical data [9], we studied what would
happen in systems with different FPOCs.

Our results were analyzed in two ways.

• Performance: Performance was measured as “% Correct
on an N-Alternative Forced Choice task (N-AFC)”. That
is, in an 11× 11 visual array, if the location of the target
had higher belief than all 120 other locations, the agent
was right, otherwise it was wrong.

• Control Law: A policy is defined by a convolution
kernel. If the kernel has a high value at eccentricity e,
the agent wants to look toward some location k when
there are high beliefs at locations e units away from k.
If the kernel has a negative value at eccentricity e, the
agent wants to look away from location k if there are
high beliefs at locations e units away from k.

V. RESULTS

A. Performance & Policy

We first compared the constrained-optimization I-POMDP
control law with two heuristic policies previously proposed.
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Fig. 4: (a) The Learned Policy performs better than 4 alternative
policies described in Section V-A. Policy “% Correct Greedy”,
proposed in [9], outperforms the learned policy in only the first 4
fixations. This reflects the classic tradeoff between greedy and long-
term planning. (b) The “receptive field” of the learned policy. Top:
1-D kernel function that was learned: The learned strategy looks next
to places of high probability. Bottom: Rotating this kernel radially
gives the radially symmetric 2-D convolution filter that defines the
policy.

1) Percent-Correct-Greedy: Choose the action that yields
the highest expected-percent-correct after the observa-
tion, i.e. that maximizes Rt+1 = maxiE[Bit+1] (pro-
posed in [9]). Computing a single action from this policy
is O(KN3), where N is the size of the visual array and
K is a very large constant. Because of the difficulty in
computing this policy for each action, we used small
7× 7 visual arrays.

2) Fixate Target: Choose the action k that maximizes the
reward function Rt = Bkt . This policy is implicit in
visual saliency models like [1], [2].

We also evaluated the performance of two policies that we
expected to perform poorly:

1) Fixate Random Locations.
2) Fixate Center of Visual Array: This policy discovers

targets in the foveal region quickly, in the parafoveal
region slowly, and in the peripheral region never.

The learned Infomax optimal controller reached high levels
of accuracy (90% correct on the 49-AFC task) about 1.1
fixations earlier than the Percent-Correct-Greedy policy and
about 3.5 fixations earlier than the Random policy (Table I).
The performance of all policies is shown in Figure 4a.

TABLE I: # Fixations to reach 90% Correct (49-AFC)

Learned Infomax % Cor. Greedy Fixate Target Fixate Random
7.86 8.96 9.25 11.33

The policy that achieves this high performance is visualized
in Figure 4b. Interestingly, this policy chooses to foveate next
to but not at locations where the target is likely to be. This
appears to ensure that the target remains in the foveal region,
while gathering extra information about the periphery.
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Fig. 5: Performance loss from directly fixating the target; the visual
array is 11 × 11. (a) Learned “receptive fields.” Top: The Infomax
policy closely resembles the policy in Figure 4b which was trained
on a smaller visual array. Bottom: A different policy is learned when
the goal is to look directly at the target. (b) Maximizing information
performs noticeably better than trying to look directly at the target.

B. Comparison to Previous Approaches

The optimal control law avoids looking directly at the target,
preferring to look just to the side of it. This contradicts
a commonly accepted postulate that ideal searchers should
directly fixate locations most likely to contain the search target.
Such a strategy turns out to be suboptimal when more than
one eye movement is possible. How much benefit does the
ideal controller get by avoiding looking directly at the target?

When we evaluated the “Fixate Target” strategy previously,
we did so in a greedy way after the fashion of the saliency
literature. In order to be more fair to this strategy, we trained
a controller that was given reward of 1 for looking directly at
the target and 0 otherwise. Since the controller did not have
direct access to the state, it received expected reward based
on its belief state after the fashion of POMDPs [10], and so
was linear in the belief state. This reward was the probability
that it was looking at the target, Rt = Bkt where At = k.

We trained Infomax and Fixate Target controllers on an
11× 11 visual array I-POMDP. The learned control laws are
visualized in Figure 5a. The shape of the Infomax control law
is similar to that of the 7 × 7 task, preferring to look next
to the target. This indicates that the ideal strategy remains
constant with problem size. The ideal Fixate Target strategy is
different: when it is completely unsure of the target location, it
has a slight preference to look in between candidate locations;
otherwise it looks exactly where the target is likely to be.
Figure 5b indicates that this is a reasonable but suboptimal
strategy. Controllers optimized to Fixate Target require 20
fixations to reach 90% accuracy on a 121-AFC tasks, while
those optimizing information-gain require 18 fixations.

This quantifies the expected performance boost achievable
over previous Saliency approaches in robots [1], which at-
tempted to look at search targets. Instead, our results suggest
that a better strategy is to look near but not at visual targets.
This presents avenues for psychophysical study, to see whether
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(c) Camera

Fig. 6: Optimal policies (bottom) given different FPOCs (top). The
visual array is 11×11. Each policy is the average of the parameters of
10 learned policies. (a) FPOC based on human data from [9], which
was used in this paper’s previous experiments. (b) Exponential falloff
of acuity. In this case, looking next to the target does not give reliable
information about its presence, and so the learned policy prefers to
look directly at the target. (c) A camera can locate objects reliably
in its field of view, but not outside. The learned policy attempts to
keep the object toward the edge of its field of view.

indeed people prefer to look near but not at visual targets.

C. Dependence on Visual System

So far, we have used the Foveal Peripheral Operating Curve
(FPOC) shown in Figure 2c. This FPOC was first used by
[9] and was based on careful psychophysical experiments.
The I-POMDP framework allows us to investigate how an
ideal oculomotor law may change if the FPOC of the sensory
mechanism changes. This question is relevant to roboticists
because robotic cameras do not typically have the same
properties as a human eye. The question is also relevant to
developmental scientists and clinicians that may study the
development of visual search in infants and in adults with
clinical eye conditions.

Here we considered two additional FPOCs. One is an
exponential function that is sparser than the human FPOC: it
has a sharp initial fall-off of acuity, but then has slightly higher
acuity in the periphery (Figure 6b). The other is modeled after
a standard camera with uniform acuity throughout its entire
visual sensor and none elsewhere, resulting in a step-function
FPOC (Figure 6c).

The resulting control laws are strikingly different from the
original (Figure 6a), suggesting that the ideal VS strategy
depends heavily on the specific FPOC of the visual system.
This provides a warning against the usefulness of models of
visual search derived from typical adults when these models
are applied to guide robot cameras or to understand non-adult
systems [2] for robots.

VI. CONCLUSION

We presented a model that addresses four critical limitation
of current models of visual search: 1) Lack of formalization
of how saccades are organized in time. 2) No mechanism for
integrating information across fixations. 3) No account for how

ideal behavior may change depending on the operating char-
acteristics of the visual sensory system. 4) Lack of guarantees
about optimality of the visual search laws.

The VS model of Geisler served as the starting point for
a stochastic optimal control model of eye movement that
integrates information across fixations. We showed that under
this model the ideal visual search strategy depends critically on
the operating characteristics of the visual sensory system. Even
though a camera is not like an eye (it has good discrimination
for a wider angle than the human fovea, but no peripheral dis-
crimination) optimal scan paths can still be computed without
peripheral information. This suggests promising extensions to
the saliency approach, which currently considers all relevant
information for planning eye-movements as contained in the
current visual field.
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