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Abstract— We present a model of behavior according to which
organisms react to the environment in a manner that maximizes
the information gained about events of interest. We call the ap-
proach “Infomax control” for it combines the theory of optimal
control with information maximization models of perception.
The approach is reactive, not cognitive, in that it is better
described as a continuous “dance” of actions and reactions
with the world, rather than a turn-taking inferential process
like chess-playing. The approach however is intelligent in that
it produces behaviors that optimize long-term information gain.
We illustrate how Infomax control can be used to understand
the detection of social contingency in 10 month old infants. The
results suggest that, while lacking language, by this age infants
actively “ask questions” to the environment, i.e., schedule their
actions in a manner that maximizes the expected information
return. A real time Infomax controller was implemented on a
humanoid robot to detect people using contingency information.
The system worked robustly requiring little bandwidth and
computational cost.

Index Terms— Information Maximization, Contingency De-
tection, Control Theory.

I. I NTRODUCTION

John Watson proposed that infants use contingency infor-
mation to define and recognize human beings [7, 8]. In 1986
[3, 6] Watson and the author of this document conducted an
experiment to test how 10 month old infants use contingency
information to detect novel social agents. Infants were seated
in front of a robot that did not look particularly human. In the
experimental group the robot was programmed to respond to
the environment in a manner that simulated the contingency
properties of human beings. Each infant in the control group
was matched to an infant in the experimental group and was
presented the same temporal distribution of lights, sounds
and turns of the central robot as was experienced by his/her
matched participant. However, in the control group the robot
was not responsive to the infant’s behavior or to any other
events in the room.

A. Forty Three Seconds of an Infant’s Day

In that study we found evidence that the infants in the
experimental group treated the robot as if it were a social
agent: For example, they exhibited 5 times more vocalizations
than infants in the control group. Moreover they followed the
“line of regard” of the robot when it rotated, showing some
evidence for shared attention [3]. Most interesting was the

Fig. 1. Left: Schematic of the robot head used in [6]. Right: Baby-9. The
image of the robot is seen reflected on a mirror positioned behind the baby.

fact that some infants appeared to actively “decide” in a few
trials, and a matter of seconds, whether or not the robot was
responsive.

Particularly telling were the first 43 seconds of the exper-
iment with one of the infants in the experimental group. We
will refer to him as Baby-9 (see right side of Figure 1). He
was 10 months old on 7/14/1986, when the study was run
at UC Berkeley’s Institute for Human Development. Most
people that see the video of the experiment agree that by the
third or fourth vocalization (25 seconds into the experiment)
baby-9 has detected the fact that the robot was responsive
to him. Most importantly, most people inescapably feel that
the infant is actively querying the robot as if asking whether
or not it is responding to him. This brings some interesting
questions:

1) What does it mean to “ask questions” for an organism
that does not have a language?

2) Why did Baby-9 schedule his vocalizations in the way
he did? Why did he not vocalize, for example, at a
much rapid or a much slower rate?

3) Was it reasonable for Baby-9 to decide within 3 to four
responses and 20-30 seconds into the experiment that
the robot was responsive? Why not more or less time
and responses?

We will approach these questions by developing a formal
model of the problem faced by Baby-9 and showing that
his behavior was indeed optimal in terms of the expected
information return about the responsiveness or lack of re-
sponsiveness of the robot.



II. D ETECTING SOCIAL CONTINGENCY: CAUSAL MODEL

Our goal is to gain a better understanding of the problem
of active contingency detection in simple social interactions
between infants and caregivers. These are characterized by
the existence of self-feedback (e.g., infants can hear them-
selves), significant delays and uncertainty in the caregiver’s
responses, and significant levels of background activity. We
will investigate the problem from the point of view of a bare-
bones“social robot” endowed with a single binary sensor
(e.g., a sound detector) and a single binary actuator. There
will be two players: (1) Asocial agent, which plays the role
of the caregiver, and (2) Arobot, which plays the role of the
infant. Agent and robot are in an environment which may
have random background activity. The role of the robot is to
discover as soon as possible and as accurately as possible the
presence ofresponsive social agents.

We will develop a discrete-time model of the problem.
The parameter∆t ∈ < will represent the sampling period,
i.e., the time between time steps, in seconds. The activity
of the robot’s actuator is represented by the binary random
process{Ut}. The variableUt takes value 1 when the robot’s
actuator is active at timet, and zero otherwise. The presence
or absence of responsive social agents is indicated by the
random variableH. We refer to{H = 0}, the absence of
a responsive agent, as the“null hypothesis”, and {H =
1}, the presence of a responsive agent, as the“alternative
hypothesis”. The parameterπ represents the prior probability
of the alternative hypothesis, i.e., the robot’s initial belief
about the presence of a social agent, prior to the gathering
of sensory information.

A. Modeling the Social Agent

We let the behavior of the social agent depend on two
auxiliary processes: A timer{Zt} and an indicator{It}.
The timer takes values in{0, · · · , τa

2 } where τa
2 ∈ N is

a parameter of the model, whose meaning will be explained
below. The timer keeps track, up toτa

2 , of the number of
time steps since the last robot action, i.e.,

Z1 = τa
2 + 1 (1)

Zt = h(Zt−1, Ut)
def=


0 if Ut = 1
Zt−1 if Ut = 0 andZt−1 = τa

2 + 1
1 + Zt−1 else

(2)

for t = 2, 3, · · · The indicator vectorIt = (I1,t, I2,t, I3,t)T

consists of three binary variables that indicate whether or not
time t belongs to the following categories: (1)“Self Period”,
indicated byI1,t ; (2)“Agent Period”, indicated byI2,t, and
(3) “Background Period”, indicated byI3,t . The meaning
of these three periods is explained below.

The reaction times of social agents is bounded by the
parameters0 ≤ τa

1 ≤ τa
2 , i.e., it takes agents anything

from τa
1 to τa

2 time steps to respond to an action from the
robot. “Agent periods”, which are designated by the indicator
process{I2,t} are periods of time for which responses of
agents to previous robot actions are possible if an agent were
to be present. Thus,

I2,t =

{
1 if Zt ∈ [τa

1 , τa
2 ]

0 else
(3)

During agent periods, the robot’s sensor is driven by the
Poisson process{D2,t} which has rateR2. The distribution
of R2 depends on whether or not a responsive agent is present
in a manner that will be specified below.

B. Modeling Self-Feedback and Background Processes

We allow for the robot sensor to respond to the robot
actuators, e.g., the robot can hear its own vocalizations, and
allow for delays and uncertainty in this self-feedback loop.
In particular we bound self-feedback delays to occur within
the interval[τ s

1 , τ s
2 ], whereτa

1 > τ s
2 . The indicator variable

for self-feedback period is thus defined as follows:

I1,t =

{
1 if Zt ∈ [τ s

1 , τ s
2 ]

0 else
(4)

During Self periods, the activation of the sensor is driven by
the Poisson process{D1,t} with rateR1.

With regard to the background process, we model it as
a Poisson process{D3,t} with rate R3. The background
process is responsible for driving the sensor’s activity that
is not due to self-feedback and is not due to social agent
responses to the robot’s behaviors. Note background activity
can include, among other things, the actions from external
social agents who are not responding to the robot (e.g., two
social agents may be talking to each other thus activating the
robot’s sound sensor). We endow the background rateR3

with an uninformative prior Beta distribution to reflect the
fact that the background activity may change dramatically
from situation to situation in ways that are not known to the
robot. The background indicator keeps track of periods for
which self-feedback or responsive actions from a social agent
may not happen, i.e.,

I3,t = (1− I1,t)(1− I2,t) (5)

C. Modeling the Robot’s Sensor

The activity of the sensor is a switched Poisson process:
during self-feedback periods it is driven by the Poisson
process{D1,t}, during agent periods it is driven by{D2,t}
and during background periods it is driven by{D3,t}, i.e.,

Yt = It ·Dt =
3∑

i=1

Ii,t Di,t (6)

We still need to specify the distribution of the response rate
R2 during agent periods. If an agent is present, i.e.,H = 1,



we let R2 be independent ofR1 andR3 and endow it with
an uninformative Beta prior distribution. This reflects the fact
that different agents respond at different rates in ways that
the robot does not know apriori. If an agent is not present,
i.e.,H = 0, then the response rate during agent periods is not
different from the response rate during background periods,
i.e., R2 = R3.

 R2
 R3

  H Presence/Absence of Responsive Agent

Responsiveness Background Periods

It−1
  
   It It+1

Zt−1   Zt Zt+1

 Ut−1    Ut  Ut+1 Robot Actuator
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Indicator Variables

Robot Sensor

Responsiveness Agent Periods

 R1

Responsiveness Self Periods

Yt−1    Yt Yt+1

Dt−1   Dt Dt+1 Sensor Drivers

Fig. 2. Graphical Representation of the Causal Model. Arrows repre-
sent dependency relationships between variables. Dotted figures indicate
unobservable variables, continuous figures indicate observable variables.
Diamonds indicate control variables.

D. Auxiliary Processes and Constraints

The processes{Ot, Qt} register the sensor activity and
lack-thereof up to timet during self, agent, and background
periods. In particular fort = 1, 2, · · ·

Oi,t =
t∑

s=1

Ii,tYt, for i = 1, 2, 3 (7)

Qi,t =
t∑

s=1

Ii,t(1− Yt), for i = 1, 2, 3 (8)

Figure 2 display Markovian constraints in the joint distri-
bution of the different variables involved in the model. An
arrow from variableX to variable Y indicates thatX is
a “parent” of Y . The probability of a random variable is
conditionally independent of all the other variables given the
parent variables.

III. D EVELOPMENT AND LEARNING. INFERENCE, AND

CONTROL

We refer to“development”as the problem of discovering
the causal structures underlying social interaction, i.e., dis-
covering a model of the kind displayed in Figure 2. This

is a difficult problem that may require large amounts of
data gathered over months or years. We refer to”learning”
as the problem of discovering contingencies, i.e., making
inferences about unobservable variables of a given model.
This is a process that in general requires less data than
model development and may occur within seconds, minutes
or hours.

Development and learning rely on two basic processes:
inference and control. Inference refers to the problem of
combining prior information with sensor data in a principled
manner. Control refers to the problem of scheduling the
behavior in real time to achieve the goals of the organism.

In this document we will assume the robot has already
developed a causal model and focus on the learning problem,
i.e, how to decide about the presence or absence of a social
agent based and how to use the actuator to make such
decisions as fast and as accurately as possible.

A. Learning: Inference

Let (y1:t, u1:t, ot, qt, zt) be an arbitrary sample from
(Y1:t, U1:t, Ot, Qt, Zt). It can be shown that the log-
likelihood ratio between the two hypotheses is as follows:

log
p(y1:t | u1:t,H = 1)
p(y1:t | u1:t,H = 0)

(9)

= log
Γ(2 + o2,t + o3,t + q2,t + q3,t)

Γ(1 + o2,t + o3,t) Γ(1 + q2,t + o3,t)
(10)

+
3∑

i=2

log
Γ(1 + oi,t) Γ(1 + qi,t)

Γ(2 + oi,t + qi,t)
def= f(o2,t, o3,t, q2,t, q3,t)

(11)

The posterior distribution about the hypothesis of interest is
as follows:

p(H = 1 | y1:t, u1:t) (12)

= logistic

(
log

π

1− π
+ f(o2,t, o3,t, q2,t, q3,t)

)
(13)

This posterior distribution, contains all the information avail-
able to the robot about the presence of a responsive agent.
It has two important properties: (1) It does not depend on
o1,t, q1,t, i.e., the self-periods are uninformative about the
hypothesis, and (2) Ifo1,t + q1,t = 0 or o2,t + q2,t = 0
the log-likelihood ratio is 0. In other words, if no data has
been gathered in either the agent or the background condition
then we have gained no information aboutH. Thus in order
to gain information aboutH the robot must use its actuator
at least once and not use it at least once.

B. Learning: Infomax Control

In this section we focus on how to schedule the behavior
of the robot’s sensor in real time in order to maximize the
information received about the presence or absence of social
agents. Lett represent the current time and suppose by time



t we have observedy1:t, u1:t. For a future times > t let
us consider the mutual information between the observable
variables and the hypothesis of interestH

I(H,Yt+1,s, Ut+1:s | y1:t, u1:t) (14)

= H(H | y1:t, u1:t)−H(H | Yt+1:s, Ut+1:s, y1:t, u1:t)
(15)

where H stands for entropy. The equation tells us that
the information aboutH provided by the observable pro-
cessesYt+1:s, Ut+1:s equals the reduction of uncertainty
about H provided by those observables. Since the term
H(H | y1:t, u1:t) does not depend on future actions then
maximizing the information return provided by future actions
is equivalent to minimizing the future entropy ofH. We will
let the controller’s objectiveWs be the negative entropy of
H, i.e., the controller will choose actions that are expected
to minimize the uncertainty aboutH

Ws
def= −H(H | Yt+1:s, Ut+1:s, y1:t, u1:t) (16)

An Infomax controller is an open-loop controller that maxi-
mizes the expected value ofW at future timest + 1, · · · , T .

The causal model we are working with belongs to the
family of partially observable Markov processes. Finding
optimal controllers for these processes is in general difficult.
In this case however the problem simplifies because it is
possible to find a recursive statistic that summarizes the
observable sequences without any loss of information about
H. In particular it is possible to show that the optimal
controller satisfies the following form of Bellman’s optimality
equation [2]:

C(y1:t, u1:t) = C ′(st)
def= argmax

ut+1

Nt(st, ut+1) + Ft(st, ut+1)

(17)

Vt(y1:t, u1:t) = V ′(st)
def= max

ut+1
Nt(st, ut+1) + Ft(st, ut+1)

(18)

whereSt
def= (Yt, Ot, Qt, Zt) carries all the information about

Wt in the observed sequencesY1:t, u1:t. The termC ′ is a
controller that makes decisions based onst, V ′ is the value
of st, and

Nt(st, ut+1)
def= E [Wt+1 | st, ut+1]︸ ︷︷ ︸

Next Step Expected Return

(19)

Ft(st, ut+1)
def= E[Vt+1(st, Yt+1, ut+1) | st, , ut+1]︸ ︷︷ ︸

Future Expected Return

(20)

This equation can be solved using dynamic programming
techniques [1, 2].

IV. A NALYSIS OF THE THE OPTIMAL CONTROLLER

The dynamic programming problem was solved on a
cluster of 24 2.5Ghz PowerPC G5 CPUs. The computation
time was in the order of 1 hour. The parameters of the model

were set as follows:T = 40, τ s
1 = 0; τ s

2 = 0; τa
1 = 1; τa

2 =
3;π = 0.5. We then used logistic regression to model the
behavior of the controller for times15 < t < 25, since these
are times which are not too close to the beginning and end
of the controller’s window of interest, i.e.,t ∈ [1, 40]. We
did not expect for logistic regression to provide a perfect
prediction since in some cases the value function is equal for
both actions and in such occasions the optimal controller may
arbitrarily chooses one action over the other. Surprisingly
logistic regression approximated the optimal controller with
96.46 % accuracy over all possible conditions. This model
prescribed to respond if and only ifI3,t = 1, i.e., we are in
a background period, and in addition

Var(R3 | y1:t, u1:t,Ht = 1)
o3,t + q3,t + 3

> 9
Var(R2 | y1:t, u1:t,Ht = 1)

o2,t + q2,t + 3
(21)

Interpretation: Greedy one-step controllers [4, 5] that
ignore the future expected return would fail on this task.
The reason is that when making a response the next time
steps are occupied by self-feedback, that happens to be
uninformative, thus a greedy controller ends up deciding
to never act. Including future expected return allows the
controller to implicitly look ahead and see that in the long
run making an action can provide a better information return
than being inactive. The statistic

Var(Ri | y1:t, u1:t,Ht = 1)
oi,t + qi,t + 3

(22)

is used by the controller to decide when to act. This statistic
captures the expected reduction in the uncertainty aboutRi

provided by a new observation from the period under which
Ri actively drives the sensor: a self-feedback period forR1,
an agent period forR2 and a background period forR3. The
optimal controller thus appears to want to keep the uncer-
tainty aboutR3 andR2 within a fixed ratio. Actions are more
costly, in terms of information return, than lack of action. If
the robot acts at timet it gains no information during the
times[t+ τ s

1 , t+ τ s
2 ] since self-feedback observations are not

informative aboutH. Moreover during times[t + τa
1 , t + τa

2 ]
the robot cannot act and thus can only get information about
R2, not R3. This may help explain why uncertainty about
the agent activity rateR2 needs to be 9 times larger than the
uncertainty about the background activity rate,R3, before an
action occurs.

V. UNDERSTANDING 43 SECONDS OF ANINFANT’ S DAY

Here we examine whether the Infomax controller can pro-
vide a qualitative understanding of the first 43 seconds of the
experimental session with Baby-9, as described in Section I-
A. During this time Baby-9 produced 7 vocalizations, which
occurred at the following times in seconds from the start of
the experiment:{5.58, 9.44, 20.12, 25.56, 32.1, 37.9, 41.7}.
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figure above.

Each of these vocalizations were followed by a combination
of sounds and lights from the robot. The intervals, in millisec-
onds, between the beginning of two consecutive infant vocal-
izations were as follows:{4.22, 10.32, 5.32, 6.14, 5.44, 3.56}.
Most people agree that by the third or 4th vocalization the
infant knows that there is a responsive agent in the room.

The Infomax controller presented in Section III-B requires
setting five parameters: The sampling period for the time
discretization, the self-delay parameters, and the agent delay
parameters. To get rough estimates for the agent latency
parametersτa

1 , τa
2 , we asked 4 people, unaware of the purpose

of the study, to talk to a computer animated character. The
ages of the 4 participants were4, 6, 24 and35 years. We used
an optimal encoder to binarize the activity of an auditory
sensor and plotted the probability of activation of this binary
sensor as a function of time over 150 trials. Each trial started
with a vocalization of the animated character and ended 4
seconds later. The results are displayed on Figure 3. The top
graph in the figure shows the activity of the acoustic sensor
as a function of time from the beginning of the character’s
vocalization over 150 trials. Each horizontal line is a different
trial. The first vertical bar is due to self-feedback from the
character. By about 1200 to 1440 msec after the end of the
vocalization from the animated character there is another
peak of activity in the sensor, which is now caused by the
vocalizations of the human participants. The lower graph
of the Figure shows the probability of sensor activity as a
function of time collapsed across trials. Note the first peak
in activity due to self-feedback, and the gradual raise and fall

in sensor activity due to the human response.
Based on this graph we run a simulation of the optimal

controller with the following parameters:∆t = 800 msec,
τ s
1 = τ s

2 = 0, τa
1 = 1; τa

2 = 3. In other words, we let self-
delay to be negligible with respect to the expected delays
in human responses, and we bracket the human activity to
occur within 800 to 2400 milliseconds. Note these parameter
values were chosen to reflect the time delays and the levels of
uncertainty of social interactions, not to fit Baby-9’s data. We
let π = 0.01 to simulate a worst case scenario, thus requiring
more data to decide that there is a responsive system. Figure 4
shows the results of the simulation. The horizontal axis in all
the graphs is time, measured in seconds. The top graph shows
the vocalizations of the optimal controller, which now plays
the role of Baby-9. The controller produced 6 vocalizations
over a period of 43 seconds. The average interval between
vocalizations was 5.92 seconds, compared to 5.833 secs for
Baby-9. The difference is not significant using a standard
T-test (T (9) = 0.08, p = 0.94).

The second graph from the top of Figure 4 shows the
system’s belief’s about the presence of a responsive agent.
By the fourth response, thirty seconds into the experiment,
this probability passes the 0.5 level. The third graph shows
the posterior probability distributions about the the agent
and background response rates by the end of the 43 second
period. The last graph shows the ratio between the uncertainty
about the sensor rate during agent periods and the rate during
background periods. Note when this ratio reaches the value
of 9, the simulated baby makes a response.

The model thus shows that Baby-9 scheduled his responses
and made decisions about the responsiveness of social agents
in an optimal manner, given the statistics of times delays and
levels of uncertainty typically found in social interactions.
The model also is consistent with the idea that Baby-9
was “asking questions” to the robot, in the sense that his
vocalizations were scheduled in a manner that maximized the
information returned about the responsiveness of the robot.
Another point of interest is that the optimal controller exhibits
turn-taking, i.e., after an action is produced the controller
waits for a period of time, an average of 5.92 seconds, before
vocalizing again. The period between vocalizations is not
fixed and depends on the relative uncertainty about the levels
of responsiveness of the agent and the background.

VI. REAL TIME ROBOT IMPLEMENTATION

We implemented the optimal Infomax controller developed
above on RobovieM, a humanoid robot developed at ATR’s
Intelligent Robotics laboratory. While the robot was not
strictly necessary to test the real time controller, it greatly
helped improve the quality of the interactions developed
between humans and machine thus providing a more realistic
way for testing the controller. The current version of the
Infomax controller requires a 1 bit sensor and a 1 bit actuator.
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For sensor we chose to average acoustic energy over 500
msec windows and discretized it using a 1 bit optimal
coder. The actuator was a small loudspeaker producing a
200 msec robotic sound. Lacking quantitative evaluations we
will simply state that the controller works remarkably well.
In standard office environments, with relatively high levels
of noise, the controller decides in a few trials whether or
not a responsive agent is present. Particularly effective are
transition points in which agents switch from talking to the
robot to talking to somebody else. We have demonstrated the
system at several scientific talks, and conferences with very
good results even in relatively noisy conditions like poster
rooms.

VII. C ONCLUSIONS

We introduced the idea of Infomax control as a self-
supervised form of motor control. No external reinforcer is
required. Instead, Infomax controllers modify their internal
states to better explain the available data and produce ac-
tions that are expected to provide highly informative data.
Infomax control does not fit well the mold of standard re-
inforcement learning approaches. Classical and instrumental
learning models emphasize the role of external stimulus as
reinforcers of behaviors. In Infomax control however, stimuli
and responses do not have intrinsic reinforcement value.
Instead what determines behavior is the expected information
return about hypotheses of interest.

In this paper we used the ideas of Infomax control to
understand the detection of social contingency in 10 month
old infants. Interestingly when the controller makes a re-
sponse it follows it by a period of silence, as if waiting
for the outcome of a question. This “turn-taking” behavior
was not built onto the system. Instead it emerged from the
requirement to maximize information gain given the time
delays and levels of uncertainty typical of social interactions.
The results suggest that, in spite of lacking language, some
infants actively ask questions to humans and to other aspects
of the environment, scheduling their actions in a manner that
maximizes the expected information return. The approach
proposed here works well in practice when applied in robots
that need to operate in real time in everyday life situations.
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