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Abstract— Recent years have seen an explosion of research on
the computational modeling of human visual attention in task
free conditions, i.e., given an image predict where humans are
likely to look. This area of research could potentially provide
general purpose mechanisms for robots to orient their cameras.
One difficulty is that most current models of visual saliency
are computationally very expensive and not suited to real time
implementations needed for robotic applications.

Here we propose a fast approximation to a Bayesian model
of visual saliency recently proposed in the literature. The
approximation can run in real time on current computers at
very little computational cost, leaving plenty of CPU cycles for
other tasks. We empirically evaluate the saliency model in the
domain of controlling saccades of a camera in social robotics
situations. The goal was to orient a camera as quickly as
possible toward human faces. We found that this simple general
purpose saliency model doubled the success rate of the camera:
it captured images of people 70% of the time, when compared
to a 35% success rate when the camera was controlled using
an open-loop scheme. After 3 saccades (camera movements),
the robot was 96% likely to capture at least one person. The
results suggest that visual saliency models may provide a useful
front end for camera control in robotics applications.

I. INTRODUCTION

There has recently been a large amount of scientific
research to develop computational models of visual saliency
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. The computational
output of these models is a value at each pixel of an image
or video sequence (Figure 1) that indicates whether that
region is likely to be fixated by humans when the task
is to simply look at the image or video. Typically these
methods are evaluated on how well they predict the actual
specific locations that humans have fixated in eye-tracking
experiments where the only instruction is “look” or “watch”.
This area of research is of potential interest to social robotics
for two reasons: First, a robot that orients its eyes in a
manner similar to humans is likely to give an impression of
intelligent behavior and facilitate interaction with humans.
Second, such models may orient the robot towards regions
of the visual scene that are likely to be relevant.

Unfortunately the currently existing models of visual
saliency are typically too slow, requiring seconds, if not
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minutes, to analyze single video frames at very reduced
resolution. Here we describe and evaluate a very fast and
computationally-lightweight adaptation of a recently pub-
lished model of visual-salience. The model can comfortably
provide saliency maps in about 10 ms per video frame
on a modern low-end computer, thus being particularly
suitable for robotic applications. We show that the algorithm
provides a useful front end for robotics cameras, effectively
using foveal information to orient the camera towards likely
regions of interest.

II. PREVIOUS MODELS OF VISUAL SALIENCY

Several Bayesian approaches have been developed recently
that provide a computational foundation to the notion of
visual saliency. While at first sight these models may appear
very different from each other, they can be seen as special
cases of the same formalism. In particular many of these
approaches implicitly or explicitly define the saliency of a
pixel x as a function of the probability that this pixel renders
an object of a category of interest, given the available image,
i.e.,

s(x) def= log p(Cx = 1|fx)
= log p(fx|Cx = 1) + log p(Cx = 1)

− log p(fx) (1)

where s(x) is the saliency of pixel x and fx is a feature
vector that summarizes the information on image pixels in
the neighborhood of x, and Cx is a binary random variable
that takes value 1 if pixel x renders an object from the
category of interest.

This formulation can be used to compare the choices made
by the existing Bayesian approaches. For example, Torralba
et al. [3] use the p(Cx = 1) term to model class specific
location distributions, i.e. the density p(Cx = 1) differs
for every x depending on the location of x in the image
plane, e.g. clouds may be more probable a priori toward

Fig. 1. The purpose of visual saliency algorithms is to quantify the
importance of attending to each visual location. Saliency algorithms are
often evaluated on how well they predict human eye-fixation data.



the top of the image. It can also take on a different value
by switching targets, e.g. the distribution p(Cx = 1) when
searching for clouds is different from p(Cx = 1) when the
category of interest is people. They estimate p(fx) using a
generalized Gaussian fit to the statistics of the specific image
being searched.

Bruce & Tsotsos [5] present a model of saliency based
on the Shannon information of an event, − log p(x). They
estimate the density p(fx) using a histogram over a small
image region, as opposed to the entire image, as in [3]. Their
model implicitly assumes that in general purpose tasks the
functions p(fx|Cx = 1) and p(Cx = 1) are approximately
constant with respect to x and they can be ignored for they
do not affect the relative saliency of different pixel locations.

Harel et al. [6] proposed a model of saliency based on
the use of a dissimilarity metric. Like [5] the context is
free-viewing, and the first two terms become irrelevant in
ranking pixels. Like [3] the distribution p(fx) is estimated
based on the histogram of the the current image. However in
this case they use a graphical model that weights inter-pixel
distance and feature dissimilarity. Probabilities are estimated
by sampling, a process that is O(n4) with n pixels in the
image. While this approach matches human free-viewing
data well, it is infeasible for calculating salience maps of
moderate size in real time.

Zhang et al. [7] follow the model in [3], but estimate
p(fx) using frequency counts from a data set of natural
images/videos fit to generalized Gaussian distributions. By
using features sensitive to local contrast, they are able
to replicate saliency effects that in other models require
densities to be estimated within each image separately. This
makes the model’s complexity roughly linear with respect to
the number of image pixels, and therefore attractive for real-
time implementations, since it does not require recomputing
costly frame by frame statistics.

Itti et al. [1] proposed a model of visual saliency based on
the Feature Integration Theory of human attention [11]. Their
model computes many features at each pixel by convolving
e.g. motion, color, and brightness channels with Difference
of Gaussians filters. These are then normalized and half-wave
rectified. The different channels are then added together to
create a master saliency map. Navalpakkam & Itti [4] define
visual saliency in terms of Signal to Noise Ratio (SNR).
Specifically, the model learns the parameters of a linear com-
bination of low level features that cause the highest expected
SNR for discriminating a target from distractors. Itti & Baldi
[2] define salience as the KL divergence between the prior
distribution that a pixel renders an object of interest and the
posterior distribution given the image statistics around that
pixel. Specifically, under their model, saliency is proportional
to the number of events generated by a Poisson process. A
Gamma distribution conjugate prior is maintained over the
Poisson distribution’s parameters. Spatial saliency detectors
estimate the posterior distribution based on map neighbors
and temporal saliency detectors estimate the posterior dis-
tribution based on subsequent salience of the same pixel.
The model is evaluated in terms of its capacity to fit human

saccade data in open ended, free-viewing tasks.
Gao & Vasconcelos [9] define saliency as the KL distance

between the distribution of a pixel region’s filter responses
from that of pixels surrounding that region. The distribution
of filter responses is estimated as a generalized Gaussian dis-
tribution, and a different distribution is fit to each overlapping
region of the image.

Kienzle et al. [10] used a data-driven approach, using
human eye movement data on general purpose tasks to
learn features that are highly discriminative of regions that
are commonly scanned by humans versus regions with low
scanning rates.

III. REAL-TIME IMPLEMENTATION

In this paper, we propose a simplified version of Zhang
et al.’s model [8] designed to operate in real time at little
computational cost. In [8], Zhang extends the model in
[7] to temporally dynamic scenes, and characterizes the
video statistics around each pixel using a bank of spatio-
temporal filters with separable space-time components, i.e.,
the joint spatio-temporal impulse response of these filters is
the product of a spatial and a temporal impulse response. In
[8] the spatial impulse responses are Difference of Gaussians
(DoG), which model the properties of neurons in the lateral
geniculate nucleus (LGN). The surround Gaussian has radius
twice the size of the center Gaussian, and each subsequent
scale is twice the size of the previous scale. At the smallest
scale the radius is 1 pixel and the spatial impulse response
at scale i is

g(i) =
1

2π(2i−1)2
exp

(
− x2 + y2

2(2i−1)2

)
− 1

2π(2i)2
exp

(
−x

2 + y2

2(2i)2

)
(2)

The temporal impulse responses are Difference of Exponen-
tials (DoE), which can be implemented recursively in a very
efficient manner:

h(t; τ) = ĥ(t; 2τ)− ĥ(t; τ) (3)

where ĥ(t; τ) = τ
1+τ · (1 + τ)t, t ∈ (−∞, 0] is the relative

frame number to current frame (0 is the current frame, −1 is
last frame, etc.) and τ is a temporal scale parameter. The τ
of the first scale is a parameter to the model, and it doubles
with each successive temporal scale.

The probability distribution of the features p(f) is es-
timated by collecting filter responses over natural videos,
fitting a generalized Gaussian distribution for each individual
filter, and combining the distribution across temporal and
spatial scales assuming conditional independence.

For the real-time implementation explored in this paper
we simplified Zhang’s model in the following ways:

1) We used only image intensity channels, not color
channels.



Fig. 2. Difference of Gaussians filter, and the Difference of Boxes approximation. The filters are typical of those used in this paper, with the rcenter =
1/2 rsurround. The filters are respectively applied to the original image (left). Absolute filter responses are shown.

Algorithm 1 Initialize Saliency
1: NS ⇐ 5 {Parameter: # of Spatial Scales}
2: NT ⇐ 5 {Parameter: # of Temporal Scales}
3: Minσ ⇐ 1 {Parameter: Smallest Box Filter Radius
∈ [1,∞)}

4: Minτ ⇐ 1 {Parameter: Smallest Time Parameter
∈ (0,∞)}

5: σ[1]⇐Minσ
6: τ [1]⇐Minτ
7: for i = 1 to NS do
8: σ[i+ 1]⇐ 2σ[i]
9: end for

10: for j = 1 to NT do
11: τ [j + 1]⇐ 2τ [j]
12: end for
13: for all Exp[i, j] do
14: Exp[i, j]⇐ ~0 {Exp has (NS+1, NT+1) vectors

the size of the salience map.}
15: end for

2) The DoG filters were approximated by difference of
box filters DoB (See Figure 2).1

3) The filter impulse response distribution was modeled
as a Laplacian distribution with unit variance, a special
case of the generalized Gaussian distribution.2

As in Zhang’s original model, we assume an open-ended
visual search task, i.e. we don’t have prior knowledge about
where in an image generally interesting objects will appear,
or what they will look like. Under these conditions the
location prior p(Cx = 1) and the object appearance model
p(fx|Cx = 1) are approximately constant with respect to x
and thus can be ignored.

The approach is pseudocoded in Algorithms 1&2. In
Algorithm 2, all arithmetic operations are vector operations.

The computational complexity was roughly linear with
respect to n, the number of pixels, as well as NS and NT ,
the number of spatial scales and temporal scales. Tables I&II
show the time needed to compute saliency on a frame varying
each of these three complexity dimensions. The computations

1DoB are types of box-filters, a computationally efficient class of filters
that have been used with much success recently in visual object classification
[12]

2In the generalized Gaussian case we have − log p(f) =
P
|fi/σi|θi .

This becomes − log p(f) =
P
|fi| under our Laplacian with σi = 1

approximation.

Algorithm 2 Calculate Saliency s(x)
Require: NS,NT, σ, τ, Exp initialized in Algorithm 1.

Exp is updated in this Algorithm.
1: SaliencyMap⇐ ~0
2: Im⇐ get downsampled frame from camera
3: BoxFilt[1]⇐ Filter Im with box-filter, width=2σ[1]+1
4: for i = 1 to NS do
5: BoxFilt[i + 1] ⇐ Filter Im with box-filter,

width=2σ[i+ 1] + 1
6: DoB[i]⇐ BoxFilt[i]−BoxFilt[i+ 1]
7: Exp[i, 1]⇐ τ [1]

1+τ [1]DoB[1] + 1
1+τ [1]Exp[i, 1]

8: for j = 1 to NT do
9: Exp[i, j + 1] ⇐ τ [j+1]

1+τ [j+1]DoB[i] +
1

1+τ [j+1]Exp[i, j + 1]
10: DoE[i, j]⇐ Exp[i, j + 1]− Exp[i, j]
11: SaliencyMap⇐ SaliencyMap+ abs(DoE[i, j])
12: end for
13: end for
14: return SaliencyMap

were performed on a Mac Mini with a 1.87 GHz Intel
Core Duo processor. Box filter operations were performed
with Apple’s vImageBoxConvolve Planar8 function. Vector
algebra operations were performed using the BLAS library.
The time was measured in absolute (wall) time, but since
the processor was dual core, the process-specific times were
nearly identical. In practice our implementation is orders of
magnitude faster than those reported in the literature. For
example, the popular Saliency model of Itti & Baldi [2]
requires ≈ 1 minute for each 30 × 40 pixel video frame,
while the model proposed here takes 11 milliseconds for
each 120× 160 pixel video frame.

In order to ensure that the simplifications in our approach
still maintain the important properties of other visual saliency
algorithms, we compared its performance to the model of Itti
& Baldi [2]. The task was to predict human eye fixation on
videos in a free viewing task; the data were those originally
used in [2]. The performance of our algorithm (0.633 AROC)
was very similar to that of Itti & Baldi (0.647 AROC).
This is also comparable with Zhang’s original algorithm,
and so very little performance is sacrificed making the three
approximations above.



Fig. 3. Three robot members of the RUBI project. Left: QRIO is a humanoid robot prototype on loan from Sony corporation. Center:
RUBI-1, the first prototype developed at UCSD. Right: RUBI-3 (Asobo) the third prototype developed at UCSD. It teaches children
autonomously for weeks at a time

TABLE I
PROCESSING TIME NEEDED TO COMPUTE SALIENCY MAP AS A

FUNCTION OF IMAGE SIZE (5 SPATIAL / 5 TEMPORAL SCALES).

80× 60 160× 120 320× 240 640× 480

Time 2.93 ms 10.82 ms 44.96 ms 214.82 ms

TABLE II
PROCESSING TIME NEEDED TO COMPUTE SALIENCY MAP OVER VARIOUS

SPATIOTEMPORAL SCALES (160× 120 PIXELS).

Space\Time 1 Scale 2 Scales 3 Scales 4 Scales 5 Scales
1 Scale 1.32 ms 1.64 ms 1.95 ms 2.26 ms 2.82 ms
2 Scales 2.04 ms 2.71 ms 3.36 ms 3.93 ms 4.62 ms
3 Scales 2.81 ms 3.81 ms 4.72 ms 5.90 ms 7.06 ms
4 Scales 3.35 ms 4.65 ms 5.77 ms 7.58 ms 8.95 ms
5 Scales 3.88 ms 5.32 ms 6.77 ms 9.29 ms 10.82 ms

IV. FIELD STUDY

As part of the RUBI project [13], [14] for the past three
years our laboratory has been conducting field studies with
social robots immersed at the Early Childhood Education
Center at UCSD. The goal of these studies is to explore
the possibilities of social robots to assist teachers in early
childhood education (Figure 3). One critical aspect of these
robots is to be able to find and orient towards humans. While
we have already developed powerful algorithms for detecting
the presence of humans using video [15], they tend to be
computationally expensive and thus best suited for scanning
a small foveal region of a scene. As such we were interested
in investigating whether a lightweight saliency model could
be used on peripheral regions to help orient the fovea towards
the most promising regions of the visual scene.

A 2 degree of freedom (pan and tilt) robot camera was
constructed using an iSight IEEE1394 640x480 camera with
a fisheye lens (160◦ FOV), 2 Hitech HS-322HD servo
motors, and a Phidgets servo control card operated by a
Mac Mini (1.87 GHz Intel Core Duo). The robot camera was
placed in Room 1 of the UCSD’s Early Childhood Education
Center (ECEC), where the RUBI project is taking place.
The camera was located on a bookshelf above the reach
of the children (18–24 months old). The system collected

data continuously for 9 hours during one day’s operation of
ECEC, from 7:30am–4:30pm.

Images were processed in real-time. They were received
from the camera at 640 × 480 resolution at approximately
15 FPS (i.e. every 66 msec). For the purpose of computing
saliency, they were downsampled to a 160 × 120 pixel
resolution. A saliency map was then computed in six-times-
faster-than-real-time for all the pixels (≈ 11 msec, see
Table II), using a bank of 5 spatial filters and 5 tempo-
ral filters. The DoB spatial filters had odd center widths
{3, 5, 9, 17, 33} so that they would be defined about a cen-
tral pixel. The above diameters correspond to radii about
the center of {1, 2, 4, 8, 16} respectively. The corresponding
surround widths were {5, 9, 17, 33, 65}. The τ temporal
parameters were {1, 2, 4, 8, 16}.

a) Experimental Camera – Saliency Track: At the start
of each experiment, the camera was moved to a central
location.

Starting 30 frames after any camera movement, on each
successive frame, if the maximum saliency pixel exceeded
threshold and its location was more than 10 degrees in either
the pan or tilt direction from the current fixation point, the
servos would reposition the camera so that the maximum
saliency pixel in the saliency map was now at approximately
the center of the image plane.

15 frames after a movement was initiated (to allow for

Fig. 4. Experimental Setup: A simple robotic camera (left) collected very
wide angle – 160◦ – images at 640×480 resolution (center) and downscaled
them to 160 × 120 resolution for the purpose of computing a saliency
map (top right). The camera then rotated – pan/tilt – so that the maximum
saliency pixel was now in the center of gaze. After movement, a 160×120
snapshot of the center of gaze at full resolution was saved as a foveal
representation (bottom right). This fovea was coded offline for the presence
of people.



Salience Tracking Condition

Playback Condition
Fig. 5. Center of attention (fovea) in saliency tracking condition and playback condition. In each case, 18 images were chosen randomly from the whole
set, and so the sample is representative. Many more people are attended in the saliency condition than the playback condition.

the movement’s completion), an image of the camera’s view
was saved. Additionally, a foveal view containing the center
160×120 pixels of the high resolution 640×480 image was
saved, simulating the foveal region over which high level
but computationally expensive perceptual primitives could
operate (e.g., person detection, expression recognition).

b) Control Camera – Playback: An additional camera
control condition was implemented. In this condition the
camera played back in open-loop the exact same movements
as in the previous salience-directed movement condition.
This served as a control with the same motion statistics
as the salience condition, but the movements were not
caused directly by current events in the world. In addition
to preserving the motion statistics, the playback framework
served to tie together in the two conditions the implicit prior
on the “location of the class of generally interesting objects,”
or p(Cx = 1) in Equation 1. Thus the only difference
between the two conditions was that one was caused by
features that were unlikely in natural statistics, i.e. ones for
which − log p(Fx) was high.

Each condition ran sequentially for 3 minutes at a time.
A pair of conditions salience and playback would take about
6 minutes. There was an additional 3 minute break between
cycles. In all, 64 cycles were completed and 4964 images
were collected.

V. ANALYSIS OF RESULTS

After the experiment a subset of the foveal center-images
was chosen randomly and uniformly from all 4964 collected
images. The subset of images was coded by 4 coders. Two
of the coders were authors of this paper and two were
naı̈ve third parties. The coders were instructed to label the
number of people they could see in each 160 × 120 foveal
image. The coding was done in a double-blind fashion:

the images were ordered randomly across labels and time
collected. All coders, including the authors, were given no
extra information to indicate which images came from which
condition. All coders labeled 1050 images (510 saliency
condition, 540 playback condition) in the same order.

The average Pearson correlation between the four coders
across the 1050 labels was 0.8723. We marked a foveal
snapshot as “containing a person” if two or more coders
agreed that there was a person in the snapshot.

A. Results

It should be noted that the control condition in our
experiment was designed to be particularly difficult, much
harder than random search. For example, in the control
condition, the camera oriented toward regions of space that
had been salient in the experimental condition. These regions
tended to have people in the experimental condition and
thus were still likely to have people at control time. In
spite of this, the experimental camera (Saliency Tracking)
performed much better than the control camera (Playback).
In the Salience Tracking condition, 68.04% of foveal images
contained people. In the Playback condition, only 34.81% of
foveal images contained people. Thus by orienting toward
salient events in the image plane, the camera attended to
people twice as often as just looking in the places where
people are likely to appear. A random sample of images from
both conditions is shown in Figure 5.

Note that with a detection rate of 68% per saccade, after
3 saccades, we are 96.8% likely3 to have seen at least one

3Assuming people are always present. This figure is an underestimate and
the true rate will be higher given presence of people because this average
performance figure includes even times when there are no people to be seen,
such as nap time or when children are playing outside.

96.8% = 1− (1− .68)3



person. A post processing algorithm operating over these
saccades would review (3 ∗ 160 × 120) pixels, representing
more than an 81% reduction in search time.

Most importantly, the salience algorithm is fast and effi-
cient. Salience was calculated in less than 11 ms for each
67 ms frame grab, leaving over 83% of CPU cycles to be
dedicated to other tasks important to the function of the
robot, including sophisticated visual post-processing.

An additional benefit is derived from saliency’s resilience
to distorted images: it works well on the entire image plane
of a very wide angle camera. However, object identification
algorithms are often brittle to the warping caused at the edges
of the wide angle lens. By using saliency on a very wide field
of view, we can identify from large regions of the real world
areas of interest and then point the center of the lens toward
them. Objects in the central region are undistorted, and may
be discovered easily by our machine perception algorithms.

Although we did not investigate it systematically, the
salience algorithm also appears to be robust to lighting
conditions. For example, during nap time, the lights of the
classroom were turned off, but the robot continued to orient
toward teachers walking around the room.

VI. CONCLUSIONS

We presented a fast visual saliency algorithm that ap-
proximates very well current models of early human visual
attention. From a Bayesian point of view the algorithm is
designed to find regions of an image plane most likely to
be useful in unconstrained conditions, i.e., situations where
there is a very large number of potential tasks of interest. The
proposed approach matches human eye fixation data almost
as well as current state of the art models of early visual
attention, yet it is orders of magnitude faster. It can operate
in real time in a low end modern computer, leaving plenty
of CPU for other operations. This makes the approach ideal
for robotic applications.

We presented empirical results from a field study using
a robotic camera in daily life conditions. To our knowledge
this is the first example of a practical use of current models
of early human visual attention to a real time robotics task.
The results suggested that models of visual saliency may
provide a promising approach for efficient camera orientation
in social robotics applications.
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