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Abstract— Empirical evidence shows that infants 10 months
of age can learn about 10 times faster than infants 2 months
of age that a novel entity is socially contingent. This suggests
that during the period from 2 to 10 months of age infants
became better learners. One possible explanation for this change
is that new brain structures grow, in a genetically predetermined
manner, that support more efficient learning. An analogy for
this point of view would be the increase in mastication efficiency
due to the growth of teeth. An alternative hypothesis is that the
increase in learning efficiency is itself the result of a learning
process that operates on the time scale of months. Under this
view, better learning is the consequence of learning itself. Here
we explore the plausibility of the “learning to learn” hypothesis
from a computational point of view. We show that with
standard reinforcement learning algorithms using an internally
generated reinforcement signal it is possible to develop agents
that progressively learn to learn within a period of months. The
results fit well at a qualitative level empirical evidence regarding
the development of social contingency detection in infants. The
learning techniques that we explored have potential application
for robots that learn to learn on their own.

Index Terms— Infomax Control, Infomax Reinforcement
Learning (IRL), Social Contingency, Temporal Dynamics of
Social Interaction, Probabilistic Functionalism, Developmental
Robotics, Social Robotics, Probabilistic Robotics.

I. THE ROLE OF CONTINGENCY IN SOCIAL
DEVELOPMENT

In this paper we formalize and explore from a computa-
tional point of view the problem of learning to learn. For
concreteness we focus on the development of contingency
detection, a popular and fruitful experimental paradigm in
the infancy learning literature. In contingency detection ex-
periments a new contingency is created between a behavior
of the infant and a sensory event (e.g, when the infant moves
a leg, a sound is produced). Increments in the frequency of
occurrence of the target behavior with respect to a control
group are interpreted as evidence that the child has learned
this contingency.

John Watson proposed that contingency detection plays
a crucial role in the social and emotional development of
infants. This view originated from an experiment in which
2-month-old infants learned to move their heads to activate a
mobile above their cribs [1]. Infants in the experimental group
were presented with a mobile that responded to movements
of the infant’s head. For the infants in the control group, the

mobile activated at the same rate as in the experimental group
but in a random, non-contingent manner. After four 10 minute
daily sessions of exposure to this mobile, and an average
of approximately 200 responses, there was evidence that the
infants in the experimental group had detected the existence
of a contingency: At about that time the experimental group
exhibited significantly higher response rates than infants in
the control group and displayed social responses that are
typically directed towards caregivers (e.g., cooing and social
smiles).

Watson and Movellan [2], [3] conducted a similar experi-
ment with 10-month-old infants. Infants were seated in front
of a robot that did not look particularly human and were
randomly assigned to an experimental group or a control
group. In the experimental group the robot produced sounds
contingent to the infant vocalizations. Each infant in the
control group was matched to an infant in the experimental
group and was presented the same temporal distribution
of robot behaviors as was experienced by his/her matched
participant. However, in the control group the robot was not
responsive to the infant’s behavior or to any other events
in the room. Evidence was found that after 3.5 minutes of
exposure to the robot, children in the experimental group
learned that the robot was a contingent social agent: For
example, they exhibited 5 times more vocalizations than
infants in the control group. Moreover they followed the “line
of regard” of the robot when it rotated, showing evidence for
shared attention [2], [3].

Thus during the period from 2 to 10 months of age, infants
became more efficient learners: While 2 month-old infants
took 40 minutes to learn a new behavioral contingency, 10
month old infants only took 3.5 minutes.1 During these 8
months infants became experts at learning new contingencies
quickly and accurately. In fact [4] showed that some 10
month old infants learned contingencies in a manner that
was very close to optimal given the statistics of social
interaction. One possible explanation for this increase in
learning efficiency is that during the period from 2 to 10
months new brain structures grow that support faster learning.

1These are the times at which significant differences were found between
experimental and control group averages. Some individuals showed signs of
having detected these contingencies much faster.



An analogy for this point of view would be the increment
in mastication efficiency due to the growth of teeth. An
alternative explanation, which we explore in this document,
is that better learning efficiency is itself a manifestation of the
learning process, only at a longer time scale. This hypothesis
does not deny the importance of brain development but it
sees it as supporting the computational process of learning
to learn.

Information theory provides a useful way to approach and
formalize the problem of learning to learn. The key concept
here is that behaviors have informational consequences, i.e.,
information value. In a way, behaviors can be seen as
questions to the world. Good questions provide valuable
information; bad questions do not. Thus, learning to learn
can be seen as the process of learning to behave in a manner
that causes the most useful information to become available
as quickly as possible. With the most useful information, the
infant can learn about the world more quickly. From this
point of view “learning to learn” means learning to ask good
questions, i.e., learning to produce behaviors that support the
gathering of information that is useful for discovering facts
about the world.

We explore the computational plausibility of the “learn-
ing to learn” hypothesis using the framework of Infomax
Reinforcement Learning (IRL). The crux of IRL is that
information gain can be used as an intrinsic reinforcement
signal to progressively learn to become a better learner.

We show that using information gain as the reinforcement
signal applied to an off-the-shelf reinforcement learning
algorithm allows the algorithm to learn to learn in an optimal
manner after the equivalent of 10 months of operation in the
world. The point of this exercise is not to model precisely
the developmental process in humans but to explore whether
“learning to learn” is a computationally plausible explanation
for some of the changes in learning efficiency observed in
human infants.

II. INFOMAX CONTROL

Movellan [4] formalized the problem of detecting social
contingencies as an Infomax Control problem. The algorithm
operates with a single binary sensor that encodes whether
the sound level crosses a given threshold, and a binary
actuator that either produces a vocalization or stays quiet.
Under the model the sensor activations are caused by a
background Poisson process. Humans, if present, respond to
the controller’s vocalization using a reaction time distribu-
tion collected from typical social interactions. Under these
assumptions the problem of learning whether or not an object
is socially responsive is formally equivalent to the problem of
learning whether during the period following a vocalization
there is a significant change in sensor activation rate with
respect to the background level of activity. Under these condi-
tions, it is possible to compute an optimal Infomax controller,

i.e., a controller that connects sensors and actuators in a man-
ner that maximizes the long-term gathering of information
about whether or not a social contingency is present ( See
Appendix A). It was found that this controller behaves in a
manner remarkably similar to the way some 10 month old
infants operate when discovering social contingencies [4].

A. Computational Complexity

Infomax Control is a specific instance of a general class
of control problems known as Partially Observable Markov
Decision Processes (POMDPs). In Infomax Control, infor-
mation gain acts as an intrinsic reward mechanism, i.e., the
utility function optimized by the controller is the long term
gathering of information about states of the world that are
not directly observable. Typically POMDP controllers have a
temporal horizon over which they are expected to maximize
some reward function; in Infomax Control the controllers are
evaluated in terms of how many bits of information they
gathered after a finite period of time T . This time is called
called the controller’s horizon.

One reason why Infomax Control has not been pursued
aggressively in the past is that the process of developing
an optimal Infomax Controller can be computationally very
expensive. Infomax controllers need to map the entire history
of actions and observations into new actions on a moment-
to-moment basis. This means that for the general case the
number of possible states to keep track of grows exponen-
tially with time. For example, if the system only has a binary
sensor and a binary actuator, after T time steps there are a
total of 4T possible histories, each of which needs to be
mapped to a current action. Fortunately in many problems of
interest, sufficient statistics exist that condense all the past
history of observation into a few numbers. For example,
in Movellan’s model, statistics representing the number of
past vocalizations and the proportion of sensor activations
after vocalizations and during silent periods are sufficient.
Unfortunately the number of possible values of these statistics
still grows rapidly with the temporal horizon, as T 4 [4] .
Table I shows the growth in the minimum number of possible
states needed to completely specify the Value as a function
of the number of time steps in the controller’s horizon. Note
that a two-fold increase the number of time steps produced
more than a twenty-fold increase in the number of possible
state-action mappings that need to be represented.

Given the complexity of this problem is not clear a priori
whether it is computationally plausible to learn realistic Info-
max Controllers. Indeed some in the computational literature
have proposed that Infomax Control with long time horizons
is too difficult and advocate greedy approaches with one-step
time horizons [5]. However, one-step solutions to information
gathering often fail. For example, when a baby makes a
sound it partially blocks the reception of auditory signals
from the external world, temporarily reducing the gathering



of useful information. Thus a greedy infomax controller
would prescribe to never vocalize, since it results in an
immediate reduction of useful information. However, in the
long run vocalizations are important to gather information as
to whether a responsive human is present. Thus learning to
vocalize as a way to gather information requires controllers
with non-zero time horizons.

TABLE I
COMPLEXITY OF DYNAMIC PROGRAMMING SOLUTION

Total Timesteps
12 25 50 100*

DP Runtime (Mins.) .04 .40 10.6 275
Number States 1.5e4 4e5 1e7 2.3e8

* Estimated

B. Finite Horizon, Time Steps, and Social Interaction

It is not immediately clear how the notion of time steps
applies to real life social interaction problems. The important
notion is that social interaction happens on a certain time
scale, and the abstract notion of “time step” should fit with
that natural scale. For example, if the time step represented
one hour, an infant would vocalize for an hour, and wait
another few hours to see if somebody was responding.
Such a strategy would be ineffectual because most people
would respond while the baby was crying, but after an hour,
they would probably give up and ignore it, and the baby
would not notice any responses. We can develop a more
reliable system by having very short time steps (e.g., 1 msec
steps). This would allow the system to be very responsive.
However this would come at the cost of requiring a very large
horizon (measured in number of time steps) leading to the
combinatorial explosion problem described in the previous
section.

In practice we have found that when the Infomax contin-
gency detector is run on social robots, it operates well with
time steps in the range from 1/4 of a second to 1 second. A
time step of 1 second is also optimal for the Infomax control
model to reproduce some of the observed behaviors in 10
month infants. As such hereafter we will proceed under the
assumption that a time step of our discrete time computer
simulations roughly corresponds to a second of an infant’s
life.

III. INFOMAX REINFORCEMENT LEARNING

Reinforcement learning is an area of machine learning
and control whose goal is to develop approximately optimal
controllers based on examples of state-action-reinforcement
triplets. The reinforcement signals can be extrinsic, e.g.,
water, food, or internally generated, e.g., information gain.
Infomax Reinforcement Learning (IRL) refers to Reinforce-
ment Learning problems that use information gain as the

basic reinforcement signal. The goal in these problems is
to develop action strategies that maximize the long term
gathering of information about targeted states of the world.

In this paper we will implement IRL using Temporal
Difference Learning (TD), a popular reinforcement algo-
rithm that has been shown to describe well the behavior of
dopaminergic neurons in the basal ganglia [6]. The goal in
TD learning is to learn state value functions that can then be
used to choose the most valuable actions given each state.
Such value function need to satisfy the Bellman Equation

Vt(xt) = E[Vt+1 | xt] +Rt (1)

where, xt denotes the state at time t of the sufficient statistics,
E denotes the expected-value operator, and Rt is the reward
signal (in our case information gain – see Appendix A for
more information). TD learning is an iterative approach that
starts with some initial estimates of the value function for
all states and time steps, and progressively refines these
estimates based on experience.

The goal of the computational experiments presented in
this document is to explore whether it is feasible to learn an
optimal controller using simple TD learning with information
gain as the basic reinforcement signal. In particular our goal
is to explore whether an optimal social contingency detector
could be developed over a period of 10 months assuming no
more than 200 vocalizations per day (a total of no more than
60,000 vocalizations).

A. Exact IRL Results

First we found that the required number of vocalizations
needed for IRL to converge grew as a fifth power of the
horizon (Table II). Convergence within 60,000 vocalizations
was only achievable with horizons no larger than 12 time
steps into the future.

TABLE II
TOTAL VOCALIZATIONS REQUIRED FOR EXACT TD(0) LEARNING

Total Timesteps
8 12 16 20

# Vocalizations 7.5e3 5.7e4 2.3e5 7.0e5

B. IRL Approximation Results

Once we established that with current IRL techniques, it
would be difficult to learn a controller with a time horizon
longer than 12 time steps (i.e., approximately 12 seconds)
we investigated the question of how 12 time step controllers
compare to optimal controllers with longer time horizons.
Given the statistics of social interaction, does it pay off to
use time horizons longer than 12 seconds?

Fifty new simulations were performed, each with different
starting points and with a time horizon of 12 time steps. On
average, IRL converged after less than 60,000 vocalizations.
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Learned Approx to 50!Step Controller
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Fig. 2. A: Performance of TD(0) learner during learning in the exact, and in the approximate-continuing case, based on the total number of Vocalizations
made since birth. B: When a 12-step controller is used to approximate a 50-step one, the final performance is very close to the best that could possibly
be hoped from a perfectly efficient information gatherer (about 0.3% above optimal). C: Number of time steps spent acting, exploring, and listening to the
world that are required to achieve 80% social agent identification accuracy.

We then used Dynamic Programming to compute optimal
12-step and 50-step controllers. Dynamic programming is a
technique from the Theory of Stochastic Optimal Control.
The advantage is that it allows finding exact optimal solutions
to control problems. The disadvantage of exact dynamic pro-
gramming solutions is that they tend to be more computation-
ally expensive and less memory efficient than approximate
methods like reinforcement learning. The performance of the
optimal 12-step controllers found using dynamic program-
ming (an exact method) was almost identical to the 12-
Step controllers found using IRL (an approximate method)
indicating that IRL actually converged to an optimal solution.
Most importantly the performance of the 12-step IRL trained
controllers was almost as good as the performance of the
optimal 50-Step controllers: after 60,000 vocalizations, the
average performance was better than 99.5% of the optimal
performance, compared to chance. This indicates that given
the uncertainty of real time social interaction, and for the
purposes of detecting social contingency it is not worthwhile
to attempt to “look–ahead” for more than about 12 seconds.
These results are illustrated in Figure 2A&B.

Watson [1] found evidence that 2 month old infants could
learn that a mobile was socially contingent within a 40
minute period. Movellan and Watson [2], [3] found that 10
month old infants could learn the same thing about a non-
humanoid robot within a 3.5 minute period. Inspired by these
results we tracked the average performance of the IRL trained
controllers as a function of age (i.e., number of vocalizations
used for learning). Performance of the controllers was as-
sessed in terms of how many time steps they required to
learn whether they were being presented with a social agent
to an accuracy level of 80%. The results are shown in Figure
2C. On average 10-month old controllers (trained with 60,000
vocalizations) were capable of detecting social contingencies

in ≈ 200 time steps, the equivalent of 3.3 minutes. This was
about 6 times faster than 2-month-old controllers (trained
with 12,000 vocalizations), which required ≈ 1200 time
steps, i.e., 20 minutes. This difference in performance is
within range of the tenfold increase in performance observed
empirically between 2 month and 10 month old infants.

IV. CONCLUSIONS

We explored the idea of development as a process of
learning to learn. To this effect we focused on how infants
learn to detect new contingencies between behaviors and
their consequences. While it takes 2 month olds about 40
minutes to learn new contingencies, by 10 months it takes
them less than 3.5 minutes. Such improvements in learning
efficiency are well known in the developmental literature but
are seldom modeled from a computational point of view. One
popular explanation for these learning improvements is that
they are due to the maturing brain structures that somehow
are specially built for more efficient learning, just like teeth
are built for more efficient chewing. The explanation that
we explore in this document is that the better learning
efficiency is itself a manifestation of the learning process,
only at a longer time scale. This hypothesis does not deny
the importance of brain growth but it does not see it in the
same light as the role that growing teeth have on mastication.

In this paper we show evidence suggesting that Infomax
Reinforcement Leaning (IRL) is a computationally reason-
able approach that may help explain how infants improve on
their capacity to learn. In 10 months of simulated experience,
IRL agents show two properties: Given a fixed amount of
time (50 seconds) to act and try to learn about the world,
they perform 99.5% as well as could possibly be hoped. They
also rapidly decrease the amount of time needed to exhibit a
given level of learning.



Remembered History Action State Decision State

V A A A B B B B

X 1 0 1 0 0 1 0T=8

A A A B B B B V

1 0 1 0 0 1 0 X
T=9

A A B B B B V A

0 1 0 0 1 0 X 0
T=10

Y = { 2, 1, 1, 3, 5 }

Y = { 2, 1, 1, 3, 1 }

Y = { 1, 2, 1, 3, 2 }

Y = { 3, 2, 2, 4 }

Y = { 3, 2, 2, 4 }

Y = { 3, 3, 2, 4 }

V: Vocalization   A: Agent Trial
B: Background Trial

Y = { sa, fa, sb, fb, z } Y = { sa+1, fa+1, sb+1, fb+1}

? ? V A A A B B

? ? X 1 0 1 0 0T=6

? V A A A B B B

? X 1 0 1 0 0 1
T=7

Y = { 2, 1, 0, 2, 5 }

Y = { 2, 1, 1, 2, 1 }

Y = { 3, 2, 1, 3 }

Y = { 3, 2, 2, 3 }

A B B B B V A A

1 0 0 1 0 X 0 1
T=11

B B B B V A A A

0 0 1 0 X 0 1 1
T=12

Y = { 2, 1, 1, 3, 3 }

Y = { 2, 1, 1, 3, 4 }

Y = { 4, 2, 2, 4 }

Y = { 5, 3, 2, 4 }

P(agent) / IR

.625 / -.661

.493 / -.693

.539 / -.690

.539 / -.690

.457 / -.689

.512 / -.692

.569 / -.684

Fig. 1. Illustration of the method used to approximate a continuous
controller. Eight recent events of history are used to make all decisions about
how to act after the eighth time step. The state used for action is a 5-tuple
consisting of sa, fa, sb, fb, z, where s/f are the successes and failures of
agent and background trials, and z is a counter (c.f. Appendix A for more
details). The decision state is used to make a judgment about the presence
or absence of a contingent agent using a closed form equation (Equation
2), and summarizes all previous observations plus priors. P (agent) is the
current belief of the probability that an agent is present, which scores a high
information reward for being close to 0 or 1, and a low information reward
for being close to 0.5.

Under the IRL approach, the resultant improvement in
learning speed and accuracy is due to a process of “learning
to learn”. This is a manifestation of a continuous learning
process at the time scale of months. The same learning
process manifests itself in the time scale of minutes as a
process of detecting novel contingencies. An important aspect
of IRL is that it uses an internally generated reinforcement
signal: information gain. We showed that IRL is a computa-
tionally plausible explanation for the improvements in social
contingency detection observed in human infants between 2
and 10 months of age. In addition the approach proposed here
is well formalized, and computationally plausible opening
new avenues for the development of robots that learn to learn
on their own.
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APPENDIX

A. Mathematics: Infomax Model of Social Contingency

In [4], Movellan modeled the problem of learning whether
agents were socially contingent as an Infomax Control
problem. We will refer to the socially contingent agent as
“the agent,” and the deciding agent as “the infant.” All
communication is through binary audio signals (sound-level
in a time step is above threshold or not), and the agent
and background generate audio events with certain unknown,
different probabilities, each initially drawn uniformly from
the range [0:1]. The agent may or may not be present with
a probability 0.5, and the problem of contingency detection
is ultimately the problem of deciding whether only a single
background audio event rate is heard, or if two separate rates
are observed for the background period and the agent period.

The infant has two choices for action: to vocalize or remain
silent. If he vocalizes, he generates noise for a fixed number
of time steps, called the self-period. Then, for the agent
period, comprising another fixed number of time steps, the
agent, if present, will respond at its appropriate rate. If the
agent is not present, the background rate will be observed.
After the agent’s response period, the background rate is
always observed. There is a timer z which is reset to 1 every
time the agent vocalizes, and increments every subsequent
time step, until the agent’s process ends. This cap reflects
that the steady state (background process) has been reached.

The problem is difficult because of tradeoffs enforced by
the structure of social dynamics. When the infant makes
a noise, he sacrifices observations because he is primarily
hearing himself. During the time in which the agent is
responding, the infant hears primarily the agent, and cannot
get any information about the background. Thus the infant
must choose carefully which distribution to sample at what
time, subject to these constraints. To do this optimally, he
should maximize the expected information he receives about
whether an agent is present or absent.

Let the agent and background rates be ra and rb, and the
number of observed audio “successes” and “failures” (audio
events and no-audio events) during agent and background
periods be sa, sb, fa, and fb. Sufficient statistics y for deci-
sion making are y = {sa, sb, fa, fb, z}. The likelihoods of
the infant’s observations given the presence or absence of an
agent are the binomial probabilities:



p(sa, sb, fa, fb|present) =
(

sa + fa

sa

)
rsa
a (1− ra)fa

·
(

sb + fb

sb

)
rsb

b (1− rb)fb

p(sa, sb, fa, fb|absent) =
(

sa + sb + fa + fb

sa + sb

)
rsa+sb

b

· (1− rb)fa+fb

Integrating over all possible rates, it is easy to show that
the probability of an agent given the infant’s observations is
simply:

p(present|sa, sb, fa, fb) =
1

1 + β(sa+sb+1,fa+fb+1)
β(sa+1,fa+1)β(sb+1,fb+1)

(2)

where β(x, y) is the β function. The probability that an agent
is absent is (1−(Eqn. 2)). From these probabilities, we can
calculate the entropy (uncertainty) of the baby’s estimate.
Maximizing the Mutual Information between the observed
data and this estimate is equivalent to minimizing the entropy
(uncertainty), and so we take that negative entropy as a
reward signal at each time step for a discrete time control
problem.


