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Towards Practical Smile Detection
Jacob Whitehill, Gwen Littlewort, Ian Fasel, Marian Bartlett, and Javier Movellan

Abstract—Machine learning approaches have produced some
of the highest reported performances for facial expressionrecog-
nition. However, to date, nearly all automatic facial expression
recognition research has focused on optimizing performance on
a few databases that were collected under controlled lighting
conditions on a relatively small number of subjects. This paper
explores whether current machine learning methods can be
used to develop an expression recognition system that operates
reliably in more realistic conditions. We explore the necessary
characteristics of the training dataset, image registration, fea-
ture representation, and machine learning algorithms. A new
database, GENKI, is presented which contains pictures, pho-
tographed by the subjects themselves, from thousands of different
people in many different real-world imaging conditions. Results
suggest that human-level expression recognition accuracyin real-
life illumination conditions is achievable with machine learning
technology. However, the datasets currently used in the automatic
expression recognition literature to evaluate progress may be
overly constrained and could potentially lead research into locally
optimal algorithmic solutions.

Index Terms—Face and gesture recognition, machine learning,
computer vision.

I. I NTRODUCTION

Recent years have seen considerable progress in the field of
automatic facial expression recognition (see [1], [2], [3], [4]
for surveys). Common approaches include static image texture
analysis [5], [6], feature point-based expression classifiers [7],
[8], [9], [10], 3D face modeling [11], [12], and dynamic analy-
sis of video sequences [13], [14], [15], [16], [17], [18]. Some
expression recognition systems tackle the more challenging
and realistic problems of recognizing spontaneous expressions
[13], [15] – i.e., non-posed facial expressions that occur
naturally – as well as expression recognition under varying
head pose [19], [11]. However, to date, nearly all automatic
expression recognition research has focused on optimizing
performance on facial expression databases that were collected
under tightly controlled laboratory lighting conditions on a
small number of human subjects (e.g., Cohn-Kanade DFAT
[20], CMU-PIE [21], MMI [22], UT Dallas [23], and Ekman-
Hager [24]). While these databases have played a critically
important role in the advancement of automatic expression
recognition research, they also share the common limitation
of not representing the diverse set of illumination conditions,
camera models, and personal differences that are found in the
real world. It is conceivable that by evaluating performance
on these datasets the field of automatic expression recognition
could be driving itself into algorithmic “local maxima.”

To illustrate this point, we tested standard linear regression
to detect smiles from raw pixel values of face images from one
of these databases, DFAT, scaled to a8 × 8 pixel size. The
system achieved a smile detection accuracy of 97% (cross-
validation). However, when evaluated on a large collection

of frontal face images collected from the Web, the accuracy
plunged to 72%, rendering it useless for real-world appli-
cations. This illustrates the danger of evaluating on small,
idealized datasets.

This danger became apparent in our own research: For
example, in 2006 we reported on an expression recognition
system developed at our laboratory [25] based on support
vector machines operating on a bank of Gabor filters. To
our knowledge, this system achieves the highest accuracy
(93% percent-correct on a 7-way alternative forced choice
emotion classification problem) reported in the literatureon
two publicly-available datasets of facial expressions: the Cohn-
Kanade [20] and the POFA [26] datasets. On these datasets,
the system can also classify images as either smiling or
non-smiling with accuracy nearly at 98% (area under the
ROC curve). Based on these numbers we expected good
performance in real-life applications. However, when we tested
this system on a large collection of frontal face images
collected from the Web, the accuracy fell to 85%. This gap
in performance also matched our general impression of the
system: while it performed very well in controlled conditions,
including laboratory demonstrations, its performance wasdis-
appointing in unconstrained illumination conditions.

Based on this experience we decided to study whether
current machine learning methods can be used to develop
an expression recognition system that would operate reliably
in real-life rendering conditions. We decided to focus on
recognizing smiles within approximately20◦ of frontal pose
faces due to the potential applications in digital cameras (e.g.,
smile shutter), video games, and social robots. The work we
present in this paper became the basis for the first smile
detector embedded in a commercial digital camera.

Here we document the process of developing the smile
detector and the different parameters that were required to
achieve practical levels of performance, including (1) Size and
type of datasets, (2) Image registration accuracy (e.g., facial
feature detection), (3) Image representations, and (4) Machine
learning algorithms. As a test platform we collected our own
dataset (GENKI), containing over 63,000 images from the
Web, which closely resembles our target application: a “smile
shutter” for digital cameras to automatically take pictures
when people smile. We further study whether an automatic
smile detector tested on binary labels can be used to estimate
the intensityof a smile as perceived by human observers.

II. DATASET COLLECTION

Crucial to our study was the collection of a database of
face images that closely resembled the operating conditions
of our target application: a smile detector embedded in digital
cameras. The database had to span a wide range of imaging
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Fig. 1. Histogram of GENKI images as a function of the human-labeled 3-D pose. These histograms were computed for GENKI-4K, which is a representative
sample of all GENKI images whose faces could be detected automatically.

conditions, both outdoors and indoors, as well as variability
in age, gender, ethnicity, facial hair, and glasses. To this
effect we collected a dataset, which we namedGENKI1, that
consists of 63,000 images, of approximately as many different
human subjects, downloaded from publicly available Internet
repositories of personal Web pages. The photographs were
taken not by laboratory scientists, but by ordinary people all
over the world taking photographs of each other for their
own purposes – just as in the target smile shutter application.
The pose range (yaw, pitch, and roll parameters of the head)
of most images was within approximately±20◦ of frontal
(see Figure 1). All faces in the dataset were manually labeled
for the presence of prototypical smiles. This was done using
three categories, which were named “happy”, “not happy”, and
“unclear”. Approximately 45% of GENKI images were labeled
as “happy”, 29% as “unclear”, and 26% as “not happy”. For
comparison we also employed a widely used dataset of facial
expressions, the Cohn-Kanade DFAT dataset.

III. E XPERIMENTS

Figure 2 is a flowchart of the smile detection architecture
under consideration. First the face and eyes are automatically
located. The image is rotated, cropped, and scaled to ensure
a constant location of the center of the eyes on the image
plane. Next, the image is encoded as a vector of real-valued
numbers which can be seen as the output of a bank of filters.
The outputs of these filters are integrated by the classifier
into a single real-valued number which is then thresholded to
classify the image as smiling or not-smiling. Performance was
measured in terms of area under the ROC curve (A′), a bias-
independent measure of sensitivity (unlike the “%-correct”
statistic). TheA′ statistic has an intuitive interpretation as
the probability of the system being correct on a 2 Alternative
Forced Choice Task (2AFC), i.e., a task in which the system
is simultaneously presented with two images, one from each
category of interest, and has to predict which image belongs
to which category. In all cases, theA′ statistic was computed
over a set of validation images not used during training. An
upper-bound on the uncertainty of theA′ statistic was obtained

using the formulas =
√

A′(1−A′)
min{np,nn} where np, nn are the

1A 4K subset of these images is available at http://mplab.ucsd.edu.

number of positive and negative examples [27]. Experiments
were conducted to evaluate the effect of the following factors:

a) Training Set: We investigated two datasets of fa-
cial expressions: (1) DFAT, representing datasets collected in
controlled imaging conditions; and (2) GENKI, representing
data collected from the Web. The DFAT dataset contains
475 labeled video sequences of 97 human subjects posing
prototypical expressions in laboratory conditions. The first and
last frames from each video sequence were selected, which
correspond to neutral expression and maximal expression
intensity. In all, 949 video frames were selected. (One face
could not be found by the automatic detector.) Using the
Facial Action codes for each image, the faces were labeled
as “smiling,” “non-smiling,”, or “unclear.” Only the first two
categories were used for training and testing. From GENKI,
only images with expression labels of “happy” and “not
happy” were included – 20,000 images labeled as “unclear”
were excluded. In addition, since GENKI contains a significant
number of faces whose 3D pose is far from frontal, only
faces successfully detected by the (approximately) frontal face
detector (described below) were included (see Figure 1). Over
25,000 face images of the original GENKI database remained.
In summary, DFAT contains 101 smiles and 848 non-smiles,
and GENKI contains 17,822 smiles and 7,782 non-smiles.

b) Training Set Size: The effect of training set size was
evaluated only on the GENKI dataset. First a validation set of
5000 images from GENKI was randomly selected and subsets
of different sizes were randomly selected for training from
the remaining 20,000 images. The training set sizes were
{100, 200, 500, 949, 1000, 2000, 5000, 10000, 20000}. For
DFAT, we either trained on all 949 frames (when validating
on GENKI), or on 80% of the DFAT frames (when validating
on DFAT). When comparing DFAT to GENKI we kept the
training set size constant by randomly selecting 949 images
from GENKI.

c) Image Registration: All images were first converted
to gray-scale and then normalized by rotating, cropping, and
scaling the face about the eyes to reach a canonical face
width of 24 pixels. We compared the smile detection accuracy
obtained when the eyes were automatically detected, using the
eye detection system described in [28], to the smile detection
accuracy obtained when the eye positions were hand-labeled.
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Fig. 2. Flowchart of the smile detection systems under evaluation.
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Inaccurate image registration has been identified as one of the
most important causes of poor performance in applications
such as person identification [29]. In previous work we had
reported that precise image registration, beyond the initial face
detection, was not useful for expression recognition problems
[25]. However, this statement was based on evaluations on the
standard datasets with controlled imaging conditions and not
on larger, more diverse datasets like GENKI.

d) Image Representation: We compared five widely
used image representations:

1) Gabor Energy Filters (GEF): These filters [30] model
the complex cells of the primate’s visual cortex. Each
energy filter consists of a real and an imaginary part
which are squared and added to obtain an estimate of
energy at a particular location and frequency band, thus
introducing a non-linear component. We applied a bank
of 40 Gabor Energy Filters consisting of 8 orientations
(spaced at22.5◦ intervals) and 5 spatial frequencies with
wavelengths of 1.17, 1.65, 2.33, 3.30, and 4.67 Standard
Iris Diameters (SID)2. This filter design has shown to be
highly discriminative for facial action recognition [24].

2) Box Filters (BF): These are filters with rectangular input
responses, which makes them particularly efficient for
applications on general purpose digital computers. In the
computer vision literature, these filters are commonly
referred to as Viola-Jones “integral image filters” or
“Haar features.” In our work we included 6 types of
Box Filters in total, comprising two-, three-, and four-
rectangle features similar to those used by Viola and
Jones [31], and an additional two-rectangle “center-
surround” feature.

3) Edge Orientation Histograms (EOH): These features
have recently become popular for a wide variety of tasks,
including object recognition (e.g., in SIFT [32]) and face
detection [33]. They are reported to be more tolerant
to image variation and to provide substantially better
generalization performance than Box Filters, especially
when the available training datasets are small [33]. We
implemented two versions of EOH: “dominant orienta-
tion features” and “symmetry” features, both proposed
by Levi and Weiss [33].

4) BF+EOH: Combining these feature types was shown
by Levi and Weiss to be highly effective for face
detection; we thus performed a similar experiment for
smile detection.

2An SID is defined as 1/7 of the distance between the center of the left
and right eyes

TABLE I
CROSS-DATABASE SMILE DETECTION PERFORMANCE(% AREA UNDER

ROC± STDERR) USING AUTOMATIC EYE-FINDER

Validation
Training GENKI DFAT
GENKI (949 image subset) 95.1± 0.55 98.4± 1.30
DFAT (949 images) 84.9± 0.91 100± 0.00

5) Local Binary Patterns (LBP)We also experimented with
LBP [34] features for smile detection using LBP either
as a preprocessing filter or as features directly.

e) Learning Algorithm: We compared two popular
learning algorithms: GentleBoost, and Support Vector Ma-
chines (SVMs): GentleBoost [35] is a boosting algorithm [36]
that minimizes theχ-square error between labels and model
predictions [35]. In our GentleBoost implementation, each
elementary component consisted of a filter chosen from a large
ensemble of available filters, and a non-linear tuning-curve,
computed using non-parametric regression [28]. The outputof
GentleBoost is an estimate of the log probability ratio of the
category labels given the observed images. In our experiment,
all the GentleBoost classifiers were trained for 500 rounds.

When training with linear SVMs, the entire set of Gabor
Energy Filters or Box Filters was used as the feature vector of
each image. Bagging was employed to reduce the number of
training examples down to a tractable number (between 400
and 4000 examples per bag) [37].

IV. RESULTS

A. Dataset

We compared the generalization performance within and
between datasets. The feature type was held constant at
BF+EOH. Table I displays the results of the study. Whereas
the classifier trained on DFAT achieved only 84.9% accuracy
on GENKI, the classifier trained on an equal-sized subset of
GENKI achieved 98.4% performance on DFAT. This accuracy
was not significantly different from the 100% performance
obtained when training and testing on DFAT (t(115) =
1.28, p = 0.20), which suggests that for smile detection, a
database of images from the Web may be more effective than
a dataset like DFAT collected in laboratory conditions.

Figure 3 (left) displays detection accuracy as a function
of the size of the training set using the GentleBoost classifier
and an automatic eye-finder for registration. With GentleBoost,
the performance of the BF, EOH, and BF+EOH feature types
mostly flattens out at about 2000 training examples. The
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Gabor features, however, show substantial gains throughout
all training set sizes. Interestingly, the performance of Gabor
features is substantially higher using SVMs than GentleBoost;
we address this issue in a later section.

B. Registration

One question of interest is to what extent smile detection
performance could be improved by precise image registration
based on localization of features like the eyes. We compared
accuracy when registration was based on manually versus
automatically located eyes. For automatic eye detection, we
used an updated version of the eye detector presented in [28];
its average error from human-labeled ground truth was 0.58
SID. In contrast, the average error of human coders with each
other was 0.27 SID.

Figure 3 (middle) shows the difference in smile detection ac-
curacy when the image was registered using the human-labeled
eye center versus when using the automatically detected eye
centers. The performance difference was considerable (over
5%) when the training set was small and diminished down
to about 1.7 % as the training size increased. The best
performance using hand-labeled eye coordinates was 97.98%
compared to 96.37% when using fully automatic registra-
tion. Thus, overall it seems that continued improvement in
automatic face registration would still benefit the automatic
recognition of expression in unconstrained conditions.

C. Representation and Learning Algorithm

Figure 3 compares smile detection performance across the
different types of image representations trained using either
GentleBoost (left) or a linear SVM (right). We also computed
two additional data points: (1) BF features and a SVM with
a training set size of 20000, and (2) Linear SVM on EOH
features using 5000 training examples.

The combined feature set BF+EOH achieved the best recog-
nition performance over all training set sizes. However, the
difference in accuracy compared to the component BF and
EOH feature sets was much smaller than the performance gain
of 5-10% reported by Levi and Weiss [33]. We also did not
find that EOH features were particularly effective with small
datasets, as reported by Levi and Weiss [33]. It should be
noted, however, that we implemented only two out of the three
EOH features used in [33]. In addition, we report performance
on smile detection, while Levi and Weiss’ results were for face
detection.

The most surprising result was a cross-over interaction
between the image representation and the classifier. This effect
is visible in Figure 3 and is highlighted in Table II for a train-
ing set of 20000 GENKI images: When using GentleBoost,
Box Filters performed substantially better than Gabor Energy
Filters. The difference was particularly pronounced for small
training sets. Using linear SVMs, on the other hand, Gabor
Energy Filters (and also EOH features) performed significantly
better than Box Filters. Overall GentleBoost and linear SVMs
performed comparably when using the optimal feature set for
each classifier, 97.2% for SVM and 97.9% for GentleBoost

TABLE II
GENTLEBOOST VS. L INEAR SVMS (% AREA UNDER ROC± STDERR)

FOR SMILE DETECTION ONGENKI

Human-labeled Eyes
Features SVM GentleBoost

Gabor Energy Filters 97.2± 0.23 95.5± 0.29
Box Filters (BF) 96.3± 0.27 97.9± 0.20

Eye-finder-labeled Eyes
Features SVM GentleBoost

Gabor Energy Filters 96.3± 0.27 91.4± 0.40
Box Filters (BF) 91.6± 0.39 96.1± 0.27

(See Table II). Where the two classifiers differ is in their
associated optimal features sets.

We suggest two explanations for the observed cross-over
interaction between feature set and learning algorithm: (1)
Using Box Filters with linear SVMs forces the classification
to be linear on the pixel values. In contrast, Gabor Energy
Filters (and also EOH features) are non-linear functions of
pixel intensities, and GentleBoost also introduces a non-linear
tuning curve on top of the linear Box Filters, thus allowing
for non-linear solutions. (2) The dimensionality of Gabor
filters, 23040, was small when compared to the Box Filter
representation, 322945. It is well known that, due to their
sequential nature, Boosting algorithms tend to work betterwith
a very large set of highly redundant filters.

To test hypothesis (1), we trained an additional SVM
classifier using a radial basis function (RBF) kernel (σ = 1)
on Box Filters using the eyefinder-labeled eyes. Accuracy
increased by3% to 94.6%, which is a substantial gain. It thus
seems likely that a non-linear decision boundary on the face
pixel values is necessary to achieve optimal smile detection
performance.

Finally, we tested Local Binary Pattern features for smile
detection using two alternative methods: (1) Each face image
was pre-filtered using an LBP operator, similar in nature to
[38], and then classified using BF features and GentleBoost;
or (2) LBP features were classified directly by a linear SVM.
Results for (1): Using 20000 training examples and eyefinder-
based registration, smile detection accuracy was 96.3%. Using
manual face registration, accuracy was 97.2%. Both of these
numbers are slightly lower than using GentleBoost with BF
features alone (without the LBP preprocessing operator). Re-
sults for (2): Using 20000 training examples and eyefinder-
based registration, accuracy was 93.7%. This is substantially
higher than the 91.6% accuracy for BF+SVM. As discussed
above for GEF features, both the relatively low dimensionality
of the LBP features (24∗24 = 576) and the non-linearity of the
LBP operator may have been responsible for relatively high
performance when using linear SVMs.

V. ESTIMATING SMILE INTENSITY

We investigated whether the real-valued output of the detec-
tor, which is an estimate of the log-likelihood ratio of the smile
versus non-smile categories, agreed with human perceptions
of intensity of a smile. Earlier research on detecting facial
actions using SVMs [39] has shown empirically that the
distance to the margin of the SVM output is correlated with
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Fig. 3. Left : A
′ statistics (area under the ROC curve) versus training set size using GentleBoost for classification. Face registrationwas performed using

an automatic eye-finder. Different feature sets were used for smile detection: Gabor Energy Filter (GEF) features, Box Filter (BF) features, Edge Orientation
Histograms (EOH), and BF+EOH.Middle : The loss in smile detection accuracy, compared to using human-labeled eye positions, incurred due to face
registration using the automatic eye-finder.Right: Smile detection accuracy (A

′) using a linear SVM for classification.
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the expression intensity as perceived by humans; here, we
study whether a similar result holds for the log-likelihoodratio
output by GentleBoost. We used the smile detector trained with
GentleBoost using BF+EOH features.

Flashcards: Our first study examined the correlation be-
tween human and computer labels of smile intensity on a
set of 48 “flashcards” containing GENKI faces of varying
smile intensity (as estimated by our automatic smile detector).
Five human coders sorted piles of 8 flash-cards each in
order of increasing smile intensity. These human labels were
then correlated with the output of the trained smile detector.
The average caomputer-human correlation of smile intensity
was 0.894, which is quite close to the average inter-human
correlation of 0.923 and the average human self-correlation of
0.969.

Video: We also measured correlations over five short video
sequences (11 to 57 seconds) collected at our laboratory of
a subject watching comedy video clips. Four human coders
dynamically coded the intensity of the smile frame-by-frame
using continuous audience response methods [40]. The smile
detector was then used to label the smile intensity of each
video frame independently. The final estimates of smile inten-
sity were obtained by low-pass filtering and time shifting the
output of GentleBoost. The parameter values (5.7 sec width
of low-pass filter; 1.8 sec lag) of the filters were chosen to
optimize the inter-human correlation.

On video sequences, the average human-machine correlation
was again quite high, 0.836, but smaller than the human-
human correlation, 0.939. While this difference was statisti-
cally significant (t(152) = 4.53, p < 0.05), in practice it was
very difficult to differentiate human and machine codes. Figure
4 displays the human and machine codes of a particular video
sequence. As shown in the figure, the smile detector’s output
is well within the range of human variability for most frames.
Sample images from every 100th frame are shown below the

graph.

VI. SUMMARY AND CONCLUSIONS

Datasets: The current datasets used in the expression recog-
nition literature are too small and lack variability in imaging
conditions. Current machine learning methods may require on
the order of 1000 to 10,000 images per target facial expression.
These images should have a wide range of imaging conditions
and personal variables including ethnicity, age, gender, facial
hair, and presence of glasses.

Incidentally, an important shortcoming of contemporary
image databases is the lack of ethnic diversity. It is an open
secret that the performance of current face detection and
expression recognition systems tends to be much lower when
applied to individuals with dark skin. In a pilot study on 141
GENKI faces (79 white, 52 black), our face detector achieved
81% hit rate on white faces, but only 71% on black faces
(with 1 false alarm). The OpenCV face detector, which has
become the basis for many research applications, was even
more biased, with 87% hit rate on white faces, and 71%
on black faces (with 13 false alarms). Moreover, the smile
detection accuracy on white faces was 97.5% whereas for
black faces was only 90%.

Image Registration: We found that, when operating on
datasets with diverse imaging conditions, such as GENKI,
precise registration of the eyes is useful. We have developed
one of the most accurate eye-finders for standard cameras to-
date, yet it is still about half as accurate as human labelers.
This loss in alignment accuracy resulted in a smile detection
performance penalty from 1.7 to 5 percentage points. Image
registration is particularly important when the training datasets
are small.

Image Representation and Classifier: The image rep-
resentations that have been widely used in the literature,
Gabor Energy Filters and Box Filters, work well when applied
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Fig. 4. Humans’ (dotted) and smile detector’s (solid bold) ratings of smile intensity for a video sequence.
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to realistic imaging conditions. However there were some
surprises: (1) A very popular Gabor filter bank representation
did not work well when trained with GentleBoost, even though
it performed well with SVMs. Moreover, Box Filters worked
well with GentleBoost but performed poorly when trained
with SVMs. We explored two explanations for this cross-
over interaction, but more research is needed to understand
this interaction fully. We also found that Edge Orientation
Histograms, which have become very popular in the object
detection literature, did not offer any particular advantage for
the smile detection problem.

Expression Intensity: We found that the real-valued output
of GentleBoost classifiers trained on binary tasks is highly
correlated with human estimates of smile intensity, both instill
images and video. This offers opportunities for applications
that take advantage of expression dynamics.

Future Challenges: In this paper we focused on detecting
smiles in poses within approximately±20◦ from frontal.
Developing expression recognition systems that are robustto
pose variations will be an important challenge for the near
future. Another important future challenge will be to de-
velop comprehensive expression recognition systems capable
of decoding the entire gamut of human facial expressions,
not just smiles. One promising approach that we and others
have been pursuing [5], [7], [13] is automating the Facial
Action Coding System. This framework allows coding all
possible facial expressions as combinations of 53 elementary
expressions (Action Units) [26]. Our experience developing a
smile detector suggests that robust automation of the Facial
Action Coding system may require on the order of 1,000 to
10,000 examples images per target Action Unit. Datasets of
this size are likely to be needed to capture the variability in
illumination and personal characteristics likely to be encoun-
tered in practical applications.
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