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Abstract—What defines good teaching? While attributes such
as timing, responsiveness to social cues, and pacing of material
clearly play a role, it is difficult to create a comprehensive
specification of what it means to be a good teacher. On the other
hand, it is relatively easy to obtain examples of expert teaching
behavior by observing a real teacher. With this inspiration as our
guide, we investigated apprenticeship learning methods [1] that
use data recorded from expert teachers as a means of improving
the teaching abilities of RUBI, a social robot immersed in a
classroom of 18-24 month old children. While this approach
has achieved considerable success in mechanical control, such
as automated helicopter flight [2], until now there has been little
work on applying it to the field of social robotics. This paper
explores two particular approaches to apprenticeship learning,
and analyzes the models of teaching that each approach learns
from the data of the human teacher. Empirical results indicate
that the apprenticeship learning paradigm, though still nascent
in its use in the social robotics field, holds promise, and that
our proposed methods can already extract meaningful teaching
models from demonstrations of a human expert.

I. INTRODUCTION

In the RUBI project at UCSD, we are exploring the po-
tential of using interactive social robots as tools for assisting
teachers in early childhood education environments [3]–[5].
As part of this project, for the last three years we have
conducted more than 1000 hours of field studies immersing
social robots at UCSD’s Early Childhood Education Center,
and have identified target skills that are critical for social
robots to become effective teachers. One of the initial priorities
in the project was to develop robust perceptual primitives for
social interaction, including facial expression recognition, and
auditory mood analysis (e.g., detecting cries [6]). As these
systems are developed the challenge shifts to the problem
of integrating them with the robot’s actuators so as to pro-
duce effective teaching behavior. Apprenticeship learning is a
potential framework for helping achieve this integration in a
principled manner.

Recent work in the field of apprenticeship learning has
shown the power of incorporating demonstrations from human
experts in solving difficult control problems. Abbeel and Ng
[1], for example, apply apprenticeship learning to the task
of automatic helicopter control with impressive results. In
fact, the helicopter trained using apprenticeship learning was
able to perform complex acrobatic maneuvers such as flips
and rolls at a time when the best autonomous helicopter

systems were capable of doing little more than hovering in
place. Although helicopter control is very different from robot
teaching, the two domains share key similarities: in each
domain there is a penalty for failure (the helicopter crashes and
is destroyed; the student is taught poorly and becomes turned-
off to learning), and it is easier to obtain demonstrations of
expert behavior (series of helicopter remote control signals;
list of actions taken by the human teacher) than to specify
the desired behavior explicitly. With these similarities in mind,
we conducted a preliminary study to improve RUBI’s teaching
algorithm using data from an expert preschool teacher.

II. PREVIOUS WORK

The idea of robots and intelligent agents that learn from
people is not new (see [7] for an overview of approaches
and challenges). In particular, Du Boulay and Luckin [8]
suggest utilizing findings from pedagogical research to aid in
designing a machine teaching agent. This approach has been
applied often in the intelligent tutoring systems community
(for example, see Burleson and Picard [9]). In our work we
take a different tact: while much of pedagogical research
tends to be theory driven (develop hypotheses and perform
behavioral experiments to test their validity), in our work we
take a data-driven, machine learning approach. In particular
we use data from a human expert and apply machine learning
techniques to extract patterns and regularities that can be
leveraged to create a complete specification of a teaching
algorithm. By analyzing the models learned in this framework
it may also be possible to develop new theories about the
factors that define good teaching.

Apprenticeship learning is a method for solving control
problems by incorporating demonstrations from an expert.
Much of the work in this area has focused on having humans
operate a device, such as a robotic arm or a helicopter [1],
and recording states of the device along with actions that
the human performed in these states. These demonstrations
provide constraints on appropriate actions for a given state.

Most successful applications of apprenticeship learning have
been in domains where there is both an intuitive notion of
the state of the system as well as a precise mathematical
model of the state dynamics and how they are affected by the
various control signals at our disposal. For example, in the
case of training a helicopter to perform acrobatic maneuvers



autonomously [2], the helicopter’s state can be described by
its orientation, angular velocities, acceleration, and position
relative to some fixed reference point. In the case of training
a robot to teach children in a classroom, on the other hand, the
state could consist of any number of observable features of the
current teaching environment or partially-observable attributes
of a child’s cognitive and emotional state. Enumerating which
of these many features are relevant for a teaching interaction
is a very difficult problem.

Further complicating matters is the notion of dynamics: In
the helicopter case, Newtonian mechanics provides a precise
model of the system dynamics: An accurate model of the
world can be learned by coupling classical physics with
empirical determination of parameter values [10]. In contrast,
in the teaching setting we don’t have the social equivalent of
Newtonian mechanics. As such probabilistic models of social
dynamics need to be learned from the available data. Thus
it is unclear a priori whether the apprenticeship methods that
have worked well for controlling physical dynamical processes
would also work well for controlling social processes.

III. LEARNING TO TEACH

In this study, we explored two apprenticeship learning ap-
proaches to improve RUBI’s teaching capabilities. The current
version of RUBI (RUBI-4) consists of a touchscreen Tablet
PC which she uses to play various educational games, a head
with a pan servo, and two arms with 3 DOFs each. The
head movement is guided by balancing exploring the world
and locking onto faces. Arm movements are used as both an
expression of RUBI’s emotional state and to receive objects
from children. In this work we focus solely on the algorithm
used to coordinate RUBI’s actions with the presentation of an
educational game on RUBI’s touchscreen.

In this work, instead of the human teacher providing ex-
amples of actions she would perform alone (as in the stan-
dard apprenticeship learning formulation), the teacher provides
expert demonstrations by augmenting the pre-programmed
behavior of RUBI, i.e., the robot, the human teacher, and
the pre-school pupil form a teaching triad (see Figure 1).
Apprenticeship learning approaches (defined in Section V) are
then used to learn an improved robotic teaching policy. Two
key assumptions are implicit in this formulation. The first is
that the actions of RUBI will have a similar effect as the
human teacher performing that same action. The second is
that the human teacher acts to supplement the robots actions in
order to implement a particular teaching strategy. This second
assumption implies that we know that RUBI is teaching well
(in other words, implementing a teaching strategy similar to
the human demonstrator) if the teacher is not intervening
in the teaching session. Iteratively recording “apprenticeship”
data from the teaching triads and re-training RUBI’s teaching
algorithm would hopefully converge so that the teacher would
not feel the need to act at all to supplement RUBI.
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Fig. 1. Left: the conventional apprenticeship learning setting. Right: the
teaching triad we use for our approach.







Fig. 2. Left: RUBI teaching children at ECEC. Right: A teaching triad
consisting of a teacher from ECEC (1), a student (2), and a stripped-
down version of RUBI consisting of a touch-screen tablet PC (3). Data
from these interactions was coded by humans into 9 behavioral channels
as shown in Figure 3

A. Dataset of teaching demonstrations

The original purpose of the study was to find methods to
better assess the children vocabulary skills. To this effect we
asked a human teacher to use a stripped-down version of RUBI
consisting of only her touch-screen tablet PC. The teacher
positioned the touchscreen on her belly, thus approximating
the teaching setting used by RUBI (see Figure 1). In these
sessions, the child was playing the “Name the Object Game” in
which RUBI displays four different objects on her touchscreen
(see Figure 2) and asks the child to touch a specific object
using an auditory prompt (e.g. “Where is the apple?”). RUBI
is equipped with a simple, teaching module that periodically
reminds the child, at a fixed frequency, which object to touch.
This simple “teaching” strategy was programmed by hand and
could clearly be improved upon. The teacher was asked to try
to engage the child as much as possible so as to to elicit his
or her true knowledge of the vocabulary being assessed by the
game.

A total of 8 preschool students participated in this study.
Each child interacted one-on-one with the teacher for an
average of 4 minutes. The teaching sessions were contiguous
with one teaching session per child. The coding of the teaching
session into the set of features shown in Figure 3 was
performed by an external human observer situated behind a
one-way mirror. The actions coded in this pilot study are not
meant to be comprehensive. We discuss our plans to record
additional information channels (such as facial expressions and
auditory categories) in Section VII.

IV. MATHEMATICAL FRAMEWORK

A widely used [1], [11], [12] formalism for apprenticeship
learning problem is the Markov Decision Process (MDP). Let
Π (Q) denote the set of all probability distributions over the
set Q. An MDP is a tuple (S,A, P,X0, R, γ) where S is a set



1) Teacher repeats the computer sound i.e. the name of the
object (e.g. “apple”)

2) Teacher asks a question, e.g. “Can you show me the
apple?” / “Where is the apple?”

3) Teacher gives a hint, e.g. pointing the correct object,
asking other objects before the correct object

4) Teacher gives child feedback, e.g. saying “good job” or
repeating the name of the object after a correct answer

5) Child touches the right object
6) Child touches the wrong object
7) Child touches the screen after giving the right answer
8) Child is far away out the reach of the computer
9) RUBI says the name of the object (e.g. “apple”)

Fig. 3: The nine actions that are recorded by a coder that
observed interactions between RUBI, a teacher, and a student.
Each of these actions is coded at 1 second granularity

of states; A is a set of actions; P : S × A→ Π(S) describes
the transition dynamics; X0 : Π (S) is a distribution over the
initial state; R : S×A→ < is the reward, i.e., a notion of the
desirability of performing a particular action and arriving at a
particular state; and γ ∈ [0, 1) is a discount factor that specifies
how much to weight immediate versus future rewards.

A policy is a mapping π : S → A from a state to an action.
The goal is to find a policy, π?, that maximizes a notion of
desirability, e.g., the expected discounted sum of rewards:

π? = arg max
π

Es0∼X0

[
t=∞∑
t=0

γtR(st, at)|π

]
(1)

Assuming complete knowledge of the parameters of an MDP
there are numerous techniques available, one example being
policy iteration, for computing π? [13]. However, when one
or more of the parameters of the MDP (e.g., the transition
probabilities or reward function) is unknown, apprenticeship
learning methods can prove to be useful tools.

We can characterize demonstrations from a human teacher
as a series of action-state pairs. Sequences of these pairs are
called trajectories. Let ui = (s1, a1) , (s2, a2) . . . (sTi

, aTi
)

denote the ith trajectory. We use the symbol U = (u1 . . . um)
to refer to a set of m trajectories demonstrated by the expert.

Assuming that S and A (the states and actions of an MDP)
are known, but that P and R (the transition dynamics and
reward function) are unknown, the expert trajectories U can
be used to find a policy π that maximizes Equation 1. We
explore two methods for achieving this goal, which we call
the direct approach and the indirect approach.

The direct approach ignores P and R altogether and at-
tempts instead to use the expert’s state-action trajectories U
as training data to a supervised learning algorithm. Thus, an
explicit mapping from states to actions is constructed. The
direct approach has been deployed widely in the field of
robotics [14], [15]. The idea is that we assume the expert’s
behavior is approximately optimal; therefore, by mimicking
his or her behavior, a policy that approximately maximizes
Equation 1 can be implicitly learned.
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Fig. 4: Top: a stem plot of the binary time series of the feature
of whether the object name has been repeated. Bottom: the
various temporal kernels that are extracted from this time
series. These temporal kernels are used as input to supervised
learning methods for predicting the next action.

The indirect approach attempts to construct a model of
the transition dynamics, P , and reward structure, R, of the
MDP. Once these parameters have been estimated, standard
dynamic programming techniques can be applied to obtain
the optimal policy π? [13]. The indirect approach benefits
by learning about the relationship between state and reward.
This approach may exhibit better generalization when the
trajectories from the expert cover only a small portion of
the state space. There are various algorithms for learning
a policy in the indirect setting. Abbeel and Ng provide a
framework that can guarantee performance similar to that of
the expert under certain assumptions about the reward function
[1]. Other approaches estimate R by choosing the reward
function that makes the actions of the expert appear optimal
with respect to R [11], [12]. In Section V-B we present our
own algorithm for indirect apprenticeship learning which may
be more appropriate for the “teaching triad” context in which
expert trajectories are captured in tandem with an existing
automatic teaching system.

V. METHODS

We modeled the “teaching” situation as follows: At each
time step there are five possible actions that can be performed
by either the teacher or RUBI. These actions are: Repeat the
name of the object; Ask a question; Give a hint; Give feedback;
and Do nothing. These five actions constitute the set of actions,
A, for an MDP. The crucial difference between the direct and
indirect approach are whether or not they learn a model of the
dynamics of the world, and the specific manner in which they
define state.

A. Direct Approach

In the direct approach, a mapping from states to actions
is created using supervised learning techniques on the data
collected from the expert demonstrations (see Section III-A).
The action space for this approach is defined in the preceding
section. In the present study, we focused on learning the timing
of teaching events – e.g., how often to repeat the name of
the object, how long after the child’s last correct answer to



offer a hint, etc. To enable such temporal relationships to be
learned, we defined the state space using the history of the
recent actions of the child, and the recent joint actions of the
teacher and the robot. We then applied a bank of filters to
convert the recorded actions and observation histories into a
series of features. The set of observations of the child (items 5
through 8 in Figure 3) can be detected by RUBI in autonomous
mode (i.e. not stripped-down) either through her touchscreen
or through her proximity sensor. Each of RUBI’s four possible
actions (excluding the action of doing nothing) forms a feature
channel as well. We extract features from the history using
filter kernels of sixteen different temporal scales: 1 seconds, 2
seconds, . . . , 16 seconds (see Figure 4). The combination of
16 temporal scales, 4 observations, 4 actions gives us a total
of 16× 4 + 16× 4 = 128 features to represent the state of the
teaching session.

Given a definition of states and actions, we can apply
standard supervised learning methods to learn a policy. In
this work we used multinomial ridge logistic regression [16].
Logistic regression outputs a matrix of weight values that
express the log-probabilities of choosing a particular action
given the input features (history of actions and observations).
These probabilities can be readily interpreted; we analyze the
model of teaching that the direct approach learns in Section
VI-B.

B. Indirect Approach

The indirect approach involves learning a model of how the
actions of a teaching agent affect the world (the states, and
state transition probabilities), assigning a notion of desirability
(reward function) to each state in our system, and then using
reinforcement learning techniques to compute the optimal
policy.

In order to learn both the state S and transition dynamics
P of a teaching interaction, we use a Hidden Markov Model
(HMM). HMMs use maximum likelihood estimation to derive
an internal notion of states that are responsible for generating
a sequence of observations. In this work, the observations are
features of the teaching interaction, such as whether or not
the child pressed the right answer. We use an extension of
the standard HMM that learns a different set of dynamics for
each possible action that the teacher can perform. The action
space is defined identically to that in the direct approach.
The observation space consists of all of the child’s actions
in Figure 3 (items 5 through 8).

After learning S and P using an HMM, we can convert the
data of the teacher, robot, and student into state-action trajec-
tories by computing the Viterbi path, which is the most likely
path of states that generated a particular set of observations
under a specific HMM, of each of episode of teaching. We
then pair each state along this path with the corresponding
action from the coded data.

The next step in the indirect approach is to define a reward
function R using the training data. Since the teacher’s actions
are assumed to be an error signal, we defined R by assigning
low rewards to states in which the teacher was likely to act

and high rewards to states in which the teacher did nothing
(action 5). The robot was encouraged to learn a policy that
would minimize the need for teacher intervention. We define
this reward using the actions of the teacher Ω and the Viterbi
path V . Recall that a5 is the action in which the teacher did not
correct the robot. δ represents the Kronecker delta function.

R(s) = 1−

|V |∑
t=0

δ (Vt, s)× δ (Ωt, a5)

|V |∑
t=0

δ (Vt, s)

(2)

Given the reward function R, an optimal policy is learned
using policy iteration.

VI. RESULTS

In this section we compare the direct and indirect ap-
proaches on a variety of performance metrics. We also provide
quantitative analysis of the models learned.

A. Predicting the Teacher

The most direct way to measure whether our models have
learned patterns from the human expert is to see if the models
can predict the actions of the expert given the history of
observations.

At each time step that our models emit a probability
distribution over actions, we measure the predictive accuracy
by computing the correlation coefficient between the proba-
bility of the learned policy selecting a particular action and
a smoothed version of the actual actions of the teacher. A
high correlation means that the model is likely to choose a
particular action when the teacher is also likely to choose that
action. Temporal smoothing is performed using a Gaussian
kernel of width 2 seconds. The smoothing assigns partial credit
for predicting an action slightly before or after it actually
occurred.

The results of this analysis using a leave-one-child-out
cross-validation scheme are given in Table I. Across the board
the direct approach outperforms the indirect approach. One
explanation is that only the direct approach has an explicit
goal to reproduce the actions of the teacher. Another is that
the underlying model on which the indirect approach is based
is not very accurate. For the direct approach the easiest actions
to predict are to give feedback and repeat the object name.
The reason for the former is probably the large contingency
between children getting the right answer and the teacher
giving positive feedback. For the indirect approach, correlation
values are very low. This suggests that the HMM learned
for the indirect approach is not adequately characterizing the
temporal properties of the data from the teaching triads.

B. Analysis of models

We analyzed which features were most useful for prediction
in the direct approach. To determine the most important
features we trained models to predict a particular action
versus all of the others using only a subset of the observed
features: starting with an empty pool of features we add the



TABLE I. Correlation coefficients between the likelihood assigned to a
particular action and a smoothed version of the actual actions coded.

Action to Predict Correlation (direct) Correlation (indirect)

Repeat object name 0.3118 0.0014

Ask a question 0.2259 −0.0014

Give a hint 0.2247 −0.0037

Give feedback 0.3463 −0.0343

No action 0.3472 0.0699

Average 0.2912 0.0201

feature that increases the performance the most. The notion of
performance is defined as in Section VI-A. We select features
as a group which includes a single variable over all temporal
scales (e.g. did the child get the right answer in the last 1
second, 2 seconds, 3 seconds, etc.). Once we have added the
first group of features we then select the second group of
features that in conjunction with the first gives the highest
overall performance. The results of this analysis are displayed
in Table II.

The features selected by sequential regression indicate that
some actions are predicted by an auto-regressive model. For
example, predicting whether or not to repeat the object name
is best accomplished using the history of whether or not the
object name has been repeated in the recent past. In contrast,
for some actions there is a strong contingency between the
actions of the child and the actions of the teacher (e.g. between
the child getting the correct answer and the teacher giving
positive feedback).

Figure 5 shows the probability of the direct model choosing
a particular action as a function of a particularly salient
feature. Several interesting phenomena can be seen. First,
our system learns to occasionally repeat the object name
in quick succession. This trend also emerged in the expert
data and might serve the purpose of placing emphasis on
particular utterances. A second trend that emerged was a
strong contingency between the child answering a question
correctly and the model recommending that positive feedback
be given immediately. Intuitively this makes sense as a reward
mechanism for desirable behavior. Another trend learned by
the model was that the longer it has been since a child has
given a correct answer, the more likely it should be to give the
child a hint. The underlying intuition could be that children
who are having a difficult time need extra guidance.

C. The Rhythm of Teaching

From observing the videos of the interactions of RUBI,
the teacher, and the child we hypothesized that the rhythm
of interactions between the teacher and the child may play
an important role in teaching. To see if our models learned
any such rhythm we computed the power spectrum of the
binary sequence of action / no action from the demonstrations
and compared it to the actions recommended by the trained
models. The Fourier power spectrum was computed using
non-overlapping two-minute windows. The cosine between
the two spectra was used as a similarity measure. The result
is a similarity of 0.9687 for the direct model and 0.9420

for the indirect model. The baseline performance for RUBI’s
original teaching module is 0.9115. While the importance of
rhythm in teaching is an open question, this result suggests
that fundamentally these models are capable of learning such
a rhythm.

VII. CONCLUSION

The pilot study presented here serves as a first step to
illustrate the potential apprenticeship learning for building
controllers for social robots. We compare the utility of two
approaches in predicting the actions of a human teacher.
Analysis of the features most relevant for predicting each
action suggests that the approaches learned important aspects
about the timing of behaviors during teaching.

In this pilot, the direct approach to apprenticeship learning
outperformed the indirect approach. One reason for this may
be that in social situations indirect approaches cannot capital-
ize on precise prior models of the system dynamics. In such
situations it may be more efficient to use the data to directly
learn a controller than to learn a model of social dynamics.
The situation may change, however, as better models of social
dynamics are developed. Just as control theory in the domain
of mechanical tasks was greatly spurred by the development
of realistic physical models, so can the control theory of social
domains be enhanced by a greater understanding of the laws
and regularities of interactions between social entities.
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Fig. 5: The relationships learned using the direct approach between three predicted actions and a particularly salient feature
for each action. Left: the model learns to occasionally repeat the name of the object twice in a row. Center: the model learns
to give feedback immediately following a correct answer from the child. Right: the model learns to give hints to children that
have not answered correctly in a while. These trends can be seen in the expert’s data as well.

TABLE II. The first two features by sequential regression using the direct approach for the binary task of predicting a particular action versus all the
other actions. In sequential regression, at each iteration the feature that improves the performance the most is selected. In this work a particular
feature includes all of the temporal kernels associated with that feature (e.g. the history of a particular feature over a 16 second window.
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No Action teacher or robot said object name child gave correct answer
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