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Abstract— As robots find applications in daily life conditions
it becomes important to develop controllers that generate
energy efficient movements by restricting variability and uti-
lizing high gains only when necessary. Here we present a
computationally light and energy efficient approach (AAC) that
combines an anticipatory open-loop controller and a variable
gain closed loop controller. The approach is grounded in the
theory of stochastic optimal control and feedback linearization.
As such it links two important approaches to robot control:
(1) the family of Computed Torque Controllers (CTC) that
are grounded on feedback linearization and classic feedback
control, and (2) a more recent family of controllers that
aim at finding approximately optimal trade-offs between task
performance and energy consumption. Here we show that AAC
controllers are highly energy efficient, when compared to CTC,
and exhibit some key properties of human motion.

I. INTRODUCTION

Computed torque control (CTC) in its various forms [4]

is currently the most popular approach to articulated robot

control and is arguably responsible for the success of robotics

in the assembly line. CTC is light weight, computationally

speaking, and can generate precise and repeatable move-

ments. However this precision is achieved at the expense

of high torque and energy consumption. This is appropriate

for conditions in which variability and uncertainty can be

suppressed by controlling the environment and using high

energy actuators, like in a high-volume assembly line of

identical products. However as robots move to the uncon-

strained conditions of daily life more sophisticated control

approaches become necessary. These new approaches need

to generate motion that, while accomplishing the task at

hand, consume as least energy as possible. Low energy con-

sumption is important for multiple reasons. First in mobile

robots, producing low energy movement is critical for saving

battery life. Second, in unconstrained environments high

torque movements can be very dangerous to human beings

and thus they need to be avoided when they are not required.

Third, empirical data suggest that skilled biological motion

is fluid and energy efficient [2]. Thus low energy controllers

may result on robots with more human-like motion.

Stochastic optimal control provides a powerful formalism

to develop low energy robot motion [3], [19], [18]. To this

end one simply formulates a criterion function that rewards

accomplishment of task goals while it penalizes the use of

high torques. Unfortunately robot dynamics are non-linear

and exact solutions to the aforementioned optimal control

problem are not available. Nevertheless recent years have

seen good progress towards the development of numerical

methods to find approximately optimal solutions. These

include: (1) local iterative approximations like stochastic

differential dynamic programming [17] and iLQG [20]; (2)

global solutions to the HJB control equation using function

approximation methods [15], and (3) approximations based

on reinforcement learning methods [1], [14], [16], [8], [10].

While we have seen dramatic progress in this critical area

of research, current algorithms are still computationally

expensive, and difficult to scale up to robots with a large

number of degrees of freedom.

Here we present an approach (AAC) that generates ef-

ficient robot controllers, in terms of energy consumption,

while being globally optimal, scalable, and computable in

real time for large scale robots. The approach is framed

on the theory of stochastic optimal control. However rather

than using a criterion function that penalizes large torques,

it uses a criterion that penalizes large angular accelera-

tions. This results on a remarkable simplification of the

control problem so that globally optimal control solutions are

possible. While minimizing angular accelerations does not

explicitly minimize energy consumption, in practice it results

on movements that are energy efficient and that resemble

well known properties of biological motion, including the

principle of minimum intervention, anticipation, and bell-

shaped velocity curves [6], [21], [19].

II. PROBLEM STATEMENT

Consider an articulated body governed by the standard

joint angle dynamics

M(θt)θ̈t = τt +N(θt, θ̇t) +Wt(θt, θ̇t, θ̄t) (1)

where θt is the vector of joint angles, θ̄t the temporally

integrated joint angles, θ̇t the angular velocities, and θ̈t
the angular accelerations. M(θt) is the moment of inertia

matrix, τt the vector torques applied by the rotational joint

actuators, N(θt, θ̇t) is the vector of gravitational, friction and

Coriolis/Centripetal forces, and Wt is a zero mean vector of

random torques that simulates the effects of uncertainty in

the body and environment dynamics.

We are given a set of target pairs of the form {(ξt, t) :
t ∈ I) where ξt is a vector of desired joint angles, t the

time at which those angles are to be accomplished, and

I a dense index set, e.g., a collection of intervals in the

real line. Our goal is to find a closed-loop control law that

maximizes the fit between the target joint angles (ξt, t) and

the obtained joint angles (θt, t) while minimizing the angular

accelerations needed to achieve these targets.



III. PROBLEM FORMALIZATION

We define the performance ρ of a a control policy π as

the expected value of the integral, over a fixed time horizon

[t, T ], of a reward rate R

ρt(π) = E[

∫ T

t

e−
s

λRsds | π] (2)

where λ > 0 is a scalar controlling the temporal discount for

the reward rate. We let the reward rate be the sum of two

quadratic criteria: one that penalizes for deviations between

the desired and obtained joint angles, and another one that

penalizes for large angular accelerations

Rt = −(yt −Xt)
′pt(yt −Xt)− θ̈′tqtθ̈t (3)

where

Xt =





θt
θ̄t
θ̇t



 , yt =





ξt
ξ̄t
ξ̇t



 (4)

(5)

and pt, qt are positive definite matrices. Note under this

formulation controllers achieve large reward rates, by having

Xt as close as possible to yt while minimizing the angular

acceleration θ̈t. For time steps with no task constraints, i.e.,

for t /∈ I we simply set pt = 0. We model the uncertainty

in the environment and body dynamics as Brownian motion

using the following Ito-style stochastic differential equation

[13]

dXt =aXtdt+ bUtdt

+
(

ct +
∑

i

gi,tXi,t +
∑

j

Uj,thj,t

)

dBt (6)

where

a =





0 0 I
I 0 0
0 0 0



 , b =





0
0
I



 (7)

Ut = M−1(θt)
(

τt +N(θt, θ̇t)
)

= E[θ̈t | τt, θt, θ̇t] (8)

Here ct, gt, ht are dispersion matrices that control the uncer-

tainty in the system dynamics and dBt is a Brownian motion

differential. ct modulates the effects of noise in a manner that

may depend on time. gt modulates noise in a manner that

may depend on joint angles, angular velocities, and integrals

of joint angles over time. ht modulates noise in a manner

that may depend on angular accelerations.

IV. PROBLEM SOLUTION

We can use the tools of stochastic optimal control to

find the controller π that maximizes the criterion function

ρt. Note under this formulation the non-linear part of the

articulated body dynamics has been moved into Ut, which is

the expected angular acceleration. Thus if we let Ut represent

the actions of a controller, we find ourselves with a time-

dependent linear quadratic tracking problem that can be

solved using the standard tools from the theory of stochastic

optimal control. The optimal controller found with these

tools maps states Xt into desired angular accelerations, i.e

Ut = πt(Xt) = E[θ̈t] (9)

To map states into torques we simply takes expected values

on (1) and solve for the torque τt

τt(Xt) = M(θt)Ut(Xt)−N(θt, θ̇t) (10)

While the solution to optimal quadratic tracking is known,

for completeness here we sketch its derivation and examine

the nature of the resulting controller.

Solutions to stochastic linear quadratic problems of this

type are typically found by solving the HJB equation for the

value function V of the optimal control policy π

Vt(x) =

∫ T

t

e−
s

λRsds | Xt = x, π] (11)

We first assume that the value function is quadratic (later we

see by induction that the assumption is correct)

Vt(x) = −
(

x′αtx− 2β′

tx+ γt

)

(12)

Under this assumption the HJB equation takes the following

form

x′α̇tx− 2β̇′

tx+ γ̇t = max
u

{ 1

λ
x′αtx−

2

λ
β′

tx+
1

λ
γt

− (x− ξt)
′p1,t(x− ξt) + 2p′

2,tx

− u′(qt + ĥt)u+ 2u′(qtωt + b′(βt − αtx)− h̄t − f̂tx)

− ω′

tqtωt + 2(βt − αtx)
′(kt + ax)

− Tr[ctc
′

tαt]− x′ĝtx− 2ḡ′tx
}

(13)

where

(ḡt)i = Tr[gi,tc
′

tαt] (14)

(ĝt)i,j = Tr
[

gig
′

jαt

]

(15)

(h̄t)i = Tr[hi,tc
′

tαt] (16)

(ĥt)i,j = Tr
[

hi,th
′

j,tαt

]

(17)

(f̂t)i,j = Tr
[

hi,tg
′

j,tαt

]

(18)

To find the optimal solution we take the gradient of the RHS

of (13) with respect to u and set it to zero

−2(qt + ĥt)u+ 2(qtωt + b′βt − b′αtx− h̄t − f̂tx) = 0
(19)

Thus the optimal policy is a non-linear function of time and

an affine function of the extended state x

ut = w1,t + w2,tx

w1,t = q̄−1

t (qtωt + b′βt − h̄t)

w2,t = −q̄t(b
′αt + f̂t)

q̄t = qt + ĥt

(20)



All is left is to find the values for w1,t, the open-loop part

of the control policy and w2,t, the closed loop part. To do

so we bring the optimal action back into the HJB equation

x′α̇tx− 2β̇′

tx+ γ̇t =
1

λ
x′αtx−

2

λ
β′

tx+
1

λ
γt

− (x− ξt)
′p1,t(x− ξt) + 2p′

2,tx

− (w1,t + w2,tx)
′q̄(w1,t + w2,tx)

+ 2(w1,t + w2,tx)
′q̄(w1,t + w2,tx)

− ω′

tqtωt + 2(βt − αtx)
′(kt + ax)

− Tr[ctc
′

tαt]− x′ĝtx− 2ḡ′tx (21)

Gathering quadratic terms on x we get

α̇t =
1

λ
αt − p1,t + w′

2,tq̄tw2,t − 2αta− ĝt (22)

Gathering linear terms on x we get

β̇t =
1

λ
βt − p1,tξt − p2,t − w′

2,tq̄
′

tw1,t

− a′βt + αtkt + ḡt (23)

Gathering constant terms with respect to x we get

γ̇t =
1

λ
γ − ξ′tp1,tξt + w′

1,tq̄tw1,t − ω′

tqtωt

+ 2β′

tkt − Tr[ctc
′

tαt] (24)

This determines the Ricati equations for the parameters of

the optimal value function

α̇t =
1

λ
αt − p1,t + w′

2,tq̄tw2,t

−2αta− ĝt

β̇t =
1

λ
βt − p1,tξt − p2,t − w′

2,tq̄
′

tw1,t

−a′βt + αtkt + ḡt

γ̇t =
1

λ
γt − ξ′tp1ξt + w′

1,tq̄tw1,t − ω′

tqtωt

+2β′

tk − Tr[ctc
′

tαt]

w1,t = q̄−1

t (qω + b′βt − h̄)

w2,t = −q̄−1

t (b′αt + f̂)

q̄t = qt + ĥt

(ḡt)i = Tr[gi,tc
′

tαt]

(ĝt)i,j = Tr[gi,tg
′

j,tαt]

(h̄t)i = Tr[hi,tc
′

tαt]

(ĥt)i,j = Tr[hi,th
′

j,tαt]

(f̂t)i,j = Tr[hi,tg
′

j,tαt]

with the following terminal conditions

αT = p1,T (25)

βT = p1,T ξT + p2,T (26)

γT = ξ′T p1,T ξT (27)

Integrating the Ricati equations backwards in time we get all

the terms needed to compute the parameters w1,t, w2,t for

the optimal policy that maps states into accelerations. The

control policy that maps states into torques follows

τt(Xt) = k1,t(Xt) + k2,t(Xt)Xt

k1,t(Xt) = M(θt)w1,t −N(θt, θ̇t)

k2,t(Xt) = M(θt)w2,t

(28)

V. COMPARISON WITH PREVIOUS APPROACHES

Computed Torque Control (CTC) in its many forms is

arguably the most popular approach for applications of

articulated robots [9]. The most general and sophisticated

form of CTC includes a closed loop PID controller as well

as compensation for Coriolis/Centrifugal forces, gravitational

forces, and friction forces. The resulting control law can be

expressed as follows [4]

τt = M(θt)
(

ξ̈t +Kpet +Kv ėt +Kiēt

)

−N(θt, θ̇t) (29)

where

et = ξt − θt (30)

ėt =
det
dt

(31)

ēt =

∫ t

0

esds (32)

and Kp, Ki, Kd are gain matrices for the proportional, inte-

gral an derivative parts of the feedback controller. CTC can

be derived from the point of view of feedback linearization

[7], [11]. Minimum Angular Acceleration Control (AAC)

can also be seen as a form of feedback linearization so

in this sense CTC and AAC belong to the same family

of control algorithms. Moreover CTC and AAC controllers

are affine on the augmented state of joint angles, angular

velocities, and integrated joint angles. However standard

CTC and AAC differ in important ways. CTC was derived

from the point of view of classical feedback control and

thus its emphasis is on guaranteeing stability. On the other

hand AAC is derived from the point of view of stochastic

optimal control. As such AAC controllers are guaranteed

to optimize an average performance criterion, rather than

guaranteeing stability. In CTC the gains of the closed loop

controller need to be tuned using a non-trivial process. In

AAC once the design matrices p, and q are specified, the

control policy is determined without the need to tune the

gains. In truth, it remains to be seen whether tuning p and q is

any easier than tuning PID gain matrices. However the most



important difference between CTC and AAC is the fact that

while CTC is non-anticipatory and utilizes constant gains,

AAC is anticipatory and has gain matrices that are a non-

linear function of time. As we see in the next section these

two properties are responsible for making AAC more energy

efficient than CTC and for generating motions that adhere to

well known principles of biological motor control.

AAC also belongs to the recent family of control algo-

rithms inspired on the theory of stochastic optimal con-

trol. This family includes local iterative solutions to the

HJB equation, global approximate solutions using function

approximation, and approximate solutions using variations

of stochastic gradient descent, as in reinforcement learn-

ing approaches [17], [20], [15], [1], [14], [16], [8]. These

algorithms can be used to approximate control laws that

achieve task goals while minimizing energy consumption.

AAC can be seen as one such approximation where we

use minimization of angular acceleration as a proxy for

minimization of energy consumption.

VI. COMPUTER SIMULATIONS

The goal of the simulations was to compare the behavior

of CTC, AAC and humans on standard control tasks. In

particular we were interested on the trade-offs between

energy consumption and task accuracy achieved by CTC and

AAC. To this end we simulated a 7 degree of freedom model

of the human arm. The first joint (shoulder) had 3 degrees of

freedom, the second joint (elbow) had 2 degrees of freedom

and the third joint (wrist) had 2 degrees of freedom. The

links were simulated as ellipsoids of standard human adult

size, with the density of ice. Gravitational forces used the

Earth surface standard. The simulator was implemented in

Matlab using the Gaussian mechanics approach to articulated

bodies [12]. The equations of motion were integrated using

a 4th order implicit Runge-Kutta method with a time step of

1 millisecond. Our implementation was validated using the

Matlab Robotics Toolbox [5]. The CTC and AAC controllers

where also implemented in Matlab. The dispersion matrices

that control uncertainty in the system dynamics were set

as follows: ct was diagonal with constant value of 10. The

dispersion matrices gt and ht were set to zero. The Ricati

equations for the optimal value function were integrated

using a Backwards Euler approach with a 1 millisecond

time step. The human data was obtained by digitizing Figure

3B from [21]. The simulations were run in a MacBookPro

laptop. For the tasks presented here finding the optimal

AAC controller takes a fraction of a second. The robot arm

simulations run comfortably in real time. In all cases we were

interested in comparing the energy consumption of different

control approaches. Assuming the joints are driven by DC

motors, the torque is proportional to the current driving the

motor. Moreover the energy consumption is proportional to

the square of the current. Thus the integral over time of the

squared torques provides a measure of energy consumption

(Jules per Ohm) comparable across the different control

approaches.

TABLE I

TASK ERROR AND ENERGY CONSUMPTION FOR THE QUADRATIC

TORQUE CONTROL, QUADRATIC TORQUE CONTROL PLUS KINEMATIC

MINIMUM JERK, AND MINIMUM ANGULAR ACCELERATION CONTROL

CTC CTC/MJ AAC

Error 1481 956 718

Energy 3820 2946 75

We simulated the point-to-point experiment described in

Flash & Hogan classic study on minimum jerk kinematic

control [6]. The task consisted of moving the end effector

(hand) between 6 different points on the horizontal plane.

The location of the points on the plane with respect to the

arm, the flight times, and approximate levels of variability

in human trajectories were obtained by digitizing the figures

in [21]. We used this paper rather than the original Flash

& Hogan document because it contains data about trajec-

tory variability through time. We compared three different

controllers: (1) CTC whose only inputs were the start and

end points. (2) CTC controller applied on top of a Minimum

Jerk kinematic trajectory planner between the start and end

points. We refer to this as CTC/MJ. (3) AAC with zero task

cost during flight time between beginning and end points.

For AAC the acceleration cost matrix qt was the identity

matrix throughout the entire flight time. The flight times

were set to approximate the times reported in [21]. During

flight time the task design matrices pt were set to zero.

The pt matrices were then made non zero for an additional

0.3 seconds after the flight time ended. In particular the pt
matrices were set to 200000 for the angular terms and 500 for

the angular integrals angular velocity terms. These numbers

were chosen because they produced trajectories that appeared

to qualitatively match the human data.

To set the PID gains for the CTC and for the CT/MJ

controllers we performed hierarchical grid search. The goal

of this search was to minimize the quadratic task error φ.

Table VI displays the average error and average energy

consumption produced by the three control approaches. Best

task performance was obtained by the AAC approach. The

average error was 718 and the average energy consumption

was 75 Jules/Ohm. Second best was the CTC/MJ approach,

with a task error approximately equal to AAC but an energy

consumption more than 40 times larger. The worst performer

was CTC, with an error about twice as large as AAC and an

energy consumption about 50 times larger.

Figure 1 shows sample trajectories and velocity curves

for the different control approaches and for the human

trajectories in [21]. As is now well known humans exhibit

symmetric bell shaped velocity trajectories. Due to the fact

that CTC uses constant closed loop gains, it exhibits asym-

metric velocity curves with maximum velocity near the start

of the movement. CTC/MJ is forced to follow a bell-shaped

minimum jerk trajectory known to approximate well human

data. However due to the fact that CTC uses constant closed

loop gains, there is little room for variability during the flight

times. This contrasts with the large variability exhibited by
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Fig. 1. Left Column: Projection of end effector trajectory on the line
between start and end points. Right Column: Velocity profiles. CTC: Com-
puted Torque Control. CTC/MJ: Computer torque control with Minimum
Jerk kinematic planner. AAC: Angular Acceleration Control.

humans during flight time. Interestingly AAC chose a bell-

shaped curve with levels of variability that were larger at

flight time than at the end points.

Figure 2 shows three example trajectories from the 3

controllers and from humans for the T2 to T6 point task

in [21], [6]. CTC produces slightly curved trajectories with

approximately uniform variability throughout flight time.

CTC/MJ produces straight trajectories with uniform vari-

ability. Humans and AAC produce curved trajectories with

large variability throughout flight time and low variability

at the end points, where it matters. This variability profile

is a example of the principle of minimum intervention [19].

AAC can produce this variability profile because of the fact

that it generates time dependent closed loop gains.
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Fig. 2. Sample trajectories for the T2-T6 point to point control problem.

VII. CONCLUSIONS

We presented a Minimum Angular Acceleration approach

to the closed loop control of articulated body dynamics.

The approach obviates the need for kinematic trajectory

planners and directly maps joint angle states into torques.

The approach is computationally light-weight and results on

significant reduction on movement energy consumption when

compared to popular approaches such as Computed Torque

Control (CTC). Low energy consumption is important in and

of itself for mobile robots because it results on longer battery

life. More importantly low energy consumption is achieved

by using low torques when they do not affect the task at

hand. The use of low torques can help improve the safety

of robots that operate in human spaces. In addition efficient,

low energy trajectories have properties similar to those found

in human motion, including anticipatory control, bell-shaped

velocity profiles, and larger variability at the mid-points of

the trajectories.

The AAC approach proposed here can be seen as an

example of feedback linearization of the type used by the

popular CTC approach. However contrary to CTC, the AAC

approach combines a closed loop controller with time depen-

dent gains and an anticipatory open loop controller. AAC is

framed in the theory of stochastic optimal control and thus

it also belongs to the recent family of controllers that find

approximately optimal trade-offs between task performance

and energy consumption [17], [20], [15]. The disadvan-

tage of AAC is that it does not directly optimize energy

consumption but angular acceleration. This is particularly

important when gravitational forces can be used to save



torque. The advantage is that using angular acceleration as a

proxy for energy consumption greatly simplifies the control

problem: It obviates the need for computationally expensive,

iterative algorithms and it still achieves graceful, low energy

trajectories that resemble some of the key properties of

human motion.
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