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Localizing facial features is a critical component in many computer vision applications
such as expression recognition, face recognition, face tracking, animation, and red-eye
correction. Practical applications require detectors that operate reliably under a wide
range of conditions, including variations in illumination, pose, ethnicity, gender and age.
One challenge for the development of such detectors is the inherent trade-off between
robustness and precision. Robust detectors tend to provide poor localization and detec-
tors sensitive to small changes in local structure, which are needed for precise local-
ization, generate a large number of false alarms. Here we present an approach to this
trade-off based on context dependent inference. First, robust detectors are used to detect
contexts in which target features occur, then precise detectors are trained to localize the
features given the detected context. This paper describes the approach and presents a
thorough empirical examination of the parameters needed to achieve practical levels of
performance, including the size of the training database, size of the detector’s receptive
fields and methods for information integration. The approach operates in real time and
achieves, to our knowledge, the most accurate localization performance to date.
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1. Introduction

Localizing facial features is a critical component in many computer vision
applications, including expression recognition, avatar animation, face recogni-
tion, head pose estimation, and artifact removal (e.g. red eye effect) in digital
camera.” 8 9:15,25,27,:30 Degpite its importance, facial feature localization is still an
unsolved problem for applications that need to operate under a wide range of con-
ditions that include realistic variations in illumination, ethnicity, gender, age, pose,
and imaging hardware.?

While many approaches to feature detection have been proposed and tested on
several benchmark datasets, the particular details for how any of these methods
could be pushed to performance levels reliable enough for practical use is rarely
studied systematically. The challenges are both theoretical and empirical. One the-
oretical challenge is an inherent trade-off between robustness and precision. Robust
detectors that work reliably in a wide variety of conditions tend to provide poor
localization performance, while detectors capable of distinguishing small deviations
from target locations tend to generate a large number of false alarms. Here we
present an approach to this trade-off based on context dependent inference (CDI):
first, robust detectors are trained to detect the context in which target features
occur, and then precise detectors are trained to localize the target features given
the context.

Another challenge is the historical aversion of the computer vision community
for empirical parametric studies. Such studies were critical in the development of
fields such as automatic speech recognition,'® but their importance has in general
not been recognized yet in the computer vision community. The consequence has
been slower technological progress, scientific progress, and practical application of
computer vision in many domains.

Here we document the process of developing state of the art feature detectors
using machine learning methods under the CDI approach described above. Empir-
ical studies are presented on a large and challenging dataset of faces obtained from
the Web, including a wide variety of illumination and rendering conditions, both
indoors and outdoors. We investigatge and describe the effect on performance of a
wide range of intervening factors. The parameters and algorithms that optimized
performance, as well as those that did not, are clearly described to facilitate repli-
cability and progress in the field.

2. Overview of the Approach

There is a fundamental trade-off inherent to the problem of feature localization.
While robust feature detectors tend to localize poorly, detectors sensitive to small
variations, which are needed for precise localization, tend to produce a large number
of false alarms. One common approach to solve this trade-off is based on the opera-
tion of a set of independent feature detectors.? % 1014 The output of these detectors
(e.g. a detector for each eye, a detector for the tip of the nose, a detector for points
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on the mouth, etc.) are combined by considering spatial configurations that match
the distribution of inter-feature distances typical of the human face.% 17-18 28 Unfor-
tunately, the computational complexity of this approach scales exponentially with
the number of false alarms of each feature detector, and the number of basic feature
detector types, making such approaches generally impractical for real-time use.

The approach we explore here is based on context dependent inference, (CDI)
an idea that was first formalized by Yuille and Bulthoff3' to help explain biolog-
ical vision. They proposed that it is too difficult to develop context independent
perceptual systems capable of operating robustly and precisely under all possible
conditions. Instead, they proposed that perceptual inference may be better han-
dled using context-dependent experts, each specialized for making inferences given
a specific context. The essence of this idea can be formalized as follows: let y be an
observed image, ¢ the location of a target feature (e.g. the left eye) and ¢ the image
region rendering a context relevant to this target (e.g. the set of pixel locations in
the image that render human faces). Our goal is to infer the location of the target
feature on the image plane. The information needed to solve this problem is con-
tained in the posterior probability of the target ¢ given the image y. Using the law
of total probability, we have that

p(tly) =Y plelypt|cy) (1)

where p(c|y) is the posterior probability of a context given the observed image. For
example, ¢ may partition the image into pixels rendering a face and pixels rendering
a generic everything else. The term p(t|c,y) is a context specific target detector.
It provides information about the location of the target, provided it operates in a
specific context ¢. Thus (1) tells us that if we want to localize a target feature we
can do so by combining the output of a system that detects the relevant context
in which the targets occur and another system that localizes the target in given
contexts.

A CDI approach to feature detection was first presented in Ref. 9. In this paper,
while we maintain the same theoretical framework, we additionally provide a highly
detailed analysis of the different factors affecting accuracy, and analyze performance
on larger and more realistic databases than previously considered. We show that
the resulting real-time system achieves performance levels unsurpassed by any other
feature detector method published in the literature to date.

2.1. Real-ttme inference architecture

Figure 1 describes the general workflow of the inference architecture. It consists
of two stages: the first stage detects the context under which the target features
occur, in this case human faces. This first stage operates under very general back-
ground and illumination conditions, narrowing down the plausible locations of the
target features in the image plane. It is based on the cascade of boosted classifiers
architecture of Viola and Jones,?* but with two key changes: (1) We use continuous
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(a) (b)

Fig. 1. Context sensitive search (a) first, the contexts of interest, in this case faces, are selected by
scanning a sliding detection window across the entire image at multiple scales, (b) next the target
features are precisely localized given the context. In both cases we use a multiscale sliding-window
detector approach.

nonparametric transfer functions rather than binary threshold functions over the
box-filter features. This allows us to obtain continuous likelihood ratio estimates
for each possible image patch, rather than just binary decisions, (2) we eliminate
the cascaded architecture in favor of a probabilistic sequential decision making
architecture. Under this approach, a decision is made on a feature-by-feature basis
as to whether to process another feature or to stop processing and decide face or
nonface using the features processed up to that point. In addition, contrary to the
Viola—Jones architecture, the information from past features is never discarded,
thus resulting in significant improvements in the speed-accuracy tradeoff. A full
description of this approach can be found in Ref. 9.

The second stage, which is the focus of this paper, specializes in achieving high
feature localization accuracy, provided it operates on the regions selected by the
previous stage. This second stage uses the same inference architecture as the pre-
vious stage, but now applied only within the detected face region. The combined
system operates at approximately ten 320 x 240 video frames per second using a
single thread of a standard desktop computer (Apple PowerMac G5, 2.5 Ghz).

2.2. Learning architecture

The proposed approach requires conditional likelihood-ratio estimates; that is, given
an arbitrary image patch y we need an estimate for the ratio between the probability
of such a patch being generated by the target class versus the background class. Here
we learn these likelihood ratios using a boosting algorithm known as GentleBoost.'?
Boosting!! refers to a family of machine learning algorithms that builds accurate
(strong) classifiers by combining a collection of weak classifiers. Each of these weak
classifiers is chosen in a sequential manner for its capacity to reduce the mistakes
made by the current collection of weak classifiers. While each weak classifier may
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Fig. 2. Each filter is computed by taking the difference of the sums of the pixels in the white
boxes and grey boxes. Filter types include those in Ref. 24, plus a center-surround type filter.

perform only slightly above chance, the combined system (i.e. the strong classifier)
may achieve very high levels of accuracy.

In Ref. 12, it was shown that boosting methods can be reinterpreted from the
point of view of sequential maximum likelihood estimation, an interpretation that
makes it possible to use these methods within the framework proposed here. Learn-
ing in GentleBoost is accomplished by sequentially choosing weak classifiers and
combining them to minimize a chi-square error function. In our application, each
weak classifier consists of a simple linear filter, selected from a large fixed library
of filters, followed by a nonlinear transfer function.

The pool of filters we use are the same as those used in Ref. 24, with the
addition of a center-surround filter class (see Fig. 2). The main reason for using
these relatively simple features is that they can be computed very efficiently in
general purpose computers without the need of specialized hardware (see Refs. 23
and 24 for detailed explanation). In Ref. 24, the nonlinear transfer function was a
simple threshold function whose output was in the set {—1,41}. In this paper, we
use a piecewise constant function whose parameters are chosen by the GentleBoost
algorithm. This allows each weak classifier to output arbitrary real values in the
range [—1, +1] rather than simply binary decisions.

3. Database Description

Here we briefly describe some of the most commonly used databases for train-
ing and testing facial feature detectors. FERET (frontal images)?? is a free, pub-
licly available database with 3880 images taken in controlled settings with no
background clutter and little variation in illumination. XM2VTS?® and BANCA-
C/WorldModel! are commercially available databases. XM2VTS contains 1180
high quality frontal face images. BANCA-C/WorldModel contains 2380 frontal face
images with no background clutter and some variation in illumination. Images in
the aforementioned databases were taken in controlled environments with uniform
background.

The BANCA-D/A and BiolD? databases attempt to simulate real-world condi-
tions. BANCA-D/A contains 4160 frontal face images with cluttered backgrounds,
variable illuminations and head pose variation. The free and publicly available
BioID database contains 1521 frontal face images that vary with respect to illumi-
nation, background, scale and head pose. Based on results from the literature,” 132
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Fig. 3. Sample of cropped images from the GENKI database.

these databases are considered more challenging than FERET, XM2VTS and
BANCA-C/WorldModel databases.

While these databases have helped to advance research in the area of facial
feature detection and face recognition, they do not represent the variety of illu-
mination and rendering conditions found in many real life applications, such as
consumer cameras, surveillance systems or social robots, in which factors such as
illumination and background clutter cannot be controlled. For this reason we col-
lected a new database, named GENKI, that contains approximately 70,000 images
collected from the World Wide Web (see Fig. 3), a portion of this database has been
made available to the public and is refereed to as GENKI-4K!? in this paper. This
collection is highly varied with respect to illumination, background clutter, head
pose, age, ethnicity, partial occlusions, image compression artifacts, and image res-
olution. Images in the database were hand labeled for the location of the temporal
and nasal corner of right and left eyes, the center of the tip of the nose, mouth
corners, mouth center (defined as the estimate of the location of the intersection
between the line defined by the labial furrow and the curve defined by the end of
the upper teeth) and pose: roll, pitch, and yaw. Head pose ranges are: pitch —30°,
+48°; yaw +/ — 62°; roll —60°, +53°. For our purposes the center of the eye is
defined as the midpoint between the labeled temporal and nasal corner of the eye.

4. Empirical Studies

Here we present a series of experiments whose goal is to investigate the effects
of intervening factors on system performance, and identify trends for improving
performance. Because the set of all possible combinations of parameter settings is
too large to search exhaustively, we proceeded in a sequential manner, identifying
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Fig. 4. Face with hand labeled features.

promising parameter values, fixing them and then varying other parameters, and
repeating back to earlier parameters several times. Parameter values which remain
fixed throughout the work are based on preliminary tests and previous work.? We
present performance on three types of facial features: (1) the center of the eyes (here
we only report left eye performance, since right eye performance is equivalent), (2)
tip of the nose, and (3) center of the mouth (see Fig. 4). All classifiers were trained
using examples from the GENKI database. Several different subsets were used for
training (as described below), however when testing on GENKI, all experiments
were tested on the same 10,000 image subset of images, never seen during training.

4.1. Performance statistics

A recent trend in the literature is to report performance on facial feature localization
in terms of interocular distance,® % !> the distance between the centers of the eyes.
An important aspect of this unit of measure is that it is scale independent. A
drawback is that it is relatively large, on the order of several centimeters, and as
a consequence not intutively appealing. We found that in many cases it was more
intuitive to compare the precission in terms of iris widths. Using a sample of images
from the GENKI database we found that the average interocular distance was 6.63
times larger than the diameter of the iris. For simplicity we chose the closest integer
to 6.63 as a standard. Thus, we defined a Standard Iris Diameter (SID) as
1/7 of the interocular distance, and use it as the basic unit of measurement to
present performance values. This unit is intuitively appealing while also being easy
to convert to the more traditional interocular distance standard.

When comparing the output of the feature detector to the hand labeled feature
locations, the “error” of a specific feature detection is defined as the euclidean
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distance (in SIDs) between the system’s final output and the hand labeled location.
Here we report two error statistics: the root mean square error (RMSE), and the
median absolute error (MAE), which is less sensitive to outliers. Another useful
measure is the proportion of times that the absolute distance between the system’s
output and the hand labels is below a threshold. Unless otherwise stated, we use a
relatively lax threshold of 1.75 (0.25 interocular distance) SID, a common detection
criteria.

In the remainder of this section we report on a series of experiments designed to
investigate the effects of the following factors: (1) size of the search region, (2) recep-
tive field size, (3) sampling rate (4) training set size, (5) selection of positive and
negative examples, (6) number of rounds of training, (7) information integration,
and (8) pose variation.

4.2. Size of the search region

As described in Sec. 2.1 and illustrated in Fig. 1, we use a sliding-window approach
to search for target facial features at different locations and scales. First, a context
detector segments a region of the image likely to contain a face. In this initial face
detection stage, we first scan patches of size 24 x 24, the minimum scale of interest,
and shift one pixel at a time until all possible patches of this size are scanned. Each
larger scale is chosen to be approximately 1.2 times the previous scale, and the
window shifting amount is scaled by the same proportion.

After the face is found, we search for facial feature points (FFPs) within the
face. Rather than search within the entire face region for a particular FFP, we
limit our search to the areas most likely to contain the desired feature. To this
end we model the joint prior distribution of the offset in horizontal and verti-
cal directions, along with scale, as a three-dimensional Gaussian distribution. The
parameters for this distribution are simply the empirical mean and covariance of
these values found in a sample from the GENKI database. The resulting model
was used to determine search regions for the contextual feature detectors. We
refer to these search regions as regions of interest, or ROIs. The size of a ROI
is determined by a maximum allowed Mahalanobis distance from the most proba-
ble prior location of the target features. We tested the effect of varying this maxi-
mum threshold over the following Mahalanobis distances: {1.215,2.366, 4.108, 6.251,
16.275,21.101,25.902, 30.665}. As shown in Fig. 5, performance increased with
larger search regions, but improvements were very small for search regions with
Mahalanobis distances beyond 15. Therefore in the remaining experiments we fixed
the ROI threshold distance to 15.

4.3. Receptive field size

The size and resolution of the detector influences the localization performance and
it is unclear a priori what the optimal values should be. For example, should eye
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detectors search only for the pixels making up the iris, should they use informa-
tion from the entire eye region, or should they use information far beyond the eye
region? To study this issue we tested the effect of varying the size of the detec-
tor’s receptive field, defined as a square image patch of fixed width relative to the
size of the detected face. The tested receptive field widths, measured in SIDs, were
{3.5,5.6,7.7,9.8,11.9,14.0,15.4,16.8,17.5} (see Fig. 7).

While the amount of face context varied within the receptive field (see Fig. 6),
the size of training patches were always scaled to 24 x 24 pixels. Thus in our
approach there is a context versus resolution trade-off — larger receptive fields
mean less resolution, while smaller receptive fields mean greater resolution.

Performance that resulted in both high detection rates and low localiza-
tion error was obtained by using relatively large receptive fields that include
a significant amount of the face (see Fig. 7). This result, which is somewhat
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unintuitive, replicates our previous results on a smaller dataset.® It should be
pointed out that other approaches typically use much smaller receptive field sizes,
typically about 3 SIDs.3 6:19:25

4.4. Sampling rate

Because of the sliding-window approach, performance is influenced by the distance
between each application of the detector window. We refer to this distance as s for
sampling distance. Given a ROI for a particular target feature, we first choose the
minimum K X K scale allowed by the ROI and applied the classification window at
every point on a grid within the ROI whose nodes are spaced every s = % pixels,
rounded to the nearest integer. K is then incremented to the next positive integer
multiple of 24 and the process is repeated, until K is larger than the maximum
specified by the ROI. In practice, the output of the feature detectors is sensitive
to translations and scales smaller than this base resolution. Since the true location
of a FFP may be between the regions scanned by the sliding window, we tried
increasing the sampling rate by a factor of 2, i.e. for a particular scale K choose
windows spaced 3 pixels apart. Table 1 shows the effect of increasing the sampling
rate: doubling the sampling rate reduced error rates by a few percentage points
for the nose and mouth detectors. However, the eye detectors improved by less
than 1%. Throughout the remainder of experiments we sampled every 3 pixels.

4.5. Training set size

We investigated the effects of the training set on performance. The number of pos-
itive examples was varied from 100 to 20,000 according to the following schedule:
{100, 300, 500, 1000, 2000, 3000, 5000, 8000, 10,000, 15,000, 20,000}. For each con-
dition, the number of negative examples was three times the number of positive
examples.
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Table 1. Performance as a function of sampling rate.

MAE RMSE Detection Rate

S S S
Feature 5 s 5 s 5 s

Left eye 0.2290 0.2780 0.2338 0.2573 0.9644  0.9623

Nose 0.3689 0.3977 0.3164 0.3341 0.9185  0.9093
Mouth 0.3391 0.5258 0.3311 0.3849 0.8992  0.8638
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Fig. 8. Effect of training example set size.

Results are presented in Fig. 8. While there are some performance gains for
training sizes beyond 5000 examples, they are minimal. Across all feature types,
training set sizes between 1000 and 5000 examples perform well. This was a surpris-
ingly small number considering that improvements made in other problems, such
as face detection and smile recognition, required increasing the number of training
examples beyond 10, 000.24:26

4.6. Selection of positive and negative examples

The training patches were chosen using the sliding-window described in Sec. 4.4.
For each image in the training set we first create a “candidate list” of all locations
visited by the detection window, restricted to the region of interest (shown by
the green dashed outer ellipse in Fig. 10). Thus the scanning procedure to select
training patches is identical to the scanning procedure used at run-time to detect
target features. Once we have a collection of candidate patches, we select the patch
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(a) (b)

Fig. 9. Training examples for receptive field of size 7.7 SIDs. Exclusion range of 2 with a bias
selection to patches nearer the ROI boundary: (a) positive training examples, (b) negative training
examples.

Fig. 10. Left eye region of interest: (a) no exclusion region, (b) exclusion region of 0.5,
(c) exclusion region of 1, (d) exclusion region of 2 and (e) exclusion region 3.

with minimum Euclidian distance from the human labeled feature point (yellow X
in Fig. 10), and add it to the set of positive training patches. This ensures that the
system is trained with positive examples that have the FFP centered and slightly
shifted from center with respect to location and scale in a manner similar to how
they will be encountered at run-time. This is particularly important since patches
visited in the sliding-window approach are sometimes separated by several pixels,
depending on the size of the face.

To select negative examples, we first create an exclusion region (white inner
ellipse in Fig. 10) around the labeled feature location and take a sample of patches
inside the ROI but outside of the exclusion region. In addition we biased the sam-
pling process in three ways: (a) no bias, (b) bias towards selection, of patches
close to the exclusion boundary, and (c) bias towards selection of patches nearer to
the ROI boundary. Experimental results indicate method (c), in conjunction with
a moderate exclusion range [Fig. 10, examples (¢) and (d)], performed best with
regard to detection and localization accuracy.

4.7. Number of training rounds

Boosting is a sequential machine learning procedure, in which a new filter is added
to the classifier after each round of training. The amount of training, i.e. the number
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Fig. 11. Performance with respect to the number of box filters chosen to construct the strong
classifier.

of filters chosen to construct a classifier, influences training time, run-time, detec-
tion rate and localization accuracy. We investigated the effect of varying the number
of training rounds on classification performance. Experimental results (see Fig. 11)
show best levels of performance occur between 30 and 150 training rounds, with
only nominal improvements in performance beyond that. Other problems, like face
detection, typically require several thousand training rounds,?* indicating that fea-
ture detection in the context of faces is a less complex problem. Based on these
results, we limited the rounds of training to 150 for all subsequent experiments.

4.8. Information integration

For each image patch visited by the multiscale sliding window approach, the detec-
tor returns the log-likelihood ratio that the patch was generated by the target class
versus the background class. The result is a list of candidate patches that can
be assessed in terms of the likelihood that they are of the target class. The log-
likelihood ratio for a particular feature can be combined with the prior probability
that the feature is located at a particular location to form a posterior probability
estimate at every location.

We investigated several simple methods, which perform surprising well, for inte-
grating the results of the likelihoods and posterior probability estimates of detected
patches to make a final decision about the FFP location: (1) choosing the maximum
log-likelihood patch; (2) choosing the maximum log-posterior patch; (3) choosing
the mean of the k highest log-likelihood patches; (4) choosing the mean of the k
highest log-posterior patches; (5) choosing the median of the & highest log-likelihood
patches; (6) choosing the median of the k highest log-posterior patches; (7) choos-
ing the weighted average of all log-likelihood patches; (8) choosing the weighted
average of all log-posterior patches. In preliminary tests values of k between 20-25
gave best performance, so for these experiments we report results for k = 23.
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k = 23.

Figure 12 shows the results. The eyes and nose perform best by taking the mean
of the top k = 23 highest log-likelihood patches (method (3) above). Based on our
results we use method (3) for eyes and nose information integration and method
(4) for mouth information integration for the remaining experiments.

4.9. Pose invariance

Accurate eye localization is an important step for many approaches to AU detection,
face recognition and pose estimation.®”2%27 The difficulty of face detection and
subsequent emotion or face recogniton as pose deviates from frontal view is well
known and still an open problem within the computer vision community.> 792! If
facial features are to be used as part of the overall process of image registration it
is important to understand how localization performance varies over head pose. To
better understand the relationship between head pose and feature location accuracy
we studied the performance of feature localization as a function of head pose (roll,
pitch and yaw).

Experiments were conducted on five grouped head pose ranges: (—5°,5°),
(£5°,£15°] and (£15°, £60°] measured from frontal view for roll, pitch and yaw.
Each grouping contained 150 images selected from the GENKI dataset (see Fig. 13).
Experiments demonstrate that face detection becomes fragile beyond +15°, with
respect to roll and pitch. Detection of the tip of the nose and mouth were quite
sensitive to pose variations in roll and yaw. However, given the face is detected, eye
detection and localization proved to be robust to pose variation up to £60° in roll,
yaw and pitch.
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Fig. 13. Effects of pose on performance.

5. Prior Work

We compared the performance of our system with those systems reporting the
best performance with respect to detection rate and localization error published to
date,® %8 including a previous version of our system.”

5.1. Adaboost with active appearance model

Cristinacce et al. present results on an approach similar to the one presented here:
a Viola—Jones style face detector is used to locate faces in the image plane. Once a
face is localized, a similar style detector is applied to selected regions of the face —
resulting in a set of candidate feature points. This is followed by the application of
active appearance models (AAM) to the candidate points to refine the final location
estimate, and infer missing points. Because of the significance of Ref. 6, we felt it
important to compare our work with theirs. Unfortunately, we do not have access to
the XM2VTS dataset. After consultation with Dr. Cristinacce we agreed that the
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Fig. 14. Comparison between the Appearance Model of Ref. 6, indicated by Adaboost-AAM,
and the current system, labeled CDI for Context Dependent Inference. Performance measured on
the XM2VTS database by Ref. 6 and measured on the FERET database for this system.

FERET and XM2VTS data sets were of similar level of difficulty, as they are both
frontal data sets taken under controlled illumination conditions. One difference is
that the XM2VTS data set contains more images of persons with beards, which
could affect performance for features on the lower part of the face. With this caveat
in mind, Fig. 14 shows a comparison with results presented in Ref. 6.?

5.2. Multimodule SVM

Campadelli et al. presented a general-to-specific model for eye detection that can
be applied to the output of any face detector that returns a rough estimate of the
face location.* Once the face has been detected, eye localization is performed in a
two step process by Support Vector Machine (SVM) modules: (1) the eye detector
and (2) the eye localizer. The first SVM module performs a rough estimation of eye
location by evaluating a subset of points in the face region. The second SVM module
is then applied to the candidate points from the first step to refine localization
accuracy. The authors of Ref. 4 provided us with their most current, yet to be
published, performance data. Figure 15 shows performance comparisons on the
FERET and BiolD databases.”

2Results shown for Ref. 6 were extracted from published graphs, thus the exact numerical values
may differ slightly.

bResults shown for Ref. 4 were obtained from the authors and have yet to be published in other
literature.
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Fig. 15. Comparison with multimodule SVM of Ref. 3, indicated by SVM, and the current system,

labeled CDI. Performance is given for FERET database (left) and BiolD database (right).

5.3. Bayesian, regression and discriminative classifier

Everingham et al® compare three approaches to eye localization: regression,
Bayesian and discriminative classification. Their results indicate that the Bayesian
approach performs best, detecting 90% of the eyes within approximately 0.329 SIDs.
A recent field survey® described this level of performance as “remarkable” consid-
ering the state of the art in 2007. The system we are presenting here localized 92%
of the eyes within 0.329 SIDs. While in absolute values, a 2% improvement may
appear small, it represents a 20% reduction of error rate over.® Figure 16 shows a
comparison of our system with the results in Ref. 8 on the FERET database.®
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Fig. 16. Comparison with regression, discriminative classifier and Bayesian approach presented
by Ref. 8, indicated by regression, discriminative and Bayesian figure labels, and the current sys-

tem, labeled CDI for Context Dependent Inference. Performance given for the FERET database.

“Results shown for Ref. 8 were extracted from graphs provided by the author.
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5.4. Previous version of context dependent inference

The current approach to feature detection was based on an eye detection system we
had previously developed in Ref. 9. We compare performance of the current system
to Ref. 9 on the FERET, BiolD and GENKI databases. “CDI-0” indicates® and
“CDI-1” indicates our current system. Figure 17 shows that the current system is a
significant improvement over the previous system. On FERET, we detect 94.0% of
eyes within 0.4 SIDs, while the previous system only detected 74.8% at this level.
On BiolID, we detect 92.8%, within 0.4 SIDs while the previous system only detected
70.9% within this distance. On the GENKI database, we detect 75.9% within 0.4
SIDs, while the previous system manages only 56.2% within the same distance.

5.5. Comparison with human performance

In the previous sections we compared performance of our automated system using
the human labels as ground truth. However, since the human labels used for training
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Fig. 17. Comparison with Ref. 9, indicated by CDI-0, with the current work, indicated by CDI-1.
Performance given for FERET database (top left), the BioID database (top right) and the GENKI
database (bottom center).
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Table 2. Human versus machine: MAE.

Feature ~ Human Machine Machine/Human

Left eye  0.1159 0.1867 1.61
Nose 0.1596 0.3138 1.97
Mouth 0.1225 0.3908 3.19

Table 3. Human versus machine: RMSE.

Feature ~ Human Machine Machine/Human

Left eye  0.0748 0.1508 2.02
Nose 0.1037 0.3908 3.77
Mouth 0.0789 0.7495 9.50

may be noisy, it is unclear whether the system is already achieving the best possible
performance given the quality of the labels. To clarify this issue, seven people hand
labeled the eyes, nose and mouth in 100 randomly selected images from the GENKI
database. This test set was also labeled automatically by our feature detection
system. The average value, for each feature, computed from the seven human labels
was deemed the ground truth value for the feature. We compare both the machine
and individual human labelers error from the ground truth label. Tables 2 and 3
display these results. Human labelers outperformed the automated system by a
factor of about 1.6 for the eyes, a factor of 2 for the nose, and a factor of 3 for the
mouth. While this indicates that there is room for improvement, the performance
of the eye detectors is already remarkably close to that of humans.

6. Conclusions

Robust and accurate localization of facial features is critical for an emerging gen-
eration of practical applications of machine perception technology applied to the
human face. A key challenge in feature detection systems is the need to address an
inherent trade-off between robustness and precision. Detectors that are robust to
variations in illumination and imaging conditions tend to provide poor localization.
Detectors trained to localize features precisely tend to produce a large number of
false alarms.

Here, we address this tradeoff by refining the context dependent inference archi-
tecture previously proposed in Ref. 9. First, robust detectors are used to detect the
general context in which features appear, and then precise detectors are used that
operate within that context.

The approach explored in this document outperformed previous methods® 68 15
in terms of detection and localization accuracy. Our experience with a new database
of images from the Web leads us to believe that the current benchmark databases
used in the literature are too easy and no longer useful for assessing performance
in the challenging situations needed for many practical real-world applications. To
help drive the field and facilitate comparison with our work, we have released a
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dataset (GENKI-4K) of 4000 images from the Web with corresponding ground
truth feature labels.

We presented empirical studies of the different factors affecting performance
within this architecture. These experiments showed: (1) Significant performance
levels can be achieved with 1000-5000 training examples. (2) The negative exam-
ples within the ROI should be highly dissimilar from the positive examples. (3)
The optimal receptive fields are relatively large, from 7.7 to 9.8 SIDs. (4) Evaluat-
ing detectors on test images at a higher sampling rate than the resolution of the
detector reduces error. (5) A high degree of accuracy can be achieved with only 50
to 100 box filters. (6) Careful integration of the outputs of detectors over the ROI
provides significant performance gains. (7) Eye detectors are relatively robust to
pose variation, maintaining good performance levels with deviations from frontal
pose of up to 60°. (8) The performance levels of the eye detectors approximate
human levels of accuracy, and are ready for practical applications.
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