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Multilayer Architectures for Facial
Action Unit Recognition
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Abstract—In expression recognition and many other computer
vision applications, the recognition performance is greatly im-
proved by adding a layer of nonlinear texture filters between the
raw input pixels and the classifier. The function of this layer is typi-
cally known as feature extraction. Popular filter types for this layer
are Gabor energy filters (GEFs) and local binary patterns (LBPs).
Recent work [1] suggests that adding a second layer of nonlinear
filters on top of the first layer may be beneficial. However, it is
unclear what is the best architecture of layers and selection of
filters. In this paper, we present a thorough empirical analysis
of the performance of single-layer and dual-layer texture-based
approaches for action unit recognition. For the single hidden layer
case, GEFs perform consistently better than LBPs, which may
be due to their robustness to jitter and illumination noise as
well as to their ability to encode texture at multiple resolutions.
For dual-layer case, we confirm that, while small, the benefit of
adding this second layer is reliable and consistent across data sets.
Interestingly for this second layer, LBPs appear to perform better
than GEFs.

Index Terms—Action unit recognition, facial expression recog-
nition, Gabor energy filters (GEFs), local binary patterns (LBPs).

I. INTRODUCTION

XPRESSION recognition systems are organized as a se-

rial pipeline. The first layer in this pipeline detects and
normalizes (registers) face images. The input to this layer is
an image and the output is a collection of patches with the
detected faces normalized to a common size. The second layer
applies a bank of nonlinear filters to the image patches found
by the previous layer. The goal of the second layer is to make
the mapping from images to expression categories easier to
separate by a classifier and to filter out irrelevant information,
e.g., jitter or illumination noise. The final layer consists of a
statistical classifier that converts the output of the filter bank
into numbers representing the presence or absence of target
facial expressions, e.g., multinomial logistic regression or a
support vector machine (SVM).
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Systems differ in the type of filters used in the intermediate
layer. Geometric approaches utilize image pixel values exclu-
sively as a means to extract the relative location and shape of
a set of facial landmarks (e.g., corners of the mouth, brows)
[2]-[6]. Texture-based approaches [7]-[9] use filters that de-
scribe the local texture information in the face image patches,
without explicitly representing landmark locations.

Historically, the computer vision community focused first on
geometric approaches perhaps because they closely matched
our intuitions of how humans perceive faces, and because it was
thought they would be less sensitive to changes in illumination
and pose than texture-based approaches. Evidence has accumu-
lated over the past 10 to 20 years that texture-based approaches
perform consistently better than geometric approaches [10]—
[12]. The reason is that in many cases, encoding the location
and shape of facial landmarks turns out to be more difficult
than directly encoding the target facial expressions. Moreover,
some expressions (e.g., AU6 and AU7 in the Facial Action
Coding System (FACS)) are very similar in shape but different
in appearance, e.g., furrow lateral to the eyes in AU6 but not in
AUT7 [12]. In practice, current expression recognition systems
are predominantly texture based or use geometry information
to marginally boost the performance of a texture-based system.
Pure shape-based approaches have for the most part been
abandoned.

The simplest texture-based approaches send the pixel values
from the face images directly to the statistical classifiers. It is
clear by now that such systems are consistently outperformed
by architectures that have an intermediate layer of texture filters
between the pixel values and the statistical classifier [13], [14].
Two of the most popular texture filters in facial expression
recognition are Gabor energy filters (GEFs) [15], and local
binary patterns (LBPs) [9]. GEFs became of interest to the
computer vision community in part due to the fact that they
are mathematical models of the complex cells in primary visual
cortex in the brain [15]. Some of the most successful expression
recognition systems to date use banks of GEFs as their primary
representation [7], [16]-[18]. LBPs originated in the computer
vision literature on texture analysis [9] and since then have
become popular in the facial expression recognition literature
[14]. Interestingly, the basic kernels used in LBP filters are
reminiscent of high spatial frequency, high bandwidth Gabor
filters (see Section II-D).

A. Shallow versus Deep Architectures

In the language of neural networks, current expression recog-
nition architectures are predominantly ‘“‘shallow” or have a
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“single hidden layer”: The input layer is the set of raw pixel
intensities, the hidden layer is a bank of nonlinear texture
filters, and the output layer is a single-layer classifier. Shallow
architectures are currently dominant in the machine learning
community due in part to the great popularity and success of
two shallow machine learning algorithms: SVMs and boosting
[19]-[21]. However, recent years have seen a renewed interest
in architectures that use more than one hidden layer (i.e., deep
networks). This interest was rekindled partially by the devel-
opment of efficient learning algorithms for training multilayer
(deep) networks [22]. In computer vision deep architectures
proved successful in problems such as digit recognition [23]
and are now seeing a comeback [24], [25]. Interestingly, the
winning architecture for the 2011 Facial Expression Recogni-
tion and Analysis (FERA) challenge [26] utilized a two-hidden
layer architecture, named Local Gabor Binary Pattern (LGBP).
This architecture applies LBP texture filters to the output of a
layer of GEFs.

In this paper, we present a thorough empirical analysis of
the performance of single-layer and dual-layer texture-based
approaches on a difficult facial expression recognition task:
FACS Coding [27]. In particular, we analyze how these differ-
ent approaches generalize within and between data sets and how
they resist perturbations due to local changes in illumination
and registration jitter. The paper is organized as follows: First,
we describe the system we submitted to the FERA competition,
which utilized a single hidden layer architecture and placed sec-
ond. In the second part of the paper, we describe a postcompe-
tition analysis of texture-based architectures. In particular, we
focus on the comparison between LBP and Gabor filters and the
comparison between single and dual hidden layer architectures.

II. COMPETITION SYSTEM

The goal of the FERA competition was to automatically
FACS code a collection of videos of actors making facial
expressions. The FACS is a taxonomy of facial expressions
based on a combination of 57 elementary components. These
elementary expressions, known as action units (AUs) and action
descriptors (ADs), can be seen as the “phonemes” of facial
expressions: words are temporal combinations of phonemes.
Facial expressions are spatial combinations of AUs. We entered
the FERA competition with a previously developed FACS
recognition system, named the computer expression recogni-
tion toolbox (CERT) [7], [17], [18]. Our focus was on analyzing
how to best adapt an existing system, such as CERT, to gen-
eralize on a new data set. Fig. 1 describes the pipeline of the
CERT system. In this section, we examine the various building
blocks: their properties, common failure modes, and our efforts
to optimize them.

A. Data Sets

FERA—The focus of the FERA 2011 (AU) competition
was the GEMEP-FERA [28] data set. This data set consists of
recordings of ten actors displaying a range of expressions, while
uttering a meaningless phrase, or the word “Aaah.” There are
seven subjects in the training data, and six subjects in the test
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set, three of which are not present in the training set. The train-
ing videos came with frame-by-frame binary labels (present or
not) of 36 AUs and AD50" (talking). Intensity ratings, location
of apex, and reliability information were not available. Among
the labeled AUs, only the prediction of 12AUs are evaluated on
the test set (Table II).

The authors of this paper never had access to the labels of
the test set. We had access to the test images themselves, but
we chose not to label them in any way to estimate performance
or to train our classifiers.

FFDO07—This is the original training set used to develop
CERT. It is a combination of the following databases: Ekman-
Hager [13], Cohn-Kanade [29], MMI [30], M3 [31], and two
nonpublic data sets collected by the United States government
which are similar in nature to M3.

B. Training Frame Selection

A priori it is not clear whether using every image in the data
for training will result in optimal classifier performance. For
example, a large sequence of nearly identical frames may result
in the classifier giving excessive weight to a particular instance
of a facial expression. It is also possible that training on the
onset/offset points, when the intensity of the expression is very
low, may be counterproductive.

A common strategy to deal with this issue is to select only
the apex frame from each labeled AU event, i.e., the frame in
which the expression intensity is maximal [32]. Practically, as
the competition data set came with only frame-by-frame binary
labels instead of onset-apex-offset event information, an AU
event was first localized by finding consecutive positive-labeled
frames in a video, then the center frame of the sequence was
selected as an approximation to the apex frame. However, this
per-AU strategy ignores the fact that other co-occurring AUs
may change the appearance of the target AU. For example, the
brow appearances of AU1+AU4 (inner brow raiser + outer brow
raise) differs greatly from the brow appearance of AU1 by itself.
Therefore, instead of looking at each AU independently, we
searched for unique AU-combinations in the video. When there
were multiple disjoint sequences of an AU combination, only
the center frame of the first event was selected.

We tried three different frame selection schemes: no frame
selection, i.e., use all frames (NoFS); unique combinations
among the 12 training AUs + AD50 (FS12) (as was done in
the baseline paper [26]), and unique combinations among all
36 labeled AUs and AD50 (FS36).

Fig. 2 shows the cross-validation performance using the three
different frame selection schemes. No significant performance
difference were found between the three approaches. However,
frame selection reduced the size of the FERA data set from
5264 (NoFS) images into 627 (FS12) and 934 (FS36). Having
less training frames significantly sped up the training process
giving up opportunities to test differences ideas. After all, we
chose the FS36 approach in the rest of the paper for its slightly
better performance (though not significant) and much shorter
training time comparing to NoFS.

TADS50.
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Fig. 1. Basic processing pipeline for approaches in this paper. Both the baseline method and CERT are special cases of the pipeline.
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Fig. 2. Leave-one-subject-out cross-validation performance on the GEMEP-
FERA training set using different frame selection methods. The F1 score is
averaged across cross-validation folds and AUs.

C. Face Detection and Registration

We used the CERT face detector and feature detectors [33]
for face registration. Both detectors are of the Viola and Jones
type [34] except that the face detectors discriminates face
or non-face patches in an image while the feature detectors
discriminate a face feature from the rest of the regions in a
face. The CERT face detector detected all the faces in the
competition training set with no false alarms except for the
blank frames.

In the registration process, first the face detector finds a face
in the image. Second, the feature detectors localize face features
in the face, including eye corners, nose, and mouth corners.
Third, the face is normalized using a planar least-square fitting
procedure on the detected features (i.e., Procrustes analysis
[35]). Finally, the aligned face is scaled into a 96 x 96 pixel
matrix in which the intra-ocular distance is 48 pixels. The lo-
cation of the detected facial features is discarded, and the 96 x
96 pixel image matrix is sent to the next layer of processing.

D. Texture Filters

The version of CERT we used for the competition employed
a hidden layer representation with 40 GEFs (Fig. 3 plots the
filter spectra), (five frequencies, eight orientations). This is
slightly different from the standard version of CERT, which
uses 72 filters [7], [17], [18]. In recent work, we found this new
40 filter version to work as well as the 72 filter version.

The baseline algorithm provided by the FERA organizers
used an LBP image representation consisting of histograms
of the 59 neighborhood-8 radius-1 uniform LBP values in
nonoverlapping 20 x 20 pixel blocks of the 200 x 200 cropped

cycle/degree

Fig. 3. Spectrum of the Gabor filter bank. The “+” centroids are the peak
frequencies, and the ellipsoids are the half-magnitude contour of each filter.
Pairs of a opposing centroids form one GEF, so 80 centroids yield 40 GEFs.
We follow the convention that a face patch spans 4° of horizontal and vertical
visual angle.

face, so that there were 10 x 10 blocks. In our implementation,
the LBP operated on smaller 96 x 96 cropped faces.

There are interesting similarities between Gabor filters and
uniform LBP filters [36]. Both approaches are spatially local-
oriented edge detectors with some robustness to translation and
changes in illumination. Fig. 4 shows visualizations of both
features, which highlights their similarity. LBPs achieve robust-
ness to translation when their histograms are pooled over local
blocks. GEFs achieve it by the fact that they are invariant to
local phase. LBPs detect different types of local neighborhood
(center surround, edge, or corner) by having different binary
codes. GEFs characterize local neighborhoods by combining
filters of multiple frequency and orientations. Both methods
can identify edges of different spatial extent by adjusting their
radius/scale. However, LBPs are typically implemented with
single fixed radius. From a signal processing point of view,
many of the LBP kernels can be seen as high frequency, high
bandwidth bandpass filters.

Empirically, we found GEFs performed better than LBPs
(see Section IV-A). Therefore, we used Gabor features in our
competition submission.

E. Data-Weighted Support Vector Machines

SVMs [37] were used to map the output of the texture filters,
either GEFs or LBPs, into AU categories. One of the main
challenges we encountered was how to best combine FFDO07,
the prior data that had been used for training CERT, with the
new FERA training set. The most straightforward way to adapt
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Fig. 4. Examples of Gabor and LBP filters and the filtered images. LBP
encodes each pixel in the input by its neighborhood. Among the 59 possible
uniform LBPgQ1 codes, the figure shows a subset of codes that detect horizontal

(top row) or vertical (bottom row) edges passing through the center pixel. In
the LBP-filtered image, the white pixels represent the pixels encoded by the
corresponding horizontal or vertical edge detecting LBP subsets.

CERT to the FERA data set is to combine FERA and FFDO7
and retrain on the combined data set. However, this method
has some potential disadvantages: The FFDO7 data set may
introduce information that is counterproductive for the FERA
challenge. For example, FFDO7 has a significant proportion of
individuals of Asian and African descent, while the subjects
in GEMEP-FERA are strictly European. This makes CERT
more applicable to a diverse population but may deteriorate
performance on the FERA data set, which is a nonrepresentative
subset. Moreover, the FERA database is quite small (FS36:
934 images) after frame selection. Thus, the learning algorithm
(SVM) could be easily overwhelmed by the instances from
FFDO7 (8000+ instances).

To address this problem, we developed a custom version of
SVM with data weights that can be individually adjusted for
each training example. Given training data {x;}, and labels
{y:}, the primal formulation of the data-weighted SVM is

data—wt.

s —~~
min 5w W+CZ ci & (L)

st yi(wlx;—b)>1-¢
& > 0. (2)
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As in the traditional SVM formulation, (w,b) defines the
hyperplane to be learned, &; are the slack variables, and C' is
the master data fitness parameter; the added c; are the data
weights, controlling the fitness to each data instance. The data-
weighted SVM reduces to standard SVM when ¢; = 1 for all
data instances. Both linear kernel and nonlinear radial basis
function (RBF) kernel (K (x;,x;) = e“*“xi‘xj“z) were used.
For the linear kernel, the hyper-parameter is the regularization
parameter (C). and for the nonlinear kernel, there is an addi-
tional parameter, inverse kernel width (7).

For each AU, a binary SVM was trained with all the selected
frames using the optimal hyperparameter selected for the AU.
The two hyperparameters were selected from a candidate grid
of values using cross-validation accuracy [38]. However, our
targeted performance measure is F1 which has very different
properties from other performance measures such as 2AFC (see
Section II-F). We decided to try and optimize three different
performance measures: percent correct (PC), two-alternative
forced choice (2AFC), and F1 score.

F. Performance Measures

Most statistical classifiers produce real-valued scores that can
be interpreted as evidence for the observed data belonging to
one of two categories of interest, here referred to as the positive
and negative categories. The sensitivity of the classifier depends
exclusively on the statistical properties of the real valued score,
not the threshold. However, many applications require making
binary decisions. For example, the smile shutter feature in
some digital cameras needs to decide whether to take a picture
based on the evidence that a person is smiling. These decisions
are typically made based on whether the real-valued scores
provided by the classifiers pass a given threshold. In such cases
the performance is a function of the sensitivity provided by the
real valued scores, and of the threshold chosen for converting
those scores into binary outputs. A system with good sensitivity
may appear to perform poorly for a specific problem if the
threshold is not chosen judiciously.

The area under the receiver operating curve (ROC) is a
popular measure of performance used in the pattern recogni-
tion community [39]. An advantage of the ROC score is the
invariance to the prior probabilities of the two categories, thus
facilitating comparisons across data sets and categories with
different priors. In addition, the ROC score is also invariant
to monotonic transformations of the continuous-valued score
provided by the classifiers. One problem with the ROC is that
there is not a standard way to compute it. The actual value
depends on the numerical integration scheme used to estimate
the area under the ROC from a finite number of points. It is
our experience that different methods can result in ROC scores
that differ from each other by up to five percentage points. In
psychophysics, a popular task for measuring the sensitivity of
an observer independently of its bias is the 2AFC. In this task
observers are presented with two randomly chosen examples
of the two categories of interest. One of the examples is from
the positive category and the other from the negative category.
The goal of the observer is to choose the positive example.
A well-known result from the theory of signal detectability
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TABLE 1
REPORTED PERFORMANCE ON THE FERA BLIND TEST SET. SEE
SECTION III TEXT FOR DETAIL

Method F1 Score 2AFC

ind | dep | all || ind | dep | all
Official random 531 | 471 | .512 || .500 | .500 | .500
Official LBP baseline 453 | 423 | 451 || .631 | .611 | .628
CERT unmodified 569 | .514 | .550 || .746 | .692 | .723
CERT retrained on FERA || .604 | .539 | .583 || .759 | .753 | .758
Winner [36] .631 | .610 | .628 || .763 | .751 | .752

ind: test on new subjects not in the training set
dep: test on new videos of subjects seen in the training set
all: test on mixture of both “indep” and “dep” cases

shows that the expected PC in the 2AFC task equals the area
under the ROC [39], [40]. For example, if an observer has an
area under the ROC of 0.9 it has a 90% chance of correctly
choosing the correct alternative in the 2AFC task. Hereafter,
we will use the term “2AFC score” rather than “area under the
ROC.” The reasons are: 1) the 2AFC is very easy to compute
(see Appendix); 2) it does not depend on numerical integration
methods; 3) it has an intuitive interpretation as the probability of
correctly categorizing a randomly chosen positive and negative
example; 4) it can be interpreted as one of the many algorithms
to estimate the area under the ROC.

The official evaluation metric for the FERA competition was
the F1 score, a popular measure of performance in the document
retrieval community. F1 is a function of the sensitivity of the
system, the prior probabilities of the two categories, and the
threshold used to make such decisions. A common misconcep-
tion about F1 is that it favors low false alarm rates. This is
not necessarily the case. If the system has low sensitivity (e.g.,
the random baseline in Table I), the F1 score is maximized by
having a large false alarm rate, which may be undesirable in
some applications. Finally, another popular measure of perfor-
mance is the PC, e.g., the proportion of expressions correctly
classified. This is also a function of the sensitivity of the system,
the prior probabilities of the different categories, and the chosen
threshold.

G. Hyperparameter Fitting Criteria

The target of the competition was to optimize the F1 score
averaged across all the target AU categories in a generalization
set. One question of interest to us was whether optimizing
hyperparameters (e.g., kernel width, regularization constant)
with respect to another performance measure (e.g., 2AFC, PC)
yields a higher F1 score on generalization sets.

To this end, we compared the F1 generalization performance
when the RBF-kernel SVM hyperparameters were optimized
with respect to F1, 2AFC, and PC using double cross validation.
Surprisingly, we found that optimizing hyperparameters with
respect to 2AFC or PC resulted in better F1 score than opti-
mizing with respect to F1 [see Fig. 5(b)]. Further investigation
revealed why the F1 score was not a good parameter selection
criterion. As Fig. 5(c) shows, the performance landscape for
F1 is multimodal (two separate white regions) thus making hy-
perparameter selection difficult and suggesting greater expected
variability in generalization tests. In addition to the typical
“good parameter region” for SVMs [41] [see Fig. 5(d)—(f)], the

1031

(@) 0.74 (b) 0.50
0.721 0.40
Q 0.70 -
< 068 T 0.30 -
2 0.66 B
o i 2 0.20 |
F 0.64
0.62 - 0.10 -
0.60 - 0.00 -
F1  PC 2AFC F1  PC 2AFC
Fitting Criteria Fitting Criteria
(c) (d) PC
—_ = 0
© ©
£ =
IS § B
=] e
g g 10
-15
-5 0 5 10 15
9 log (C)
(e) 2AFC ()  asymptotic good region
0  overfitting
© © :
£ IS =2 2
§ § SE good
2 2 < region
g -l ©
=)
-15

-5 0 5 10 15 -5 0 5 10 15
og |

og (C)

Fig. 5. (a) F1 and (b) 2AFC double cross-validation scores from SVMs with
parameters optimized for different performance measure (c)—(e) An example
of parameter selection with different performance measure. (f) asymptotic
properties on nonlinear SVM model selection grid from [41]. The figures show
the cross-validation performance surface for each grid search point of SVM
parameters C' and -y, the brighter pixels correspond to higher scores. The black
“x” denotes the final chosen parameter. Unlike PC and 2AFC, the surface of F1
scores is not unimodal, which makes parameter selection hard.

F1 score has additional peaks for small C' parameters (large
regularization). This leads to underfitting of the SVM weights
and results in classification models that predict everything as
positive. This may be due to the fact that for low sensitivity
systems, F1 is optimized by using a threshold that encourages
false alarms. The other two performance measures, 2AFC and
PC, do not seem to suffer from this issue. Therefore, we used
2AFC to optimize hyperparameters in the rest of the paper. A
previous study proposed that the F1 score could be preferable
because algorithms were found that performed equally well
with respect to the 2AFC but differed with respect to the F1
score [42]. Our results suggest that the F1 score may just
be a noisier estimator of performance than 2AFC, potentially
producing spurious differences between algorithms that are
unrelated to their actual sensitivity.

III. COMPETITION RESULTS

Table I presents the official performance results of different
algorithms, including, random, baseline, two of our methods,
and the winning method. The random result is from a zero-
sensitivity classifier which says “yes” for all frames. The
official baseline results were provided by the FERA chal-
lenge organizers. We obtained second overall performance with
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TABLE 1I
CROSS DATABASE COMPARISON OF 2AFC “OVERALL” SCORES
AU | CERT on || CERT on | CERT Baseline
M3 CV FERA retrained on FERA
on FERA
1 .823 .747 .805 .790
2 .812 .745 .866 .768
4 .756 719 776 .526
6 955 .835 .862 .657
7 773 701 707 .555
10 731 681 718 597
12 901 815 .869 724
15 831 643 585 563
17 .840 639 761 .646
18 .780 649 779 610
25 768 .760 720 .593
26 801 691 .650 500
[ Avg | 814 | 719 | 758 | .628 |

respect to the F1 score, the target of the competition. However,
we obtained the best overall performance with respect to the
2AFC score, which was not the target of the competition. Since
the F1 score is sensitive to threshold while 2AFC is not, this
suggests that the winning team chose thresholds better than
we did.

A. Unmodified CERT Outputs

First, we applied CERT (previously trained on M3 before
competition) directly on the FERA data set without any training
or adjustment. In our original conference submission, the CERT
generalization performance in all categories outperformed all
of our approaches trained only on the FERA database, without
having seen a single FERA image [44]. Table II displays the
per-AU 2AFC scores, which includes previously published
results on the M3 data set and the scores obtained on the
entire FERA data set. The M3 results were obtained using
single cross-validation methods (labeled M3CV), and thus they
represent generalization within a data set, while the FERA
results represent expected generalization to a new data set.
When applied to the FERA data set, CERT took an average
performance hit of only 9.1 percentage points. This is quite
remarkable considering the different nature of the FERA data
set when compared to the M3 data set. Fig. 6 shows a scatter
plot of the AU by AU performance of CERT on the M3
versus the FERA data sets. The performance on the two data
sets is highly correlated, which suggest the relative difficulties
between AUs on the two database were comparable. However,
there were some outliers: AU15, AU17, and arguably AUIS.
Performance on these AUs was worse than expected. One
possible explanation is that for these AUs, the criteria utilized
by the human coders of FERA may have been particularly
different from the criteria used by the human coders of M3.

B. Retraining CERT on FERA

Table III describes the SVM data-weighting schemes for
retraining CERT using FERA data: 1) Retrain on FERA only.
2) Retrain giving equal weight to FERA and FFDO7. 3) Retrain
giving 10 times more weight to FERA than FFDO7.
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Fig. 6. CERT performance on the M3 versus the FERA data set for different
AUs. The trend is linear except for AU 15, 17, and possibly 18.

TABLE III
THE WEIGHTING SCHEME USED IN THE COMPETITION

weighting scheme | ¢; for FERA | ¢; for FFD07

FFDO07 0 1
FERA+FFDO07* 1 1
10*FERA+FFD07 10 1
FERA 1 0
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Fig. 7. Cross-validation performance of SVMs trained with different data
weight settings.

Double cross validation [See Fig. 7(a) and (b)] indicated that
best performance was obtained by retraining CERT on FERA
and FFDO7 with equal weights and thus our final competition
system was based on that approach. Both the overall (Table I)
and per-AU performance for our best competition system are
shown in Tables II and IV). For subject-independent tasks, the
performance gains of adding FERA were found in AUs that
were particularly abundant, such as AU1, AU2, and AU4. For
the subject-dependent case, the gain was particularly noticeable
on the poor performing AUs. However, the overall performance
improvements were marginally better. Similar performance re-
sults could have probably been obtained by retraining CERT on
FERA alone.
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TABLE IV
OFFICIAL TEST F1 SCORE OF CERT+FERA METHOD
CERT CERT+FERA

AU || indep | dep | all indep | dep | all
1 496 | 521 | 503 765 | 399 | .634
2 689 | 394 | 504 736 | 485 | .636
4 596 | 593 | 595 608 | .590 | .602
6 804 | 704 | 777 788 | .683 | .759
7 579 | 632 | .601 563 | 660 | .604
10 502 | 574 | 528 545 | 598 | .565
12 832 | 691 | .781 .857 | .789 | .832
15 188 | 129 | .16l 160 | 246 | 193
17 542 | 256 | 456 570 | 328 | 499
18 203 | 229 | 214 353 | 334 | 345
25 836 | .856 | .844 809 | .821 | 815
26 565 | 587 | .575 499 | 533 | 515
Avg 569 | 514 | .550 .604 | .539 | .583

Multi-Layer Feature

Output Layer

Support Vector Machine

Hidden Layer 2

Hidden Layer 1

Pixel LBP Gabor Gabor? LGBP

Fig. 8. List of features from single layer to three layers.

IV. POSTCOMPETITION ANALYSIS

There were some interesting differences between our sys-
tem and the winning system. We used exclusively texture-
based filters and the winning system used a combination of
texture-based and geometric approaches. We were particularly
intrigued however by the fact that the winning system used
an architecture, named LGBP, consisting of two hidden layers
rather than the single hidden layer architecture of our system.
Post competition, we focused on comparing the performance
of single-layer versus two-layer architectures. Here, we present
the results of this analysis.

Fig. 8 displays the different architectures we investigated:
The output layer of all the systems was a SVM. The sim-
plest architecture used no hidden layers, i.e., the classifier
was applied directly to the image pixels. The single hidden
layer architectures used either LBPs or GEFs. The dual-layer
architectures used either LBP on top of GEF:s (this is commonly
known as LGBP) or GEFs on top of a first layer of GEFs. We
refer to this architecture as Gabor?(G?).

As these analyses were done post competition, the perfor-
mance evaluation was based on leave-one-subject out double
cross-validation methods on the FERA training set rather than
the testing set. Therefore, the numbers are not directly compa-
rable to those in the previous section. The performance metric
was 2AFC averaged over all classified AUs. To speed up the
training process, only those frames selected by FS36 were used
for training.
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Fig. 9. Optimizing Gabor filter bank configuration: G40 (5 freq. x 8 orienta-
tions) or G18 (3 freq. x 6 orientations). (a) FERA dataset.

In addition to FERA data set, we also evaluated the different
architectures on the FFD(07 database using three-fold subject
independent cross validation.

A. Optimizing Gabor, LBP, and LGBP Features

To perform a fair comparison of the different architectures
we first optimized their parameters. For GEFs, we evaluated
the following settings:?

G40—5 frequency (0.5, 1, 2, 4, 8 cycles/degree) and 8 orienta-
tions (k7 /8, k =0,1,...,7). Fig. 3 plots the spectrum of
these filters.

G18—3 frequency (2, 4, 8 cycles/degree) and 6 orientations
(0,7/6,...,(5/6)T).

Fig. 9 shows the performance of these two settings in both
data sets. Consistent with our prior experience, the results
suggested that G40 was better than G18.

Regarding LBP/LGBP, an important parameter is the size and
number of image regions over which histograms are computed.
The prior literature seems to be somewhat divided on this
issue. In [43], the authors partitioned the face into 16 regions
organized as a 4 x 4 grid. In [1] the authors used a 7 x 6
grid and [45] used an 8 x 8 grid. In our analysis, we tried
4 x 4,6 x 6,8 x 8and 10 x 10 grids. Fig. 10 shows the
performance of LBP and LGBP on the two different data sets
as a function of the grid size. In general, it appears that LBP
benefited from using finer grid sizes. LGBP seemed to perform
approximately the same regardless of the grid size. For further
experiments, we used the 10 x 10 option. Next, we optimized
the radius for LBP. The result is shown in Fig. 11. We found
that for both LBP and LGBP, the performance deteriorated as
radius increased though the gap between the smaller three radii
were minimal. For further experiments, we used radius 1 pixel.

LGBP uses a first hidden layer of Gabor filters. We found
that overall LGBP performed slightly better with the G40 filter
bank than with the G18 filter bank. Therefore, for the rest of the
experiments, LGBP was used with G40 filters in the first layer
and 10 x 10 blocks in the second layer.

2We are using the standard that a face patch spans 4 x 4° of visual angle.
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Fig. 10. Optimizing grid configuration and Gabor filters (G40 or G18) in
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Fig. 11. Performance of LBP and LBGP for varying radii (pixels).

B. G? Architecture

Viola [46] pioneered the use of two layers of GEFs for rep-
resenting image textures. The idea was that such representation
could encode image textures that go beyond edges and bars.
For example, it could encode the fact that a horizontal structure
is made of tiny vertical bars. Fig. 12 shows an example of
such structure. The contrast between the sclera and the iris
creates vertical bars that excite vertically oriented Gabor filters.
The edges between the teeth also excite the vertically oriented
Gabors. A horizontally tuned Gabor applied on top of the
vertically tuned Gabor then captures the fact that the teeth align
horizontally. A similar phenomenon occurs with the eyes. The
final result is a representation in which the teeth and eyes clearly
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raw image horizontal Gabor filtered

vertical Gabor filtered - vertical then horizontal Gabor

Fig. 12. Examples of Gabor energy and G2 filtered face.

stand out. Note as GEFs are nonlinear, the two layers of filters
cannot be combined by using a single convolution operation.

The G? architecture we tested used the G18 filter bank on
top of the G40 filter bank. No further attempts were made to
optimize this architecture.

C. Results

Fig. 13 shows the average performance of the different
architectures on the FERA and FFDO7 data sets. Results are
presented in terms of 2AFC score using a cross-validation
procedure within each data set. In all cases, the classifier was
an SVM. We selected the best known kernel for each of the
features. For LBP and LGBP, the histogram intersection kernel
was used as in [43]. For Gabor and G2, since linear and RBF
kernel performed comparable in our experience and literature
[8], so we chose the linear kernel for simplicity. For raw pixel,
we used linear kernel for comparison.

Fig. 13 shows that the architectures with two hidden layers
(LGBP and G?) performed best, followed by one hidden layer
architectures (Gabor and LBP), and lastly the architecture with
no hidden layer. This trend is consistent in both data sets.

D. Resistance to Illumination Noise and Jitter

The original LGBP paper [47] suggested that LGBP per-
forms better than Gabor and LBP due to the fact that it is
less sensitive to local changes in illumination. GEFs are also
supposed to be advantageous because of their relative insen-
sitivity to local illumination and spatial jitter. To evaluate this
hypothesis, we tested how the different architectures degrade
as a function of jitter noise and illumination noise. The noise
was added into both training and testing sets. Our expectation
was that the architectures with two hidden layers would be the
most resistant to noise, followed by one hidden layer and no
hidden layer architectures.
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Fig. 13.  Cross-validation performance of features on FFD07 and FERA data
sets. (a) FFDO7 data set; (b) FERA data set.

Fig. 14.  Examples of simulated facebox jitter.

To simulate jitter, we added noise to the registered face
box location. The noise was sampled randomly from a 2-D
uniform distribution with support [—9, 9] x [—9, 9] pixels in the
horizontal and vertical directions (see Fig. 14).

We also tested resistance to local illumination noise by
adding Gaussian “spotlights” at random positions on the face
(see Fig. 15). The spotlights were generated from the weighted
average between the original image and a plain-white image
using a 2-D isotropic Gaussian envelope with random centers
and standard deviation diag([10, 10]). In addition to simulated
illumination variation, one could also use data sets with real
varied illumination, such as the MultiPIE data set [48]). We
leave this as future work.

Fig. 16 presents the cross-validation results on FFD07 data-
base. As expected, the simplest architecture with no hidden
layers was more vulnerable to jitter and illumination noise
than those with hidden layers. Among the single hidden layer
architectures, Gabor decayed slower than LBP in both types of
noise. This suggested that Gabor features are a good choice for
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Fig. 16. Performance of features with (a) varying spreads of face registration
jitter, and (b) varying intensities of illumination change.

first hidden layer. Best overall performance was obtained by
the two hidden layer architectures (LGBP and G?). The extra
layer did improve the performance substantially. The second
layer seemed to marginally improve the resistance of LBP to
jitter and illumination noise. This can be seen by the fact that
the LBP and LGBP curves tend to diverge as noise increases.
However, the second layer did not seem to improve resistance
to noise over the single-layer Gabor architecture. This can be
seen by the fact that the curves of single-layer Gabor and of G*
are parallel.

E. Multiresolution LBP

We wondered why Gabor filters performed consistently bet-
ter in single-layer architectures than LBPs, particularly con-
sidering that Gabor and LBP are both basically oriented edge
detectors. One difference is that Gabor filter banks typically uti-
lize a range of peak spatial frequencies (Fig. 3), thus encoding
multiple scales and resolutions. LBP on the other hand are typ-
ically applied with a single radius. Similarly, the advantage of
LGBP over LBP could be partially attributed to the multiscale
power provided by the first Gabor layer.

To explore these issues, we tested multiresolution LBPs with
radii 1, 1 + 2, and 1 4 2 + 3 pixels. Our implementation of
multiresolution LBP simply concatenated all the LBP feature
vectors not unlike what we do with the Gabor architecture.
Fig. 17 shows the results of the study. As expected, the per-
formance of multiresolution LBP increased as the LBP fea-
ture pool increased. Surprisingly, the last set, 1 4+ 2 + 3, even
slighted surpassed the single-layer Gabor system, although the
score was still lower than the two-layer architectures, G* and
LBGP. However, as Fig. 17 shows, adding multiple resolutions
to the second layer of LBPs did not seem to help. This may due
to the fact that the Gabor layer in LGBP is already providing
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TABLE V
EVALUATION OF FEATURE ACROSS FERA AND FFDO7 DATABASES. THE
STANDARD ERROR SUGGESTS THE VARIABILITY OF THE RESULT ACROSS
DIFFERENT AUS (a) LGBP; (b) G2; (c) GABOR; (d) LBP; (e) PIXEL

Feature Configuration #Features
LGBP 59 bins * 100 blocks * 40 236000
Gabor 96*96 pixels * 40 368640

G? 96*96 pixels * 18 * 40 6635520

multiresolution capabilities and that therefore adding these to
the second layer is redundant.

FE. Generalization Across Data sets

Table V shows the performance of the four different architec-
tures when tested for generalization within and across data sets.
When trained on FFDO7 and tested on FERA, the performance
of LGBP, G? and single-layer Gabors was similar, but LBP
fell a bit behind. This suggests Gabor filters provide the best
representation for the first hidden layer.

When trained on FERA and tested on FFD07, LGBP was
the clear winner, followed by Gabor, and then G2. We suspect
the relatively poor performance of G when generalizing from
a small to a larger data set may be due to the fact that the
version of G? we investigated has a very large dimensionality
(6635520) in comparison to single-layer Gabors (368 640)
and LGBP (236 000). Table VI describes how the number of
features are calculated.

V. CONCLUSION

We compared single-layer and dual-layer architectures for
texture-based expression recognition systems. We showed that
dual-layer architectures provide small but consistent improve-
ments in performance over single-layer systems. We show
that for the first layer GEFs outperformed LBPs. Experiments
suggested that this may be due to the fact that Gabor filters are
more resistant than LBPs to noise caused by jitter or changes in
illumination. However, for the second layer, LBP filters appear
to perform marginally better than Gabor filters. We suspect that
this may be due to the fact that the Gabor filter approaches
we tried had many more parameters than the LBP approaches.
Careful selection of the Gabor features in the second layer
may make a difference. More work is needed to gain a better
understanding of why two-layer architectures perform better
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TABLE VI
COMPARING THE NUMBER OF FEATURE OF DIFFERENT FEATURE TYPES

(a)

test on
FERA FFDO7
o FERA | 723+.032 .698+.028
Tai on prpg7 | 7184.030  .854+.017
(b)
test on
FERA FFDO07
train on  FERA [ 717028 650+.027
a FFDO7 | .7214£.020 .8384.020
()
test on
FERA FFDO07
train o FERA [ 711029 668+.021
amoOn  pEpo7 | 723+.021  .8304.022
(d
test on
FERA FFDO07
train o FERA [ 16995029 .629+.041
FFDO7 | .685+.028  .8284.023
(e)
test on
FERA FFDO07
wain on FERA [ 646,024 633+.029
FFDO7 | .681+£.027  .7634.028

and why Gabor filters are preferable for the first layer while
LBP filters are preferable for the second layer.

APPENDIX

Pseudocode for computing 2AFC score.

% x is a vector of real valued numbers
% y is a vector of Os and 1s
function s = Calc2AFC(z, y)
20 =x(y ==0);
rl=z(y==1);
n0 = length(z0);
nl = length(z1)
5 =0;
for k = 1: n0
n=sum(z1 > 20(k))+0.5 * sum(zl == 20(k));
s=s+n/(nlxn0);
end

[l
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