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This letter presents an analysis of the contrastive divergence (CD) learn-
ing algorithm when applied to continuous-time linear stochastic neural
networks. For this case, powerful techniques exist that allow a detailed
analysis of the behavior of CD. The analysis shows that CD converges to
maximum likelihood solutions only when the network structure is such
that it can match the first moments of the desired distribution. Otherwise,
CD can converge to solutions arbitrarily different from the log-likelihood
solutions, or they can even diverge. This result suggests the need to im-
prove our theoretical understanding of the conditions under which CD
is expected to be well behaved and the conditions under which it may
fail. In, addition the results point to practical ideas on how to improve
the performance of CD.

1 Introduction

Contrastive divergence (CD) is a recent learning rule found to work
well in practice despite still unclear theoretical underpinnings (Hinton,
2002; Hinton & Salakhutdinov, 2006; Hyvärinen, 2006; MacKay, 2001;
Carreira-Perpinan & Hinton, 2005; Roth & Black, 2005; Williams & Agakov,
2002; Yuille, 2004). This letter presents an analysis of CD in gaussian
diffusions—a linear, continuous-time, continuous-state version of recurrent
neural networks. These networks are of interest for two reasons: (1) power-
ful analytical tools exist that allow comparing the behavior of CD to other
algorithms, like maximum likelihood estimation, and (2) many nonlinear
systems of interest for which CD has proven useful have multiple attractors
about which the systems behave locally like gaussian diffusions. Thus, the
analysis of the gaussian diffusion case may provide clues for a better un-
derstanding of CD in more general conditions. The analysis presented here
shows that convergence of CD is guaranteed if the first moment of the gaus-
sian diffusion is at equilibrium. In this case, CD and maximum likelihood
estimation converge to the same solution; otherwise, CD may converge
to arbitrarily different solutions from maximum likelihood estimation or
diverge altogether.
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In this letter, we pursue a continuous-time formulation of CD that makes
possible the use of stochastic calculus tools. The continuous-time case can be
seen as the limit of the dynamics induced by the uncorrected discrete time
Langevin Markov Chain Monte Carlo method (Neal, 1996). In addition, it
should be noted that CD is typically interpreted as a method for learning
equilibrium distributions while here we also examine it as a method for
learning finite time distributions.

Consider a stochastic process X = {Xt : t ∈ R+} defined by the following
stochastic differential equation,

d Xt = θ (γ − Xt)dt +
√

2τd Bt, (1.1)

X0 ∼N (µ0, σ0), (1.2)

where N (µ0, σ0) is a gaussian distribution with mean µ0 and covariance
matrix σ0. (See the appendix for notational conventions.) Here we interpret
the process as a neural network, where θ is a symmetric positive definite
matrix of synaptic connections, γ is a fixed vector of synaptic biases that
determine the mean of the equilibrium distribution, τ > 0 is a fixed param-
eter that controls the degree of noise in the network, and dBt is a Brownian
motion differential. The solution to this equation is well known (Movellan,
2006b; Oksendal, 1992):

Xt = e−t θ

(
X0 + (et θ − I )γ +

√
2τ

∫ t

0
esθ d Bs

)
. (1.3)

where I is the identity matrix. Thus, Xt is a gaussian random vector with
the following mean and covariance matrix (see Movellan, 2006b):

µt
def= E[Xt] = e−t θµ0 + (I − e−t θ )γ, (1.4)

σt
def= Cov[Xt] = τθ−1 + (σ0 − τθ−1)e−2tθ . (1.5)

At equilibrium, the mean and covariance take the following form,

µ∞
def= lim

t→∞ µt = γ, (1.6)

σ∞
def= lim

t→∞ σt = τθ−1, (1.7)

and therefore

µt =µ∞ + e−t θ (µ0 − µ∞) = µ0 + (I − e−t θ )(µ0 − µ∞), (1.8)

σt = σ∞ + e−2t θ (σ∞ − σ0) = σ0 + (I − e−2t θ )(σ∞ − σ0). (1.9)
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It is useful to express the distribution of Xt in the following Boltzmann
form,

p(xt) ∝ eφt(xt ), (1.10)

φt(x) def= x′σ−1
t µt − 1

2
x′σ−1

t x, (1.11)

where −φt is the potential at time t.

2 Maximum Likelihood and Contrastive Divergence

The process X induces a family of distributions parameterized by t, θ , and γ .
For now, we will treat the equilibrium mean γ as a fixed value and the
connectivity matrix θ as an adaptive parameter. We will define learning
as the process of finding values of θ under which the distribution of Xt

approximates the distribution of a target random variable ξ .
The method of maximum likelihood calls for values of θ that maxi-

mize the likelihood function. Local maxima can be found by progressively
changing θ in the direction of the log-likelihood gradient. For Boltzmann
distributions, the log-likelihood gradient takes the following form (see the
appendix, lemma 1),

∇θE[log pXt (ξ )] = E[�t(ξ )] − E[�t(Xt)], (2.1)

where �t(x) is the unnormalized Fisher score function:

�t(x) def= ∇θφt(x). (2.2)

CD was designed for situations in which the equilibrium potential −φ∞
def=

limt→∞ −φt is known but the finite time potentials are unknown. Rather
than waiting for equilibrium conditions, CD operates with a finite t > 0
and progressively changes θ in the direction of Hinton’s CD statistic:

Ht
def= E[�∞(ξ )] − E[�∞(Xt)]. (2.3)

In gaussian diffusions, there are analytical expressions for the potentials at
all times, thus allowing a direct comparison between maximum likelihood
and CD. It can be shown that the Fisher score function takes the following
form (see the appendix, theorem 1),

�t(x) = xµ′
tct + txσ−1

t e−tθ (γ − µ0)′ − 1
2

xx′ct, (2.4)
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where ct is a positive definite matrix:

ct
def= τσ−2

t

(
θ−2(I − e−2tθ ) − 2t

(
θ−1 − 1

τ
σ0

)
e−2tθ

)
. (2.5)

Thus, considering that limt→∞ ct = 1/τ , it follows that

�∞(x) = 1
τ

x
(

γ − 1
2

x
)′

. (2.6)

Combining equations 2.1 and 2.4 gives us the gradient of the log likeli-
hood function:

∇θE[log pXt (ξ )] = 1
2

(E[Xt X′
t] − E[ξξ ′])ct

+ (E[ξ ] − µt)µ′
tct

+ tσ−1
t e−tθ [E(ξ ) − µt](γ − µ0)′. (2.7)

The gradient for the equilibrium distribution can be obtained by taking the
limit as t → ∞:

∇θE[log pX∞ (ξ )] = 1
2τ

[E(X∞ X′
∞) − E(ξξ ′)]

+ 1
τ

[E(ξ ) − γ ]γ ′. (2.8)

Combining equations 2.3 and 2.6 gives us Hinton’s CD statistic:

Ht = 1
2τ

[E(Xt X′
t) − E(ξξ ′)] + 1

τ
[E(ξ ) − µt]γ ′. (2.9)

Note

∇θE[log pXt (ξ )] = τ Ht ct + Rt, (2.10)

where the residual term Rt is defined as follows:

Rt
def= tσ−1

t e−tθ [E(ξ ) − µt](γ − µ0)′ + (E[ξ ] − µt)(µt − γ )′ct. (2.11)

Note

lim
t→∞ Ht = ∇θE[log pXt (ξ )], (2.12)
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and thus, in the limit Hinton’s statistic becomes the gradient of the log
likelihood. Hinton (2002) derived the Ht statistic as an approximation to
the gradient of the difference between two Kullback-Leibler divergences:
D(ξ, X∞) − D(Xt, X∞). It can be shown (see the appendix, theorem 2) that1

∇θ (D(ξ, X∞)) −D(Xt, X∞)) = −(Ht + R̃t), (2.13)

where the residual R̃t is a covariance statistic:

R̃t
def= Cov[φt(Xt) − φ∞(Xt), �t(Xt)]. (2.14)

Hinton (2002) proposed that this residual may be ignored in practice,
resulting in the CD learning rule: �θ ∝ Ht .

We are now ready to examine four learning rules:
� MLt : Maximum likelihood estimation for the finite time process,

�θ ∝ ∇θE[log pXt (ξ )] = τ Ht ct + Rt. (2.15)
� ML∞: Maximum likelihood estimation for the process at stochastic

equilibrium,

�θ ∝ ∇θE[log pX∞ (ξ )] = H∞. (2.16)
� ECD: Exact contrastive divergence,

�θ ∝ ∇θ (D(ξ, X∞)) −D(Xt, X∞)) = Ht + R̃t. (2.17)
� CD: Contrastive divergence,

�θ ∝ Ht. (2.18)

First, note that as t → ∞ (i.e., if we let the network settle to equilibrium),
Rt and R̃t vanish, and the four rules converge to the same solution (see the
appendix, remark 1). A more interesting question is what happens when t
is finite and obviously not enough time has been given for the network to
achieve stochastic equilibrium. In this case, the learning rules may converge
to different solutions. In fact, when large values of µ0 − γ are chosen, the
residual term Rt in equation 2.11 can be made arbitrarily large to the point
that CD may not converge at all or may converge to solutions arbitrarily
different from MLt and ML∞. However, there are cases of interest in which
the learning rules converge to the same results:

� Case 1: µ∞ = µ0. It follows that µt = µ∞ = γ . Thus, the residual term
Rt in equation 2.11 vanishes, and the gradient of the log-likelihood
equals Hinton’s CD statistic Ht times the positive definite matrix ct .
Thus, in this case, C D and MLt converge to the same solution.

1This result holds for more general processes, not just gaussian diffusions.
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� Case 2: µt = E(ξ ). In this case the first moment of the desired distribu-
tion has already been learned. Note the residual term Rt in equation
2.11 also vanishes, and thus CD and MLt converge to the same esti-
mate.

� Case 3: This case combines case 1 and case 2: µ∞ = µ0 and µt = E(ξ ).
Under these conditions (see the appendix, remark 1),

Ht = H∞(I − e−2tθ ). (2.19)

Since I − e−2tθ is a positive definite matrix and H∞ is proportional to
the gradient of ML∞, it follows that C D, MLt , and ML∞ have positive
inner products with each other and converge to the same solution.

2.1 Summary of Results. The analysis reveals the importance of initial-
izing the network so that the first moment of the states is at equilibrium. If
the first moment is not at equilibrium, then C D may converge to solutions
arbitrarily different from ML solutions or diverge altogether. If at equi-
librium, then C D and MLt converge to the same solution. If, in addition,
µ0 = E[ξ ], then C D, MLt , and ML∞ converge to the same solution. There
currently is nothing in the theory of CD to explain why it converges when
the first moment is at equilibrium but may diverge otherwise.

3 Learning the Equilibrium Means

So far we have treated the equilibrium mean, γ , as a fixed vector. This
was purposely done to establish that there are conditions under which CD
may not converge. In this section, we study what happens if we treat the
connectivity matrix θ as a fixed parameter and the bias parameter γ as
adaptive. In this case, it can be shown that

Ht = 1
τ

θ (E[ξ ] − µt]) , (3.1)

∇γ E[log pXt (ξ )] = 1
τ

θ (I − e−2tθ )(E[ξ ] − µt) = (I − e−2tθ )Ht. (3.2)

Thus, since I − e−2tθ , is a positive definite matrix, when applied to the
bias parameter γ , both CD and MLt have positive inner products with each
other. In addition, they converge when the first moments of the desired and
obtained distributions are matched.

4 The Partially Observable Case

In many cases of interest, the state vector Xt can be divided into a vector of
observable units Yt and a vector of hidden units Zt : X′

t = (Y′
t , Z′

t). The goal
in this case is for the observable units to approximate the distribution of
the target vector ξ . The expectation maximization algorithm (EM) reduces
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the partially observable case to the fully observable case (Dempster, Laird,
& Rubin, 1977). EM operates in an iterative manner. At iteration k, we are
given a fixed parameter θ (k) and a target value ξ for the observable units.
The goal then becomes to learn the fully observable joint distribution of
Xt = (ξ, Z(k)

t ), where Zk
t is the distribution of samples of hidden states given

observable state ξ and parameter θ (k). The parameter θ (k+1) that optimizes
this joint likelihood becomes the starting point for the next iteration. Thus,
the results obtained for the fully observable case generalize to the partially
observable case.

5 Conclusion

We analyzed the behavior of CD in gaussian diffusion processes. We showed
that in this case, CD converges to maximum likelihood solutions if the
first moment of the state distribution is at equilibrium; otherwise, CD may
diverge. There is nothing in the current theory of CD that would explain the
difference in behavior between these two cases. In gaussian diffusion pro-
cesses, once the first-order moments of the desired distribution have been
matched, the CD learning rule achieves positive inner products with the
log-likelihood gradients. The nonlinear systems for which CD has proven
useful have potential functions with multiple attractors, around which the
systems may behave like gaussian diffusions. This may help explain why
CD works well in such systems. This view of CD suggests techniques to
improve its performance. For example, since the residual term Rt vanishes
when the first moment of the state distribution is at equilibrium, a two-stage
process could be used: on each learning trial, the system can be run using
zero temperature deterministic dynamics, thus allowing it to quickly find
the equilibrium mean, followed by the stochastic dynamics to estimate the
Ht statistic. In addition, Ht could be estimated more efficiently using deter-
ministic sampling methods, like the unscented transform (Julier, Uhlmann,
& Durrant-Whyte, 1995).

Appendix: Derivations

A.1 Notational Conventions. The appendix assumes the processes de-
fined in the main body of the letter. Unless otherwise stated, capital letters
are used for random variables, lowercase letters for specific values taken
by random variables, and Greek letters for fixed parameters. The operators
E and D stand, respectively, for expected value and Kullback-Leibler diver-
gence. R is the set of real numbers. We leave implicit the properties of the
probability space in which the random variables are defined. To simplify the
notation, we identify probability functions by their arguments, and when
it does not lead to confusion, we leave implicit dependencies on network
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parameters—for example,

pt(x) ≡ pXt (θ )(x), (A.1)

Xt ≡ Xt(θ ), (A.2)

φ(x) ≡ φ(x, θ ). (A.3)

Lemma 1. Let ξ be a target random variable, θ be a random parameter, and X be
a random variable with a Boltzmann distribution:

pX(u | θ )
def= p(X = u | θ ) = 1

Z
eφ(u), (A.4)

Z
def=

∫
eφ(x,θ )dx. (A.5)

Then

∇θE[log pX(ξ ) | θ ] = E[�(ξ ) | θ ] − E[�(X) | θ ], (A.6)

where � is the unnormalized Fisher score function

�(x, θ )
def= ∇θφ(x, θ ). (A.7)

Proof. This is a well-known proof from the Boltzmann machine literature.
To simplify the notation, we leave dependencies on θ implicit. Note:

∇θ log p(x) = ∇θφ(x) − ∇θ log Z = �(x) − 1
Z

∫
∇θ eφ(x)dx

= �(x) −
∫

1
Z

eφ(x)�(x)dx = �(x) −
∫

p(x)�(x)dx. (A.8)

Lemma 2. Let 	t :→ Rn × Rn, a matrix function of a matrix Rn × Rn

	t(θ )
def= τ

(
θ−1 +

(
1
τ

σ0 − θ−1

)
e−2tθ

)
, for θ ∈ Rn × Rn. (A.9)

Let θ ∈ Rn × Rn be a fixed symmetric invertible matrix and let a ∈ Rn × Rn be a

fixed matrix. Let σt
def= 	t(θ ), and let ε ∈ R. Then

d
dε

	−1
t (θ + εa )

= 1
τ

σ−1
t

(
θ−1aθ−1(I − e−2tθ ) − 2t

(
θ−1 − 1

τ
σ0

)
e−2tθa

)
σ−1

t . (A.10)
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Proof. To first order,

(θ + εa )−1 ≈ θ−1 − εθ−1aθ−1, (A.11)

e−ε2ta ≈ I − ε 2ta . (A.12)

Thus, to first order,

	−1
t (θ + εa ) def= 1

τ

(
(θ + εa )−1 +

(
1
τ

σ0 − (θ + εa )−1
)

e−2t(θ+εa )
)−1

≈ 1
τ

(
θ−1 − εθ−1aθ−1

+
(

1
τ

σ0 − θ−1 + εθ−1aθ−1
)

e−2tθ (I−ε2ta )
)−1

. (A.13)

Separating out the constant, linear, and quadratic terms with respect to ε,

	−1
t (θ + εa ) ≈ 1

τ

(
θ−1 +

(
1
τ

σ0 − θ−1
)

e−2tθ
)

+ ε

τ

(
−θ−1aθ−1(I − e−2tθ ) − 2t

(
1
τ

σ0 + θ−1
)

e−2tθa
)

+ ε2

τ
2tθ−1aθ−1e−2ta . (A.14)

Using equation 1.9,

1
τ

σt = θ−1 +
(

1
τ

σ0 − θ−1
)

e−2tθ , (A.15)

and eliminating residual terms quadratic on ε, it follows that to first order,

	−1
t (θ + εa ) ≈ 1

τ

(
1
τ

σt + ε

(
− θ−1aθ−1(I − e−2tθ )

− 2t
(

1
τ

σ0 − θ−1
)

e−2tθa
))−1

. (A.16)

Using equation A.11,

	−1
t (θ + εa ) ≈ σ−1

t + ετσ−1
t

(
θ−1aθ−1(I − e−2tθ )

− 2t
(

θ−1 − 1
τ

σ0

)
e−2tθa

)
σ−1

t . (A.17)
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Thus,

d
dε

	−1
t (θ + εa ) = lim

ε→0

	(θ + εa ) − 	(θ )
ε

= τσ−1
t

(
θ−1aθ−1(I−e−2tθ ) − 2t

(
θ−1 − 1

τ
σ0

)
e−2tθa

)
σ−1

t . (A.18)

Lemma 3.

∇θ x′	−1
t (θ )x = xx′ct, (A.19)

where ct is a positive definite matrix defined as follows:

ct
def= τσ−2

t

(
θ−2(I − e−2tθ ) − 2t

(
θ−1 − 1

τ
σ0

)
e−2tθ

)
. (A.20)

Proof. Using lemma 2 and considering the symmetry of the matrices at
hand,

∂

∂θi j
	−1

t (θ ) = d
dε

	−1
t

(
θ + ε

1i 1′
j + 1 j 1′

i

2

)

= 1i 1′
j + 1 j 1′

i

2
τσ−2

t

(
θ−2(I − e−2tθ ) − 2t

(
θ−1− 1

τ
σ0

)
e−2tθ

)

= 1i 1′
j + 1 j 1′

i

2
ct, (A.21)

where 1i is a vector of Krönecker delta terms 1i
def= (δ1,i , . . . , δn,i )′. Thus,

∂

∂θi j
x′	−1

t (θ )x = x′ 1i 1′
j + 1 j 1′

i

2
ctx, (A.22)

∇θ x′	−1
t (θ )x = xx′ct. (A.23)

We will now show that ct is a positive definite matrix. First, note that ct can
be expressed in the following form:

ct = 2τ tσ−2
t

1
τ

σ0e−2tθ + τσ−2
t θ−2((I − e−2tθ ) − 2tθe−2tθ ). (A.24)

The first term is a positive definite matrix for t > 0. The second term has
two factors: one is a positive definite matrix τσ−2

t θ−2 and the other positive
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definite for t = 0 and with a positive definite derivative with respect to
time:

d
dt

((I − e−2tθ ) − 2tθe−2tθ ) = 4tθ2e−2tθ . (A.25)

Thus, ct is positive definite for t ≥ 0.

Lemma 4. Let Mt : Rn × Rn → Rn be a vector function of a matrix

Mt(θ )
def= e−tθµ0 + (I − e−tθ )γ. (A.26)

Let θ ∈ Rn × Rn be a fixed symmetric invertible matrix, and let µt
def= Mt(θ ). Then

∇θ x′	−1
t (θ )Mt(θ ) = xµ′

tct + txσ−1
t e−tθ (γ − µ0)′ . (A.27)

with 	t , ct as defined in the previous lemmas.

Proof.

∇θ x′	−1
t (θ )Mt(θ ) = ∇θ x′	−1

t (θ )µt + ∇θ x′σ−1
t Mt(θ ). (A.28)

Using the proof for lemma 3, it is easy to see that

∇θ x′	−1
t (θ )µt = xµ′

tct. (A.29)

Moreover, using standard matrix calculus rules (see Movellan, 2006a),

∇θ x′σ−1
t Mt(θ ) = ∇θ x′σ−1

t (e−tθµo + (I − e−tθ )γ )

= txσ−1
t e−tθ (γ − µ0)′. (A.30)

Theorem 1.

∇θ

(
x′σ−1

t µt − 1
2

x′σ−1
t x

)
= xµ′

tct + txσ−1
t e−tθ (γ − µ0)′ − 1

2
xx′ct.

(A.31)

Proof. Direct consequence from the previous lemmas :-)

Lemma 5. Let θ be a random vector and {Xi : i = 1, 2} be random variables such
that

pi (x | θ )
def= p(Xi = x | θ ) = 1

Zi (θ )
eφi (x,θ ), for i = 1, 2, (A.32)

Zi (θ )
def=

∫
eφi (x,θ ) dx. (A.33)
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Then

∇θD(Xi , Xj | θ ) = E[� j (Xj )] − E[� j (Xi )]

+ Cov[φi (Xi ) − φ j (Xi ), �i (Xi )], (A.34)

where D is the Kullback-Leibler divergence and �i (x)
def= ∇θφi (x, θ ).

Proof. To simplify the notation, we leave implicit the dependencies on θ .
First note

∇θ pi (x) log p j (x) = pi (x)∇θ log p j (x)

+ log p j (x)pi (x)∇θ log pi (x), (A.35)

and considering that,

∇θ log pi (x) = �i (x) − E[�i (Xi )], for i = 1, 2. (A.36)

It follows that

∇θ pi (x) log p j (x) = pi (x)(� j (x) − E[� j (Xj )]

+ log p j (x) (�i (x) − E[�i (Xi )])). (A.37)

Thus,

∇θ

∫
pi (x) log p j (x)dx

=
∫

pi (x)� j (x)dx − E[� j (Xj )] +
∫

pi (x) log p j (x)�i (x)dx

−
∫

pi (x) log p j (x)dx E[�i (Xi )]

= E[� j (Xi )] − E[� j (Xj )]

+ E[log p j (Xi )�i (Xi )] − E[log p j (Xi )]E[�i (Xi )]

= E[� j (Xi )] − E[� j (Xj )] + Cov[log p j (Xi ), �i (Xi )]

= E[� j (Xi )] − E[� j (Xj )] + Cov[φ j (Xi ), �i (Xi )]; (A.38)

it follows that

∇θD(Xi , Xj ) =∇θ

∫
pi (x) log

pi (x)
p j (x)

dx

= E[� j (Xj )] − E[� j (Xi )] + Cov[φi (Xi ), �i (Xi )]

− Cov[φ j (Xi ), �i (Xi )]. (A.39)
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Theorem 2. Let θ be a random parameter vector and ξ a random vector indepen-
dent of θ . Let {Xt : t ∈ R+} be a collection of random variables with distribution

pt(xt | θ ) ∝ eφt(x,θ ). (A.40)

Then

∇θ (D(ξ, X∞)) −D(Xt, X∞)) = −(Ht + R̃t), (A.41)

where Ht is Hinton’s CD statistic,

Ht
def= E[�∞(ξ )] − E[�∞(Xt)], (A.42)

and the residual R̃t is a covariance statistic,

R̃t
def= Cov[φt(Xt) − φ∞(Xt) , �t(Xt)]. (A.43)

Proof. Let

φξ (u, θ ) def= log p(ξ = u | θ ). (A.44)

Since ξ is independent of θ , the p(ξ | θ ) is constant with respect to θ . Thus,

�ξ (u) def= ∇θφ(u, θ ) = 0. (A.45)

Using lemma 5, it follows that

∇θD(ξ, X∞) = E[�∞(X∞)] − E[�∞(ξ )] (A.46)

∇θD(Xt, X∞) = E[�∞(X∞)] − E[�∞(Xt)]

+ Cov[φt(Xt) − φ∞(Xt), �t(Xt)]. (A.47)

Remark 1. Analysis of the Learning Cases. First use equation 1.4 to note
that if µ0 = γ , then µt = µ0 for all t. Since under case 3, µ0 = E[ξ ] and
γ = µ0, it follows that µt = E[ξ ]. Moreover, using equation 1.9 and the fact
that µt = µ∞, we get that

E[Xt X′
t] − E[ξ ]E[ξ ]′ = σt = E[X∞ X′

∞] − E[ξ ]E[ξ ]′

+ (E[ξξ ′] − E[X∞ X′
∞])e−2tθ .
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Thus, using equation 2.9,

Ht = 1
2τ

(E[Xt X′
t] − E[ξξ ]′)

= 1
2τ

(E[X∞ X′
∞] − E[ξξ ′] + (E[ξξ ′] − E[X∞ X′

∞])e−2tθ )

= 1
2τ

(E[X∞ X′
∞] − E[ξξ ]′)(I − e−2tθ )

= H∞(I − e−2tθ ). (A.48)

Thus, Ht equals H∞ times a positive definite matrix. To see that R̃t vanishes
as t increases, use equation A.43 to note that

R̃t = ∇θ (D(Xt, X∞) − D(ξ, X∞)) − Ht. (A.49)

Thus

lim
t→∞ R̃t = −∇θD(ξ, X∞) − Ht = ∇θE[log pX∞ (ξ )] − Ht = 0. (A.50)
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