
Control by Gradient Collocation: Applications to Optimal Obstacle
Avoidance and Minimum Torque Control

Paul Ruvolo, Tingfan Wu, and Javier R. Movellan
Machine Perception Laboratory

University of California, San Diego
La Jolla CA, USA

Abstract— We present a new machine learning algorithm for
learning optimal feedback control policies to guide a robot to
a goal in the presence of obstacles. Our method works by first
reducing the problem of obstacle avoidance to a continuous
state, action, and time control problem, and then uses efficient
collocation methods to solve for an optimal feedback control
policy. This formulation of the obstacle avoidance problem
improves over standard approaches, such as potential field
methods, by being resistant to local minima, allowing for
moving obstacles, handling stochastic systems, and computing
feedback control strategies that take into account the robot’s
(possibly non-linear) dynamics. In addition to contributing
a new method for obstacle avoidance, our work contributes
to the state-of-the-art in collocation methods for non-linear
stochastic optimal control problems in two important ways: (1)
we show that taking into account local gradient and second-
order derivative information of the optimal value function at
the collocation points allows us to exploit knowledge of the
derivative information about the system dynamics, and (2) we
show that computational savings can be achieved by directly
fitting the gradient of the optimal value function rather than
the optimal value function itself. We validate our approach on
three problems: non-convex obstacle avoidance of a point-mass
robot, obstacle avoidance for a 2 degree of freedom robotic
manipulator, and optimal control of a non-linear dynamical
system.

I. INTRODUCTION

The problem of computing optimal controllers to guide a
robot from an initial configuration to a goal in the presence
of obstacles has been widely studied in the robotics literature.
One popular approach for solving this problem is based
on constructing artificial potential functions [5], [11]. These
approaches work by placing a repulsive potential around
obstacles in the robot’s environment and a basin of attraction
around the goal. The control signal for the robot at each
point in time is proportional to the negative gradient of the
potential function at the current point. While this approach is
computationally lightweight, it suffers from several important
drawbacks: including both a lack of a clearly defined notion
of optimality and the possibility for the robot to get stuck
in local minima. While previous approaches [2], [11] have
sought to address the local minima problem in various ways,
these approaches are not applicable to the general obstacle
avoidance problem; focusing instead on special cases (see
Section VI for a more thorough discussion of the existing
literature). Here we show that with an appropriate function
approximation scheme, collocation approaches designed to

compute optimal controllers for nonlinear systems [12], [3],
[1], [15], [14] can effectively solve the obstacle avoidance
problem.

In Section III we describe our method for converting the
obstacle avoidance problem into the problem of optimally
controlling a nonlinear diffusion in continuous state, action,
and time. The main idea is to first specify an objective (or
reward) function that penalizes the robot for intersecting ob-
stacles and rewards the robot for reaching the goal. Secondly,
we use collocation methods to convert this myopic reward
function into a control policy that maximizes reward over
the long term (and thereby reaches the goal while avoiding
obstacles).

Recently, there has been a surge of interest in collocation
methods for solving continuous state and action control
problems [12], [3], [1], [15], [14]. These algorithms work by
computing an approximate solution to the Hamilton Jacobi
Bellman (HJB) Equation (a sufficient condition for deriving
an optimal control policy) at a finite set of states. One of
the key contributions of this work is to propose a function
approximation architecture that is well-suited to the obstacle
avoidance problem with its characteristic multimodal reward
functions (where the modes are due to the presence of
obstacles). In addition, our method modifies the typical
optimization criterion for collocation methods to focus on
satisfying the gradient and second-derivative of the HJB
equation rather than the HJB equation itself. Due to the
choice of this particular optimization criterion, we call our
approach Gradient Collocation (GC). This change allows the
user more control over the parameterization of the space
of control laws considered by the algorithm, focuses the
optimization on producing good policies, and also comes
with a computational savings under certain conditions. In
Section VII we provide experimental validation for our
proposed method on three problems: obstacle avoidance
for a non-convex obstacle, obstacle avoidance for a robotic
manipulator, and control of a non-linear dynamical system.

II. STATEMENT OF THE OPTIMAL CONTROL PROBLEM

Most processes of interest in robotics can be modeled as
a controlled stochastic differential equation of the following

form

dXt = a(Xt)dt+ b(Xt)Utdt+ c(Xt)dBt (1)
Ut = π(Xt, t) (2)

where Xt ∈ Rd is a random vector specifying the state of
the system (typically joint angles and angular velocities),
a(Xt) represents the uncontrolled deterministic dynamics (a
combination of inertial matrix, centrifugal-Coriolis matrix,
and gravitational/viscous torques), b(Xt) is the transpose of
the Kinematic Jacobian matrix, Ut ∈ Rm is the control
signal, c(Xt) is a matrix controlling the amount of noise in
the system dynamics, dBt is a Brownian motion differential,
and π is a deterministic feedback controller that maps states
and times into control signals.

First, we propose a method to solve the finite horizon
stochastic optimal control problem, and later (see Section III)
we show how this formulation can be used to solve the ob-
stacle avoidance problem. The value of a feedback controller
π takes the following form

vt(x | π) = E
[∫ T

t

e−
1
τ (s−t)rt(Xs, Us)ds

+ e−
1
τ (T−t)gT (XT)

∣∣∣ π] (3)

where vt(x|π) ∈ R is the value of starting in state x at time t
when controlling a robot with controller π, τ > 0 is a known
time discount rate (which can be set to ∞ if no discounting
is desired), rt(Xt, Ut) ∈ R is a known instantaneous reward
rate, and gT (Xt) ∈ R is a known terminal reward function.

Our goal is to find a feedback controller π∗ that provides
maximum value. It is well known that the value vt(x)
achieved by the optimal controller satisfies the Hamilton-
Jacobi-Bellman equation (HJB):

−∇tvt(x) = max
u

{
− 1

τ
vt(x) + rt(x, u)

+
(
a(x) + b(x)u

)′∇xvt(x)

+
1

2
Trace

[
c(x)c(x)>∇2

xvt(x)
]}

(4)

vT (x) = gT (x) (5)

where ∇tvt, ∇xvt are the partial derivatives with respect to
time and state, and ∇2

x is the Hessian matrix with respect to
state. We make the simplifying assumption that the reward
rate takes the following form:

rt(x, u) = gt(x)− 1

2
u′qtu (6)

where gt is an arbitrary known function of the state and
qt is a known symmetric positive definite matrix. Since u
appears only linearly and quadratically in Equation 4 the
maximization over u can be computed analytically:

ut = q−1
t b(x)′∇xvt(x) (7)

The form of the previous equation shows that if we could
compute the gradient of the optimal value function for all

states and times we could easily derive an optimal controller.
This transforms the control problem to the more convenient
problem of approximating the optimal value function. Sub-
stituting the optimal ut back into the HJB equation we get:

−∇tvt(x) = −1

τ
vt(x) + gt(x)

+
1

2
ut(x)′qtut(x) + a(x)′∇xvt(x)

+
1

2
Trace

[
c(x)c(x)>∇2

xvt(x)
]

(8)

ut(x) = q−1
t b(x)′∇xvt(x) (9)

vT (x) = gT (x) (10)

We have now removed the minimization operator from the
HJB equation. Next, we show how the removal of the
minimization operation allows us to more efficiently solve
the HJB equation and in turn compute an optimal policy.

III. REDUCTION OF OBSTACLE AVOIDANCE TO A
CONTINUOUS CONTROL PROBLEM

Before discussing our method for solving the control
problems presented in the previous section, we show how to
formulate the problem of obstacle avoidance as a continuous
state, action, and time control problem.

We assume that we are given a model of how the control
signals for our robot probabilistically affect the state dif-
ferential. That is we assume that we are given a, b, and c
in Equation 1. Additionally, we assume that the quadratic
penalty on the control signal, qt, is given. In order to fully
specify the control problem we also have to define the
terminal reward gT (x) as well as the state reward rate gt(x).
Given a desired end configuration for the robot x? we define
the terminal reward gT (x) = −(ψ(x) − x?)>Λ(ψ(x) − x?)
where Λ is a given symmetric positive definite matrix that
specifies the magnitude of the penalty for the robot not
reaching the goal at the terminal time and ψ is a function
that maps from the state space of the robot to a potentially
different coordinate system (e.g. world coordinates). An
example of the role that the ψ function could play would be
to map from the joint angles of a robotic manipulator to the
position of its end effector. In this case, the reward would be
quadratic based on the distance in world coordinates between
the end-effector and the goal. The usage of a quadratic
penalty based on the distance to the goal is not required
by our algorithm, however, we have found that a quadratic
penalty worked well for our experiments.

We define the state reward rate to penalize the robot from
contacting obstacles. We use a collection of weighted radial-
basis functions to represent the location of obstacles in the
environment. Similarly to the terminal reward function, the
obstacles can be defined in a different coordinate system than
the state-space of the robot. Specifically,

gt(x) =

d∑
i=1

1

z

z∑
j=1

αie
−(ψj(x)−µi)′Σ−1

i (ψj(x)−µi) (11)

where each αi is a scalar specifying the penalty for contact-
ing the obstacle, the functions ψ1 . . . ψz specify the center of

θ1

θ2

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Theta 1

Th
et

a
2

Intermediate State Reward

−45

−40

−35

−30

−25

−20

−15

−10

−5

State Reward Rate

Fig. 1. Top: a schematic of a two degree of freedom planar robot
arm with two obstacles (white circles) and one goal position (black filled
circle). Bottom: the reward rate constructed to formulate the given obstacle
avoidance as a control problem. The reward function is created by penalizing
the robot based on the proportion of arm segments that are in contact with
the obstacle at a particular configuration of joint angles.

each of the z segments of the robot in the coordinate system
of the obstacles, and the sum over j from 1 to z approximates
the proportion of overlap of the robot with the obstacles by
evaluating the overlap at the center of each of the z segments.
For example, in the two degree of freedom robot manipulator
shown in Figure 1 the state of the robot is given by the
two joint angles θ1 and θ2, whereas, the positions of the
obstacles are given in world coordinates. In order to compute
the reward of a particular joint angle configuration of the
robot, we compute the penalty for overlap between the center
of each segment (where the segments are small divisions of
the two rigid bodies that compromise the manipulator) of
the robot arm in a particular configuration (θ1, θ2) with the
obstacles. If the robot has joint limits, then these are also
enforced by virtual obstacles at the edges of the robot’s range
of motion.

The state reward rate for the manipulator in Figure 1
is shown in the bottom panel. Note that even though the
obstacles are represented as gaussian bumps in the world
coordinate system, the induced state reward rate is much
more complex due to the interaction between the geometry of
the robot arm and the positions of the obstacles. The choice
of the number of segments m to use to detect potential col-
lisions with the obstacles is up to the system designer (more
segments will result in more accurate collision detection).

IV. COLLOCATION FOR COMPUTING AN
APPROXIMATELY OPTIMAL CONTROLLER

Given a description of an obstacle avoidance problem
as a controlled stochastic diffusion we seek to compute
an optimal controller by finding a solution to the HJB
equation, i.e., to find a value function v that satisfies it for
all states and times. However, solving the HJB exactly is
not computationally tractable except for a limited number of
special cases.

One method for obtaining an approximate solution to the
HJB is to use collocation methods in which we select a value
function from some parameterized family of functions that
satisfies the HJB as closely as possible (in the least squares
sense) for a finite set of states and times. In the current
work we specify the collocation points using a uniform grid
over a given region of the state space. Alternatively, iterative
approaches to selecting the collocation points and solving for
an optimal control law are also possible and are compatible
with our approach (for example see [15]).

Once we have the collocation points, we then define an
objective function for selecting a candidate value function
from some parameterized family. In addition we discretize
the HJB in time using a Backwards Euler approach on a
finite set of time points T = {t1 · · · tn} such that T =
tn ≤ tn−1 ≤ · · · ≤ t1 = 0. The parameters wt of the
optimal value function at each point in time t are computed
using a recursive backwards pass that involves solving an
optimization problem for each time step in T . The objective
function minimized in [12], [3], [1], [15], [14] is the squared
difference between the the lefthand and righthand side of the
HJB equation. For the terminal time T we find the parameters
wT by minimizing the sum of squared differences between
the terminal reward and the value function estimate at the
set of collocation points, xT , at time T :

wT = argmin
w

∑
x∈xT

(
gT (x)− vT (x|w)

)2

(12)

For other time steps t ∈ T we assume we have already
computed the parameters of the value function at the previous
time step s ∈ T , s > t. We then find the value of wt by
minimizing the sum of squared differences between the left
and right side of the HJB equation at the set of collocation
points xt.

wt = argmin
w

∑
x∈xt

(vs(x | ws)− vt(x | w)

s− t

− 1

τ
vs(x | ws) + gs(x)

+
1

2
us(x | ws)′qsus(x | ws) + a(x)′∇xvs(x | ws)

+
1

2
Trace

[
c(x)c(x)′∇2

xvs(x | ws)
])2

(13)

Another objective function for selecting a value function that
we propose for the first time in this work, is to satisfy the
gradient and second-order derivatives of the HJB as closely
as possible. The motivation for this alternate optimization

criterion is twofold: (1) it allows us to use information about
the first and second derivatives of the system passive dynam-
ics, controlled dynamics, and Brownian motion gains at the
collocation points, (2) it focuses the optimization procedure
on accurately approximating derivative information of the
value function which is what is needed for the computation
of optimal actions (see Equation 7).

An additional benefit of enforcing gradient and second-
order derivative information is that it is possible to parame-
terize the derivative of each dimension of the value function
independently as opposed to having one parametric function
for the entire value function. This creates d objective func-
tions at each time step that can be optimized independently
at reduced computational cost compared with fitting one
approximator for the entire value function (see Section V
for a discussion of this computational savings). This change
creates the following objective for fitting the ith terminal
gradient function:

wT,i = argmin
w

{ ∑
x∈xT

((
∂

∂xi
(gT (x)− vT (x|w))

)2

+

d∑
j=1

(
∂2

∂xi∂xj
(gT (x)− vT (x|w))

)2)}
(14)

The objective function for the ith gradient function at time
t in the backward pass assuming the optimal weights ws have
already been computed at time s is given by:

wt,i = argmin
w

{∑
x∈xt

((
∂

∂xi
et(x,w, s, ws)

)2

+

d∑
j=1

(
∂2

∂xi∂xj
et(x,w, s, ws)

)2)}
(15)

et(x,w, s, ws) =
vs(x | ws)− vt(x | w)

s− t
− 1

τ
vs(x | ws)

+
1

2
us(x | ws)′qsus(x | ws)

+ a(x)′∇xvs(x | ws)

+
1

2
Trace

[
c(x)c(x)′∇2

xvs(x | ws)
]

(16)

Fitting independent function approximators for each di-
mension of the gradient does not always allow for efficient
reconstruction of a corresponding value function (in fact
there is no guarantee that the approximation of the gradient
computed in this fashion has a well-defined antiderivative),
however, the value function itself is never needed for comput-
ing the optimal actions for the robot at runtime. The reason
for this is that the optimal control law given by Equation 7
only relies on the gradient of the value function. In this work
we choose to directly parameterize the gradient of the value

function and use the gradient and second-order derivatives of
the HJB at the collocation points as our optimization criterion
(see Equations 14-16). In our experience, the choice of this
formulation not only leads to a more computationally effi-
cient algorithm, but also to greater numerical stability when
compared to standard collocation approaches. However, a
detailed comparison of parameterizing the value function vs.
the gradient of the value function is beyond the scope of this
document.

We parameterize each dimension of the gradient of the
value function at time t ∈ T as a linear combination of
known basis functions,

∂

∂xi
vt(x | wt) = αt(x)′wt,iφ(x) ∀i ∈ {1 . . . d} (17)

where φ(x) ∈ Rp is a vector of known features designed to
approximate ∂v

∂xi
, wt,i ∈ Ro×p is a time-dependent matrix of

weight parameters, and αt(x) ∈ Ro is a vector that encodes
the relative influence of each row of wt,i on the partial
derivative of the state, x. At a high-level the motivation for
this choice is that φ(x) encodes the basis for an approximator
of the value function gradient designed to be accurate in a
local region of the state space, the rows of wt,i define the
parameter weights for each of the o value function derivative
approximators, and the locality vector αt specifies the local
region of influence of each of the o copies of the value
function derivative approximator.

Specifically, we define αt using the locations of a set of
vectors µt,1 . . . µt,o and a kernel function, k. The ith element
of αt(x) takes the following form:

(αt(x))i =
k(x, µt,i, σ)∑o
j=1 k(x, µt,j , σ)

(18)

k(x, µ, σ) = exp{−(x− µ)′σ(x− µ)} (19)

Where σ is a fixed, symmetric positive definite matrix. Since
σ is fixed, the value function gradient is determined by
the vectors µt,i and by the weight matrices wt,1 . . . wt,d.
By substituting this parameterization of the value function
gradient into our objective function (see Equations 14-16) it
is easy to see that each optimal wt,i can be found by solving
an ordinary least squares problem.

While our framework allows for arbitrary feature functions
φ(x), it is of interest to let φ(x) contain a constant and the d
elements of x. This models each component of the gradient
of the value function as a convex combination of linear
functions and results in a control policy that is a mixture
of linear feedback controllers.

V. COMPUTATIONAL COMPLEXITY CONSIDERATIONS

Here we compare the relative computational complexity
of parameterizing the value function vs. the gradient of the
value function. In order to achieve the equivalent expressivity
of a mixture of linear approximators for each dimension of
the value function gradient one must parameterize the value
function using a mixture of local approximators containing
a constant, the d state dimensions, and the d(d+1)

2 products
and coproducts of the state dimensions.

The computational bottleneck of the algorithm is perform-
ing the linear regression step needed to compute the optimal
parameter weights wt,i. The complexity of linear regression
is O(mn2) where m is the sample size and n is the number
of features to be estimated. For the direct parameterization
of the value function we have d + d(d+1)

2 linear regression
instances generated for each of the m collocation points
(based on satisfying first and second-order derivatives of
the HJB) and a total of k

(
d+ d(d+1)

2

)
parameters (for

k local function approximators). In total the computational
complexity of this approach is O(mk2d6).

If we instead directly parameterize each dimension of
the gradient we have to perform d fits with each having
k(d+ 1) parameters and m(d+ 1) total examples (based on
the gradient and second-order derivatives of the HJB). This
gives a total computational cost for the proposed method of
O(mk2d4).

A speed up for both methods can be achieved If the
collocation points and function approximator locations (µ)
are constant over the discrete time-points in T . In this case
by precomputing the pseudoinverse for the design matrix,
a matrix multiplication can be substituted for the linear
regression step at each time step in T .

VI. RELATION TO PRIOR WORK

Least squares collocation is a popular approach for solving
PDEs. A collocation method using radial basis functions was
proposed in [4]. A similar approach was used in [3], [1] for
solving finite horizon HJB control equations. The work of
Simpkins and Todorov [12] introduced collocation methods
for solving infinite horizon robot control problems and was
inspirational to us, however, the approach was not directly
applicable to the finite horizon problems we consider here.
Todorov and Tassa have also explored the use of collocation
methods for finite-horizon control problems [15]. While they
introduce a basic blueprint for the application of collocation
methods to the class of nonlinear finite-horizon control
problems considered here, their work does not explore many
of the particular choices needed to achieve good performance
on obstacle avoidance problems. In particular we found
that using the appropriate function approximator (in this
case a mixture of locally linear functions to parameterize
the gradient) was crucial to achieving good performance.
Additionally, the approach of Todorov and Tassa was geared
toward finding local solutions to the control problem (using
iterative collection of collocation points with a candidate
controller and controller improvement), we focus here on
computing globally optimal control policies.

There are other approaches to obstacle avoidance that
build on the artificial potential function approach but try to
overcome some of its key limitations [9], [8], [10], [16],
[2], [11], however, each of these approaches either is not
applicable to solving the full range of robot control problems
we address here or else does not allow for a well-defined and
flexible notion of optimality. Also, we are not the first to con-
ceptualize the problem of obstacle avoidance as an optimal
control problem (see [13], [6] for example). However, our

method provides a key contribution in introducing new con-
tinuous collocation methods from optimal control to solving
the obstacle avoidance problem. Additionally, compared to
these two other works Gradient Collocation is: (1) applicable
to a very general class of control-affine diffusions (capable
of describing most biological and mechanical motor control
problems) (contrary to [13]) and (2) able to solve the original
continuous state, action, and time problem without the need
for discretization of the state space (as is done in [6]).

VII. EXPERIMENTS

Here we show the results of running our algorithm, Gra-
dient Collocation, on three problems from robotic obstacle
avoidance and non-linear control.

A. Non-convex Obstacle Avoidance

In this experiment we test Gradient Collocation on a 2-
d obstacle avoidance problem. The state reward rate gen-
erated to represent the obstacles using the procedure from
Section III is shown in Figure 2. The obstacle avoidance
problem involves moving a point mass robot from an initial
point in the state space to the goal state (shown in black in
Figure 2). For this experiment we used a kinematic model
of the robot where the control signals of the robot specify
the desired velocity at each point in time. Also we assume
a deterministic system. Thus, according to Equation 1 we
have a(x) = 0, b(x) = I2, c(x) = 0 (where I2 is the 2x2
identity matrix). Additionally, we specify a time horizon of
5 seconds and use a .01s time discretization interval.

We use a 13 × 13 grid of collocation points uniformly
distributed over the region [−3, 9] × [−3, 9]. Additionally,
we use the same grid as the locations for the local value
function gradient approximators. The σ matrix for each local
approximator was set to 1

2.5I2.
The results of running Gradient Collocation in terms of av-

erage reward over trajectories starting at each of the points in
the 13×13 grid was −13.93. In order to compare this result
to the potential function approach we computed the control
signal by performing gradient descent directly on the sum
of the reward rate and terminal reward functions (where the
reward rate function specifies the obstacles and the terminal
reward function specifies the goal). In order to be fair to
the potential function method we performed a grid search
over many possible weightings of the two reward functions
and report on the best performing weighting. Even with this
search over possible weightings the average performance for
the potential function method was −131.1 (which is about
10 times worse than Gradient Collocation). The reason that
the potential function approach works so poorly is that no
matter how we weight the goal vs. the obstacle the points that
start in the middle of the u-shaped obstacle are effectively
trapped in a local minima of the potential function and are
unable to escape.

B. Obstacle Avoidance for a 2-DoF Robotic Manipulator

Next, we test our algorithm’s ability to perform obstacle
avoidance when the state space is defined in terms of the

State Reward Rate

−5 0 5 10
−5

0

5

10

X Position

Y
Po

si
tio

n

Intermediate State Reward

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Fig. 2. The state reward rate used in the experiment of moving a point
mass robot to the goal (black dot) while avoiding the regions of low reward
(the sideways u-shaped region).

joint angles of a robotic manipulator and the obstacle and
goal positions are given in world coordinates (see Figure 1).
Specifically, our goal is to move a 2-link robotic arm from
an initial joint angle configuration such that the end effector
reaches the goal (shown in black), while maintaining the
constraint that none of the parts of the arm can touch the
obstacles. Figure 1 shows both a schematic of the robotic
arm, the goal, and the obstacles, and also the state reward
rate used to enforce both the joint limits of the robot (each
constrained to [0, π]) and the fact that the robot arm should
not contact any obstacles. The reward rate was computed by
dividing the robot arm into 500 evenly spaced segments and
then applying Equation 11. For this experiment we used a
kinematic model of the robotic arm where the control signals
of the robot specify the desired angular velocities at each
point in time. Also we assume a deterministic system. Thus,
according to Equation 1 we have a(x) = 0, b(x) = I2,
c(x) = 0 (where I2 is the 2x2 identity matrix). Additionally,
we used a time horizon of 2 seconds.

We ran our algorithm multiple times with differing reso-
lutions for both the number of collocation points as well as
the number of local function approximators. For each run,
an identical grid of collocation points and local approximator
centers was distributed uniformly over the area [0, π]×[0, π].
The performance for each run was evaluated on a 15×15 grid
of starting joint angle configurations uniformly distributed
over this same area. Figure 3 shows the results in terms of
average reward for our algorithm with different resolutions.
The peak performance for Gradient Collocation was obtained
with a 21 × 21 grid of local function approximators. A
representative trajectory that our algorithm learns is shown
in Figure 4. The robot learns to first contract its elbow so
that when it rotates about its shoulder in order to reach
the target the forearm link does not come into contact with
the obstacles. Once the arm is successfully through the two
obstacles the end effector moves toward the target.

To compare Gradient Collocation with the artificial poten-
tial function approach we performed a similar evaluation as
we did for the non-convex optimization avoidance problem.

11x11 13x13 15x15 17x17 19x19 21x21
−4

−3.9

−3.8

−3.7

−3.6

−3.5

−3.4

−3.3

−3.2

−3.1

−3

Grid Size

A
ve

ra
ge

 R
ew

ar
d

Manipulator Obstacle Avoidance Performance

Fig. 3. The average reward of our algorithm when using varying sized
grids of function approximators. For instance 11 × 11 means that the
parameterization of the value function gradient had 11 × 11 = 121 local
approximators.

That is we created an artificial potential function as a
weighted sum of the goal and obstacle functions and searched
over a large set of possible weights. The maximum average
reward over the 15 × 15 grid of starting locations for the
artificial potential function approach was -10.48 compared
to the best performance achieved with our approach which
was -3.31.

C. Nonlinear Control: Minimum Torque Robot Control

We performed an experiment on the popular inverted
pendulum problem. The goal was to swing up a pendulum
from a given starting configuration (see Figure 5) to a straight
up, θ = π, configuration in a fixed amount of time while
achieving minimal speed at the terminal time. We put a
quadratic cost on the torque generated by the motor, thus
effectively limiting the available torque. Without this limita-
tion the optimal solution would be to perform the swingup in
one motion. However, the addition of the minimum torque
requirement makes the problem considerably harder. Min-
imum torque solutions for the inverted pendulum swingup
problem display a characteristic “pumping” motion where
energy is added to the system over a series of oscillations
around θ = 0 before a final attempt to swing the pendulum
up is made. The number of such oscillations depends on the
specific parameters of the problem. The deterministic system
dynamics have the following form:

Mθ̈ +G(θ) = τ + τν(θ̇) (20)

where M is the pendulum’s moment of inertia, G(θ) is the
Gravitational torque, τ is the motor’s torque, and τν(θ̇) =
−νθ̇ is a viscous friction torque with a coefficient of viscous
friction ν. Additionally, γ ∈ R defines the magnitude of
a Brownian motion process noise that acts on θ̇. Thus the
goal is to compute the value τ for each state and time in
order to swing the pendulum up in a fixed amount of time.
Specifically, we used a time horizon of 2 seconds discretized
into 10 millisecond intervals, no discounting, no state-reward
rate, a control cost-rate equal to 1

2τ
2, and a terminal state

reward of −5(π − θ)2 + θ̇2 (thus the highest reward is

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2T = 0s T = 1s T = 1.9s

Fig. 4. A typical trajectory for the task of guiding the end effector of a 2-link robotic arm toward a goal without contacting obstacles. The configuration
of the robotic arm at three points in the time interval of [0, 2]s are shown. The robot learns to first bend its elbow so that it can proceed toward the goal
without contact the obstacle. The terminal time is at T = 2s.

✓

Y

Z

X

Fig. 5. Schematic of the inverted pendulum system. The system is
controlled by exerting a torque around the base of the pendulum. The goal
is to guide the pendulum to θ = π (pendulum arm facing up) using minimal
torque in a fixed amount of time. Additionally a gravitational force is exerted
on the pendulum as well as a viscous friction force around the base of the
pendulum.

given for reaching the goal state), and no noise (c(x) = 0).
Additionally the mass of the pendulum was M = 1kg and
the coefficient of viscous friction was ν = .4.

We compared the performance of Gradient Collocation
with the popular iLQR approach to nonlinear control (for
a discussion of this algorithm see [7]). We compared the
two approaches on a 21 × 21 grid of starting states spread
uniformly over the region θ ∈ [−π, 3π] and θ̇ ∈ [−5, 5].
The proposed method used the grid of starting states for
both the collocation points and for the location vectors
for the local approximators (µ). For the iLQR method we
performed independent runs of iLQR for each candidate
starting location. Our method achieved an average reward
of −15.35 vs. −34.57 for iLQR.

VIII. CONCLUSION

We proposed an approach, named Gradient Collocation,
for finding global approximately optimal solutions to robot
control problems in continuous state, action, and time. Our
method is well-suited to computing optimal controllers for
a robot in the presence of obstacles as well as for solving
control problems with non-linear dynamics. Our approach
worked well on two obstacle avoidance problems: avoiding
non-convex obstacles and avoiding obstacles with a robotic
manipulator. Additionally, our approach significantly outper-
formed a widely used local approach, iLQR, for solving non-
linear control problems on the inverted pendulum task.

Future work will test Gradient Collocation’s performance
on both higher dimensional control problems as well as

stochastic obstacle avoidance problems.

REFERENCES

[1] H. Alwardi, S.Wang, L. S. Jennings, and S. Richardson. An adaptive
least-squares collocation radial basis function method for the hjb
equation. Journal of Global Optimization, 2011.

[2] J. Barraquand and J. Latombe. Robot motion planning: A distributed
representation approach. The International Journal of Robotics Re-
search, 10(6):628, 1991.

[3] C. S. Huang, S. Wang, C. S. Chen, and Z. C. Li. Aradial basis collo-
cation method for Hamilton–Jacobi–Bellman equations. Automatica,
pages 2201–2207, 2006.

[4] J..Kansa. Multiquadrics—a scattered data approximation scheme
with applications to computational fluid-dynamics—ii: Solutions to
parabolic, hyperbolic and elliptic partial differential equations. Com-
puters and Mathematics with Applications, 17:169–178, 2000.

[5] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. The international journal of robotics research, 5(1):90, 1986.

[6] S. Lavalle and P. Konkimalla. Algorithms for computing numerical
optimal feedback motion strategies. The International Journal of
Robotics Research, 20(9):729–752, 2001.

[7] W. Li and E. Todorov. Iterative linear-quadratic regulator design for
nonlinear biological movement systems. In Proceedings of the First
International Conference on Informatics in Control, Automation, and
Robotics, pages 222–229. Citeseer, 2004.

[8] S. Lindemann, I. Hussein, and S. LaValle. Real time feedback control
for nonholonomic mobile robots with obstacles. In Decision and
Control, 2006 45th IEEE Conference on, pages 2406–2411. IEEE,
2006.

[9] S. Lindemann and S. LaValle. Smoothly blending vector fields for
global robot navigation. In Decision and Control, 2005 and 2005
European Control Conference. CDC-ECC’05. 44th IEEE Conference
on, pages 3553–3559. IEEE, 2005.

[10] S. Lindemann and S. LaValle. Simple and efficient algorithms
for computing smooth, collision-free feedback laws over given cell
decompositions. The International Journal of Robotics Research,
28(5):600, 2009.

[11] E. Rimon and D. Koditschek. Exact robot navigation using artificial
potential functions. Robotics and Automation, IEEE Transactions on,
8(5):501–518, 1992.

[12] A. Simpkins and E. Todorov. Practical numerical methods for
stochastic optimal control of biological systems in continuous time
and space. In Adaptive Dynamic Programming and Reinforcement
Learning, 2009. ADPRL’09. IEEE Symposium on, pages 212–218.
IEEE, 2009.

[13] S. Sundar and Z. Shiller. Optimal obstacle avoidance based on the
hamilton-jacobi-bellman equation. Robotics and Automation, IEEE
Transactions on, 13(2):305–310, 1997.

[14] Y. Tassa and E. Todorov. High-order local dynamic programming.
In Adaptive Dynamic Programming And Reinforcement Learning
(ADPRL), 2011 IEEE Symposium on, pages 70–75. IEEE, 2011.

[15] E. Todorov and Y. Tassa. Iterative local dynamic programming. In
Adaptive Dynamic Programming and Reinforcement Learning, 2009.
ADPRL’09. IEEE Symposium on, pages 90–95. IEEE, 2009.

[16] L. Zhang, S. LaValle, and D. Manocha. Global vector field computa-
tion for feedback motion planning. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, pages 477–482. IEEE,
2009.

