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A state-of-the-art social robot was immersed in a classroom of
toddlers for >5 months. The quality of the interaction between
children and robots improved steadily for 27 sessions, quickly
deteriorated for 15 sessions when the robot was reprogrammed to
behave in a predictable manner, and improved in the last three
sessions when the robot displayed again its full behavioral reper-
toire. Initially, the children treated the robot very differently than
the way they treated each other. By the last sessions, 5 months
later, they treated the robot as a peer rather than as a toy. Results
indicate that current robot technology is surprisingly close to
achieving autonomous bonding and socialization with human
toddlers for sustained periods of time and that it could have great
potential in educational settings assisting teachers and enriching
the classroom environment.

human–robot interaction � social development � social robotics

The development of robots that interact socially with people
and assist them in everyday life has been an elusive goal of

modern science. Recent years have seen impressive advances in
the mechanical aspects of this problem, yet progress on social
interaction has been slower (1–15). Research suggests that
low-level information, such as animacy, contingency, and visual
appearance, can trigger powerful social behaviors toward robots
during the first few minutes of interaction (16, 17). However,
developing robots that bond and socialize with people for
sustained periods of time has proven difficult (6). Recent years
have seen progress in this area, but it typically relies on the robot
telling stories that change over time (7, 11). Because story-telling
was critical to the continued interest in the robot, it is yet unclear
to what extent the robots added value to the stories. In practice,
commercially available robots seldom cross the ‘‘10-h barrier’’
(i.e., given the opportunity, individual users typically spend less
than a combined total of 10 h with these robots before losing
interest).¶ This observation is in sharp contrast, for example, to
the long-term interactions and bonding that commonly develop
between humans and their pets.

Here, we present a study in which a state-of-the-art humanoid
robot, named QRIO, was immersed in a classroom of 18- to
24-month-old toddlers for 45 sessions spanning 5 months (March
2005 to July 2005). Children of this age were chosen because they
have no preconceived notions of robots, and they helped us focus
on primal forms of social interaction that are less dependent on
speech. QRIO is a 23-inch-tall humanoid robot prototype built
in Japan as the result of a long and costly research and
development effort (18, 19). The robot displays an impressive
array of mechanical and computational skills, yet its ability to
interact with humans for prolonged periods of time had not been
tested. In this study, the robot was assisted by a human operator,
F.T. On average, the operator sent the robot 1 byte of informa-
tion every 141 s, specifying aspects such as a recommended
direction of walk, head direction, and six different behavioral
categories (dance, sit down, stand up, lay down, hand gesture,
and giggle). The advice from the human controller could be

overruled by the robot if it interfered with its own priorities,
although this seldom happened in practice.

Results and Discussion
The study was conducted in Room 1 of the Early Childhood
Education Center (ECEC) of the University of California, San
Diego (UCSD). It was part of the RUBI Project, the goal of
which is to develop and evaluate interactive computer architec-
tures to assist teachers in early education (20, 21). There were a
total of 45 field sessions, lasting an average of 50 min each. The
sessions ended when the robot sensed low battery power, at
which point it laid down and assumed a sleeping posture. The
study had three phases: During phase I, which lasted 27 sessions,
the robot interacted with the children by using its full behavioral
repertoire. During phase II, which lasted 15 sessions, the robot
was programmed to produce interesting but highly predictable
behaviors. During phase III, which lasted three sessions, the
robot was reprogrammed to exhibit its full repertoire. All of the
field sessions were recorded by using two video cameras. Two
years were spent studying the videos and developing quantitative
methods for their analyses. Here we present results from four
such analyses.

Development of the Quality of Interaction. One of our goals was to
establish whether it is possible for social robots to maintain the
interest of children beyond the 10-h barrier. To achieve this goal,
we had to develop and evaluate a wide variety of quantitative
methods. We found that continuous audience response methods,
originally used for marketing research (22), were particularly
useful. Fifteen sessions were randomly selected from the 45 field
sessions and independently coded frame-by-frame by five UCSD
undergraduate students who were uninformed of the purpose of
the study. Coders operated a dial in real time while viewing the
videotaped sessions. The position of this dial indicated the ob-
server’s impression of the quality of the interaction seen in the
video (Fig. 1A). The order of presentation of the 15 video
sessions was independently randomized for each coder.

The evaluation signals produced by the five human coders
were low-pass-filtered. Fig. 1C shows the inter-observer reliabil-
ity, averaged across all possible pairs of coders, as a function of
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the bandwidth of the low-pass filter. The inter-observer reliabil-
ity shows an inverted U-curve: As the high-frequency noise
components are filtered out, the inter-observer reliability in-
creases. However, as the bandwidth of the filter decreases, it
filters out more than just the noise, resulting in a deterioration
of inter-observer correlation. Optimal inter-observer reliabil-
ity of 0.80 (Spearman correlation) was obtained with a band-
width of 5 min. This finding suggests that a time scale of �5 min
is particularly important when evaluating the quality of social
interaction.

Fig. 1B displays the quality of interaction for each session,
averaged over coders. During phase I, which spanned 27 sessions
over a period of 45 days, the quality of the interaction between
toddlers and robot steadily increased. During the first 10 sessions,
it became apparent that although the robot’s behavioral repertoire
was impressive, it did not appear responsive to the children. Initially
the human controller tried to establish some contingencies between
robot behavior and children (e.g., by requesting QRIO to wave its
hand in front of a child). However social events moved too quickly
(e.g., by the time the robot waved its hand, the child was gone). By
session 11, a simple reflex-like contingency was introduced so that
QRIO giggled immediately after being touched on the head. This
contingency made clear to the children that the robot was respon-
sive to them and served to initiate interaction episodes across the
entire study [see supporting information (SI) Movie 1].

During phase II, the quality of interaction declined precipi-
tously. The first six sessions of this phase were designed to
evaluate two different robot-dancing algorithms: (i) a choreo-

graphed play-back dance that had been developed at great cost
and (ii) an algorithm in which QRIO moved in response to the
optic flow sensed in its cameras, resulting in behaviors that
appear like spontaneous dancing (23). During the sessions,
which lasted 30 min each, the robot played the same song 20
times consecutively with a 10-s mute interval before each replay.
For three randomly selected sessions, the robot was controlled
by the choreographed dance. For the other three sessions, it was
controlled by the optic-f low-based dancing algorithm. Fig. 1 D
and E shows the change in the quality of interaction as a function
of time within the six sessions. The dots correspond to individual
sessions. The curve shows the averaged score across the five
judges and the six sessions. The graph shows a consistent decay
in the quality of interaction within sessions (F(1,500, 7,496) �
7.4768; P � 0.05). The curve is approximately exponential with
a time constant of 3.5 min (i.e., it takes �4 min for the score to
decay 36.7% of the initial value). Significant decays were also
observed across sessions (F(3, 1,871) � 358.07; P � 0.05). The type
of dancing algorithm had no significant effect (F(1, 7,496) � 2.961;
P � 0.05), showing that a simple interactive dancing algorithm
could perform as well as a very expensively choreographed
dance. For the last nine sessions of phase II, the human
controller assisted the robot with the goal of learning how to
improve its dancing algorithm (e.g., by controlling the timing of
the start and end of the robot’s dance). The efforts of the human
controller were not successful. Only after the robot was repro-
grammed to exhibit its entire behavioral repertoire in phase III
did the quality of interaction go back up to the levels seen in
phase I (Fig. 1B).

Haptic Behavior Toward Robot and Peers. The goal of this analysis
was to study in more detail objective correlates of the interac-
tions that developed between children and robot. Based on
extensive examination of the videotapes, we decided to focus on
haptic behaviors. Contact episodes were identified and catego-
rized based on the part of the robot being touched: arm/hand,
leg/foot, trunk, head, and face. The coding was performed by
F.T. The frame-by-frame inter-observer correlation with an
independent coder was 0.85.

The overall number of times the robot was touched followed
the same trend as the quality of interaction scores: It increased
during phase I (slope, 1.21), declined during phase II (slope,
�3.6), and increased again during phase III (slope, 5.4). Statis-
tical cluster analysis revealed two distinct trends in the devel-
opment of haptic behaviors: (i) The frequency of touch to the
legs, trunk, head, and face followed a bell-shaped curve that
peaked at approximately session 16. This peak was driven by the
introduction, on day 11, of the social contingency mentioned
above. (ii) Touch toward the arms and hands followed a very
different trend, increasing in frequency steadily throughout the
study (Fig. 2A). To understand the special character of the arms
and hands, an analysis of toddler-to-toddler contact episodes in
the last two sessions was performed. First, toddler-to-toddler
contact was classified as ‘‘intentional’’ or ‘‘incidental’’ (indepen-
dent inter-observer reliability for this judgment was 0.95). Inci-
dental contact occurred more or less uniformly across the body
(38.4% arm/hand, 30.8% trunk, 30.8% leg/foot). However, in-
tentional peer-to-peer contact was primarily directed toward the
arms and hands (52.9%) compared with other body parts (17.6%
face, 11.8% trunk, 11.8% leg/foot, 5.9% head). We developed an
index of social contact based on the Pearson correlation coef-
ficient between the toddler–robot and the toddler–toddler con-
tact distributions (Fig. 2B). This correlation significantly in-
creased throughout the study (F(1, 44) � 11.45, P � 0.05), starting
at zero in session 1 and ending with an almost perfect correlation
by the last session. Thus, the children progressively reorganized
the way they touched the robot, eventually touching it with the
same distribution observed when touching their peers. There
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Fig. 1. Analyses of the quality of interaction. (A) Coders operated a dial in
real time to indicate their perception of the quality of the interaction between
children and QRIO observed in the video. (B) Blue dots plot the average quality
of interaction score on a random sample of 15 days. The red line represents a
piece-wise-linked linear regression fit. The vertical dashed lines show the
separations between phases. (C) Inter-observer reliability between four coders
as a function of a low-pass-filter smoothing constant. (D and E) Main effects
on the quality of interaction score as a function of time within a session (D) and
across sessions (E).
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were two occasions in which the trend toward peer-like treat-
ment of the robot was broken: (i) when a contingency was
introduced such that the robot giggled in response to head
contact (temporarily increasing head contact, which seldom
happens in toddler–toddler interaction) and (ii) during the first
6 days of phase II, when the robot was programmed to dance
repeatedly.

Haptic Behavior Toward Robot and Toys. In addition to QRIO, two
control toys were used throughout the sessions: (i) a soft toy
resembling a teddy bear and (ii) an inanimate toy robot similar
in appearance to QRIO. Hereafter, this latter toy is referred to
as ‘‘Robby.’’ The colorful teddy bear had elicited many hugs in
previous observations with children this age. Surprisingly, it was
ignored throughout the study. When children touched QRIO,
they did so in a very careful manner. Robby, on the other hand,
was treated like an inanimate object or a ‘‘block,’’ making it
difficult to locate exactly where it was being touched. For this
reason, haptic behaviors toward Robby and QRIO were ana-
lyzed by using four new categories: rough-housing, hugging,
touching with objects, and care-taking. Rough-housing referred
to behaviors that would be considered violent if directed toward
human beings. Fig. 3A shows that these behaviors were often
observed toward Robby but never toward QRIO. Hugging
developed in distinctly different ways toward QRIO and Robby
(Fig. 3B). Robby received a surprising number of hugs from day
1, yet the frequency of hugging decreased dramatically as the
study progressed. The hugs toward Robby appeared as substi-
tutes for behaviors originally intended for QRIO in a manner
reminiscent of the displacement behaviors, reported by etholo-
gists across the animal kingdom (24). The displacement hypoth-
esis is based on the following facts: (i) The teddy bear control toy
that had elicited more hugs than Robby during pilot work was
never hugged when QRIO was present. Robby, on the other
hand, was hugged frequently when QRIO was present. (ii) As
hugging toward QRIO increased (see SI Movie 2), hugging

toward Robby decreased. (iii) Children often looked at QRIO
when they hugged Robby (see SI Movie 3). It should be noted
that the hugging category included behaviors such as ‘‘holding’’
or ‘‘lifting up’’ that were in general far more difficult to do with
QRIO than Robby, which is lighter and does not move auton-
omously. Despite this, by the end of the study, the least huggable
entity, QRIO, was hugged the most, followed by Robby. The
most huggable toy, the teddy bear, was never hugged.

Another behavioral category that developed very differently
toward Robby than QRIO was ‘‘touching with objects.’’ This
category generally involved social games (e.g., giving QRIO an
object or putting on a hat). These behaviors were seldom
directed toward Robby but commonly occurred with QRIO (Fig.
3C). Care-taking behaviors were also frequently observed to-
ward QRIO but seldom toward Robby. The most common
behaviors from this category involved putting a blanket on
QRIO/Robby while saying ‘‘night-night’’ (see SI Movie 4). This
behavior often occurred at the end of the session when QRIO
laid down on the floor as its batteries were running out. Early in
the study, some children cried when QRIO fell. We advised the
teachers to teach the children not to worry about it because the
robot has reflexes that protect it from damage when it falls.
However, the teachers ignored our advice and taught the
children to be careful; otherwise children could learn that it is
acceptable to push each other down. At 1 month into the study,
children seldom cried when QRIO fell; instead, they helped it
stand up by pushing its back or pulling its hand, sometimes
despite teacher requests (see SI Movie 5).

Automatic Assessment of Connectedness. Several statistical models
were developed and tested in an attempt to predict the frame-
by-frame human evaluation of the quality of interaction. For
every video frame in the 15 field sessions, the models were given
eight binary inputs indicating the presence or absence of eight
haptic behavioral categories described in the previous study:
touching head, touching face, touching trunk, touching arm/
hand, touching leg/foot, hugging, touching with objects, and
care-taking. The goal of the models was to predict, frame by
frame, the quality of interaction score, averaged across the four
human coders. Among the models evaluated, one of the simplest
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and most successful was structured as follows. First, the eight
inputs were converted into a binary signal that indicated whether
the robot had been touched anywhere on its body, a signal that
could be detected by using a simple capacitance switch. This
binary signal was then low-pass-filtered, time-delayed, and lin-
early scaled to predict the quality of interaction averaged across
the four human observers. Four parameters were optimized: (i)
the bandwidth of the low-pass filter, (ii) the time delay, (iii) the
additive, and (iv) multiplicative constants of the linear transfor-
mation. The optimal bandwidth was 0.0033 Hz, the optimal time
delay was 3 s, and the optimal multiplicative and additive
constants were 4.9473 and 1.3263, respectively. With these
parameters, the correlation coefficient between the model and
the human evaluation of the quality of interaction across a total
1,244,224 frames was 0.78, almost as good as the average
human-to-human agreement (0.80). More complex models were
also tested that assigned different filters and different weights to
different haptic behaviors, but the improvements achieved by
such models were small. Fig. 4 displays the evaluation of the four
human coders and the predictions based on the touch model for
a single session. Representative images are also displayed from
different parts of the session.

Conclusions
We presented quantitative behavioral evidence that after 45 days
of immersion in a childcare center throughout a period of 5
months, long-term bonding and socialization occurred between
toddlers and a state-of-the-art social robot. Rather than losing
interest, the interaction between children and the robot im-
proved over time. Children exhibited a variety of social and
care-taking behaviors toward the robot and progressively treated
it more as a peer than as a toy. In the current study, the robot
received 1 byte of information from a human controller approx-

imately once every 2 min. A possible scenario is that this byte of
information is what separates current social robots from success.
However, analysis of the signals sent by the human controller
revealed that they did little more than increase the variability of
the robot’s behaviors during idle time, orient it toward the center
of the room, and avoid collision with stationary objects. In
retrospect, we recognize that, except for the lack of simple,
touch-based social contingencies, the robot was almost ready for
full autonomy.

The results highlighted the particularly important role that
haptic behaviors played in the socialization process: (i) The
introduction of a simple touch-based contingency had a break-
through effect in the development of social behaviors toward the
robot. (ii) As the study progressed, the distribution of touch
behaviors toward the robot converged to the distribution of
touch behaviors toward other peers. (iii) Touch, when integrated
over a few minutes, was a surprisingly good predictor of the
ongoing quality of social interaction.

The importance that touch played in our study is reminiscent
of Harlow’s experiments with infant macaques raised by artificial
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Fig. 5. Layout of Room 1 at ECEC, where QRIO was immersed. There were
three playing spaces, and QRIO was placed one of these spaces. Children were
free to move back and forth between spaces, thus providing information
about their preferences.
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surrogate mothers. Based on those experiments, Harlow con-
cluded that ‘‘contact comfort is a variable of overwhelming
importance in the development of affectional response’’ (25).
Our work suggests that touch integrated on the time-scale of a
few minutes is a surprisingly effective index of social connect-
edness. Something akin to this index may be used by the human
brain to evaluate its own sense of social well being. One
prediction from such a hypothesis is the existence of brain
systems that keep track of this index. Such a hypothesis could be
tested with current brain-imaging methods.

It should be pointed out that the robot became part of a large
social ecology that included teachers, parents, toddlers, and
researchers. This situation is best illustrated by the fact that,
despite our advice, the teachers taught the children to treat the
robot more gently so that it would not fall as often. Because of
its f luid motions, the robot appeared lifelike and capitalized on
the intense sentiments that it triggered in humans in ways that
other entities could not. Our results suggest that current robot
technology is surprisingly close to achieving autonomous bond-
ing and socialization with human toddlers for significant periods
of time. Based on the lessons learned with this project, we are
now developing robots that interact autonomously with the
children of Room 1 for weeks at a time. These robots are being
codesigned in close interaction with the teachers, the parents,
and, most importantly, the children themselves.

Methods
Room 1 at ECEC is divided into two indoor rooms and an
outdoor playground. In all of the studies, QRIO was located in

the same room, and children were allowed to move freely
between the different rooms (Fig. 5). Room 1 hosts �12 children
between 10 and 24 months of age. In the early part of the study,
there were a total of six boys and five girls. In April 2005, one boy
moved out and a boy and a girl moved in. The head teacher of
Room 1 was assisted by two more teachers. The teachers,
particularly the head teacher, were active participants in the
project and provided feedback about the daily sessions. F.T. and
J.R.M. spent from October 2004 to March 2005 volunteering
10 h a week at ECEC before the study. This time allowed them
to establish essential personal relationships with the teachers,
parents, and children and helped to identify the challenges likely
to be faced during the field sessions. The field study would not
have been possible without the interpersonal connections estab-
lished during these 5 months. In March 2005, QRIO was
introduced to the classroom. All of the field sessions were
conducted from 10:00 a.m. to 11:00 a.m. The experimental room
always had a teacher when a child was present, as well as a
researcher in charge of safety, usually J.R.M. The studies were
approved by the UCSD Institutional Review Board under
Project 041071. Informed consent was obtained from all of the
parents of children that participated in the project.

We thank Kathryn Owen, the director of the Early Childhood Education
Center, Lydia Morrison, the head teacher of Room 1, and the parents
and children of Room 1 for their support. The study is funded by UC
Discovery Grant 10202 and by National Science Foundation Science of
Learning Center Grant SBE-0542013.
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