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ABSTRACT OF THE DISSERTATION

Facing Uncertainty:

3D Face Tracking and Learning with Generative Models

by

Tim Kalman Marks

Doctor of Philosophy in Cognitive Science

University of California San Diego, 2006

James Hollan, Chair

Javier Movellan, Co-Chair

We present a generative graphical model and stochastic filtering algorithm for simulta-

neous tracking of 3D rigid and nonrigid motion, object texture, and background texture

from single-camera video. The inference procedure takes advantage of the conditionally

Gaussian nature of the model using Rao-Blackwellized particle filtering, which involves

Monte Carlo sampling of the nonlinear component of the process and exact filtering of

the linear Gaussian component. The smoothness of image sequences in time and space is

exploited using Gauss-Newton optimization and Laplace’s method to generate proposal

distributions for importance sampling.

Our system encompasses an entire continuum from optic flow to template-based

tracking, elucidating the conditions under which each method is optimal, and introducing

a related family of new tracking algorithms. We demonstrate an application of the system

to 3D nonrigid face tracking. We also introduce a new method for collecting ground truth

information about the position of facial features while filming an unmarked subject, and

introduce a data set created using this technique.

We develop a neurally plausible method for learning the models used for 3D face

tracking, a method related to learning factorial codes. Factorial representations play

a fundamental role in cognitive psychology, computational neuroscience, and machine

learning. Independent component analysis pursues a form of factorization proposed by

xii



Barlow [1994] as a model for coding in sensory cortex. Morton proposed a different

form of factorization that fits a wide variety of perceptual data [Massaro, 1987b]. Re-

cently, Hinton [2002] proposed a new class of models that exhibit yet another form of

factorization. Hinton also proposed an objective function, contrastive divergence, that

is particularly effective for training models of this class.

We analyze factorial codes within the context of diffusion networks, a stochastic

version of continuous time, continuous state recurrent neural networks. We demonstrate

that a particular class of linear diffusion networks models precisely the same class of

observable distributions as factor analysis. This suggests novel nonlinear generalizations

of factor analysis and independent component analysis that could be implemented using

interactive noisy circuitry. We train diffusion networks on a database of 3D faces by

minimizing contrastive divergence, and explain how diffusion networks can learn 3D

deformable models from 2D data.
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Notation

The following notational conventions are used throughout this dissertation.

Random Variables Unless otherwise stated, capital letters are used for random vari-

ables, lowercase letters for specific values taken by random variables, and Greek letters

for fixed model parameters. We typically identify probability functions by their argu-

ments: e.g., p(x, y) is shorthand for the joint probability that the random variable X

takes the specific value x and the random variable Y takes the value y. Subscripted

colons indicate sequences: e.g., X1:t = X1, X2, · · · , Xt. The term E(X) represents the

expected value of the random variable X, and V ar(X) represents the covariance matrix

of X.

Matrix Calculus We adhere to the notational convention that the layout of first

derivatives matches the initial layout of the vectors and matrices involved; e.g., for

column vectors α and β, the Jacobian matrix of α with respect to β is denoted ∂αT

∂β .

For second derivatives, we follow the convention that if ∂α
∂β is a column vector and γ is a

column vector, then ∂2α
∂γ∂β = ∂

∂γ

[(
∂α
∂β

)T ]. If either ∂α
∂β or γ is a scalar, however, then no

transpose occurs, and ∂2α
∂γ∂β = ∂

∂γ

(
∂α
∂β

)
.

Finally, the term Id stands for the d× d identity matrix.

1



Chapter I

Introduction

The problem of recovering the three dimensional structure of a scene or object

from two-dimensional visual information has long been a focus of the computer vision

and artificial intelligence communities. Marr [1982] and his contemporaries, for example,

proposed a number of computational theories for “decoding” 3D structure from low-

level properties of 2D images, endeavoring to recover shape from shading, structure from

apparent motion, depth from optical flow, surface orientation from surface contours,

depth using stereopsis, and so on. Like many of his predecessors, Marr saw inferring the

3D structure of the world as a critical step towards viewpoint- and lighting-independent

recognition of objects.

Much of the challenge of machine perception lies in creating systems to accom-

plish perceptual tasks that humans perform effortlessly, such as object identification and

tracking. The human visual system can take in a noisy collection of jumbled pieces of

low-level visual information and quickly determine, for example, that a few feet away is

a woman’s face, turned slightly to the left and smiling. Humans’ ability to determine

high-level structural and semantic information from low-level 2D observations is an ex-

ample of the general perceptual problem of determining the “hidden” root causes of our

observations.

Discriminative vs. Generative Models Computer models of perception that at-

tempt to determine high-level information from low-level signals generally fall into two

categories: discriminative, and generative. The goal of the discriminative approach is

2



3

to find functions that map directly from observed data (e.g., observed images) to the

underlying causes of those data (e.g., a head’s location, orientation, and facial expres-

sion). Typical examples of discriminative models include multi-layer perceptrons (neural

networks) and support vector machines that are trained in a supervised manner. Discrim-

inative models such as these can be described as “black box” approaches to perception:

the system can perform the task successfully without it being clear just how the task

is being accomplished. An important part of the analysis of such a system is often to

discover the principles behind the way that the system has learned to accomplish its

task.

From a probabilistic point of view, we can think of discriminative models as direct

methods for learning the mapping from the observed values of a random variable, X, to

a probability distribution over the values of a hidden variable, H. In probability nota-

tion, a discriminative model provides a direct formulation of p(H |X), the distribution of

possible hypotheses given the observed data. Discriminative models have certain advan-

tages. For example, once a neural network or support vector machine has been trained

to perform a task, the performance of the task can be quite efficient computationally.

However, the discriminative approach has not yet proven successful for difficult machine

perception tasks, such as recovering 3D structure from 2D video of a deformable object.

In contrast, generative approaches begin with a forward model of how the hid-

den variable (the value to be inferred) would generate observed data. This is useful

in situations for which the problem of how observations are generated from causes is

better understood than the problem of how causes are inferred from observations. For

instance, 3D computer graphics, the processes that are used in computer animation and

video games to produce a realistic 2D image from a known 3D model, are much better

understood than the inverse problem of inferring the 3D scene that produced an observed

2D image. The generative approach leverages our knowledge of the forward process by

asking: according to my model of how observable patterns are generated, what hidden

cause could have produced the information observed? The generative approach enables

us to leverage the theoretical knowledge and specialized computing hardware that we

already have for doing 3D animation, to help us solve the inverse problem of recognizing

3D structure from 2D scenes.

A probabilistic generative model provides an explicit probability distribution
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p(H), called the prior distribution, over the possible values of the hidden variable.

The prior represents internal knowledge that the system has before any data are ob-

served. Lack of knowledge is modeled as an uninformative (uniform) prior distribution,

expressing the fact that we may not have a priori preferences for any hypothesis. In

addition, the generative model provides the likelihood function p(X |H), the distribution

over the values of the visible variable given the value of the hidden variable. Together,

these provide a model of the joint distribution of the hidden and observed variables:

p(H,X) = p(X |H)p(H). If we have a probabilistic causal model (i.e., a generative

model), we can use Bayes Rule to infer the inverse model, the posterior distribution

p(H |X), which represents the probabilities that each of the various causes h could have

produced the observed data x:

p(H |X) =
p(X |H)p(H)

p(X)
. (I.1)

Bayes Rule (I.1), also known as Bayes Theorem, is named for Reverend Thomas Bayes,

a Presbyterian minister in 18th century England. Figure I.1 shows a portrait of Bayes

as well as a photograph of his final resting place.

Early approaches to computer vision utilized models that did not explicitly repre-

sent uncertainty, which often resulted in a lack of robustness to natural variations in data.

More recently, the computer vision community has embraced probabilistic models, which

contain explicit representations for uncertainty. Rather than simply representing a single

value for a quantity of interest, random variables represent a probability distribution over

all possible values for that quantity. Uncertainty in the posterior distribution indicates

how certain the system is of its conclusions. The posterior distribution expresses not

only what the system knows, but also what it does not know.

Probabilistic models are crucial when multiple opinions, each with different levels

of uncertainty, need to be combined. Suppose two different systems each estimate a

different value for the same variable. If the systems do not provide any measure of their

relative certainties, it can be difficult or even impossible to combine the two estimates

effectively. Intuitively, we should perform some sort of weighted average, but we have

no sound basis for determining the weights to give each system’s estimate. In contrast,

probability theory tells us how to combine distributions in an optimal way. Probability

theory is the glue that allows information from multiple systems to be combined in a
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Figure I.1: Reverend Thomas Bayes. Left: The only known portrait of Bayes
[O’Donnell, 1936], which is of dubious authenticity [Bellhouse, 2004]. Right: The Bayes
family vault in Bunhill Fields Cemetary, London, where Thomas Bayes is buried [Tony
O’Hagan (photographer)]. This was Bayes’ residence at the time his famous result [Bayes,
1763] was posthumously published. The inscription reads: “Rev. Thomas Bayes son of
the said Joshua and Ann Bayes. 7 April 1761. In recognition of Thomas Bayes’s impor-
tant work in probability this vault was restored in 1969 with contributions received from
statisticians throughout the world.”

principled manner. In order to integrate systems, then, it is invaluable to have an explicit

representation of uncertainty, which generative approaches provide naturally.

I.1 Overview of the thesis research

I.1.1 G-flow: A Generative Probabilistic Model for Video Sequences

Our overall approach in Chapter II is as follows. We use the physics of image

generation to propose a probabilistic generative model of video sequences. Noting that

the model has a distinct mathematical structure, known as a conditionally Gaussian

stochastic process, we develop an inference algorithm using techniques that capitalize

on that special structure. We find that the resulting inference algorithm encompasses

two standard computer vision approaches to tracking, optic flow and template matching,

as special cases. This provides a new interpretation of these existing approaches that

suggests the conditions under which each is optimal, and opens up a related family of
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new tracking algorithms.

Visual Tracking of 3D Deformable Objects In Chapter II, we present a proba-

bilistic generative model of how a moving, deformable 3D object such as a human face

generates a video sequence. In this model, the observations are a time-indexed sequence

of images of the object (the face) as it undergoes both rigid head motion, such as turning

or nodding the head, and nonrigid motion, such as facial expressions. We then derive

an optimal inference algorithm for finding the posterior distribution over the hidden

variables (the rigid and nonrigid pose parameters, the appearance of the face, and the

appearance of the background) given an observed video sequence.

The generative model approach is well suited to this problem domain. We have

much prior knowledge about the system that can be incorporated with generative models

more easily than with discriminative models. For example, we can incorporate our

knowledge about the physics of the world: how heads and faces can move, as well as how

three-dimensional objects form two-dimensional images on the camera’s image plane.

We can even take advantage of 3D graphics-accelerated hardware, which was originally

designed to facilitate implementation of the forward model, to help us solve the inverse

problem. Because the generative model makes explicit its prior knowledge about the

world, we can also learn this prior information, the parameters of the model, from

examples. If we wish to change our assumptions later (e.g., from weak perspective

projection to a perspective camera model), it is crystal clear how the forward model needs

to change. In addition, explicitly specifying the forward model helps us to understand the

nature of the problem that needs to be solved. Deriving an optimal inference algorithm

for the generative model can shed new light on existing approaches, and can provide

insight into the types of problems the brain might need to solve in order to accomplish

the same task.

One of the great advantages of generative models over black-box models, is that

the assumptions that our generative model makes about the world are stated explicitly

(rather then incorporated implicitly). This enables formal consideration of how relaxing

the assumptions would affect the optimal inference procedure. In addition, not only is

it often easier to alter a generative model to accommodate changing circumstances or

changing assumptions, but it is also often easier to combine two generative models into
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a single model than it is to combine two discriminative models.

Current systems for 3D visual tracking of deformable objects can be divided into

two groups: template-based trackers whose appearance (texture) models are constant over

all time, and flow-based trackers whose appearance (texture) models at each video frame

are based entirely on the image of the previous frame. Flow-based tracking methods

make few assumptions about the texture of the object being tracked, but they require

precise knowledge of the initial pose of the object and tend to drift out of alignment over

time. The appearance information in a flow-based model is only as good as its alignment

in the previous frame. As a result, the alignment error builds over time, which can lead

to catastrophic results.

In contrast, template-based approaches are more robust to position uncertainty.

However, template-based trackers require good knowledge of the texture appearance of

the object, and are unable to adapt when the object appearance changes over time (e.g.,

due to changes in lighting or facial expression). In short, flow-based trackers are good

at adapting to changes in appearance, but their memory of the object’s appearance is

fleeting, which leads to growing alignment error. Template-based models are good at

initial alignment and at re-aligning when they get off track, but they are unable to

adapt to changing circumstances. The best of both worlds would be an appearance

model in the middle of the conceptual continuum from template-based to flow-based,

which could reap the benefits of both types of appearance model without suffering from

their limitations.

As we describe in Chapter II, by defining a generative model and deriving an

optimal inference algorithm for this model, we discovered that two existing approaches

to object tracking, template matching and optic flow, emerge as special limiting cases of

optimal inference. This in turn sheds new light on these existing approaches, clarifying

the precise conditions under which each approach is optimal, and the conditions under

which we would expect each approach to be suboptimal. In addition to explaining

existing approaches, optimal inference in G-flow also provides new methods for tracking

nonrigid 3D objects, including an entire continuum spanning from template-matching to

optic flow. Tests on video of moving human faces show that G-flow greatly outperforms

existing algorithms.
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The IR Marks Data Set: Ground Truth Information from an Unmarked Face

Prior to this thesis research, there has been no video data set of a real human face that

is up to the task of measuring the effectiveness of 3D nonrigid tracking systems. The

reason is the difficulty of obtaining ground truth information about the true 3D locations

of the points being tracked, some of which are located on smooth regions of the skin. The

purpose of nonrigid tracking systems is to track the locations of face points when there

are no observable markers on the face. Some researchers tracking rigid head motion [La

Cascia et al., 2000; Morency et al., 2003] obtain ground truth rigid head pose during the

collection of video test data, by attaching to the head a device that measures 3D position

and orientation. Because the device only needs to measure the rigid pose parameters,

and not the flexible motion of individual points on the face, it can be mounted atop the

head without obscuring the facial features that the system observes.

Nonrigid tracking systems present greater challenges, however, because the points

on the face that the system is to track must remain unobscured even as their positions

are being measured. The traditional method for measuring 3D flexible face motion is to

attach visible markers to the face and then label the positions of these markers in video

taken by multiple cameras. Needless to say, the presence of visible markers during data

collection would make it impossible to test the system’s performance on an unmarked

face. Typically, developers of nonrigid face-tracking systems demonstrate a system’s

effectiveness simply by presenting a video of their system in action, or testing on a more

easily controlled simulated data set.

We developed a new collection method utilizing an infrared marking pen that is

visible under infrared light but not under visible light. This involved setting up a rig

of visible-light cameras (to which the infrared marks were not visible) for collecting the

test video, plus three infrared (IR) cameras (to which the infrared marks were clearly

visible), and calibrating all of the cameras both spatially and temporally. We collected

three video sequences simultaneously in all cameras, and reconstructed the 3D ground

truth information by hand-labeling several key frames from the IR cameras in each

sequence. We use this data set to rigorously test the performance of our system, and

to compare it to other systems. We are making this data set, called IR Marks, freely

available to other researchers in the field, to begin filling the need for facial video with

nonrigid ground truth information.
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Figure I.2: Diffusion networks and their relationship to other approaches. Many existing
models can be seen as special cases of diffusion networks.

I.1.2 Diffusion Networks for automatic discovery of factorial codes

In Chapter II, we describe the G-flow inference algorithm assuming that the

system already has a model of the 3D geometry of the deformable object. In Chapter III,

we explain how such a model can be learned using a neurally plausible architecture and a

local learning rule that is similar to Hebbian learning. Surprisingly, the problem reduces

to that of developing factorial codes. In Chapter III, we derive rules for learning factor

analysis in a neurally plausible architecture, then show how these rules can be used to

learn a deformable 3D face model.

Diffusion Neural Networks Recently, Movellan et al. [Movellan et al., 2002; Movel-

lan and McClelland, 1993] have proposed a new class of neural net, the diffusion network,

which has real-valued units that are updated in continuous time. Diffusion networks can

be viewed as a generalization of many common probabilistic time series models (see Fig-

ure I.1.2). Whereas standard continuous-time, continuous-state recurrent networks are

deterministic, diffusion networks are probabilistic. In diffusion networks, the internal

state (pre-synaptic activation) of each unit is not simply the weighted sum of its inputs,

but has an additional Gaussian noise term (a diffusion process) added. This adds an

extra level of neural realism to the networks, because in real-world systems such as the

brain, some noise is inevitable. Rather than trying to minimize or avoid the noise that

is present in real systems, diffusion networks exploit this noise by making it an integral
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part of the system. Knowing natural systems’ propensity for taking advantage of fea-

tures of the environment, it is quite possible that the brain similarly exploits the noise

in its internal circuitry.

A diffusion network is similar to a Boltzmann machine [Ackley et al., 1985; Hinton

and Sejnowski, 1986] in that the output (post-synaptic activation) of each unit is not a

deterministic function of the inputs to the unit. Like the Boltzmann machine, a diffusion

network continues to evolve over time, never settling into a single state, but rather

settling into an equilibrium probability distribution over states, known as a Boltzmann

distribution. In fact, a diffusion network with symmetric connections can be viewed as

a continuous Boltzmann machine: a Boltzmann machine with continuous (real-valued)

states that are updated in continuous time.

One type of Boltzmann machine that has received special interest is the restricted

Boltzmann machine (RBM). The units in a restricted Boltzmann machine are divided

into two subsets, or layers: the visible layer and the hidden layer, which consist, respec-

tively, of all of the units that represent observed variables, and all of the units that rep-

resent hidden variables. Inter-layer connections (connecting a hidden unit with a visible

unit) are permitted in the RBM, but intra-layer connections (hidden-hidden or visible-

visible connections) are prohibited. Recently, Hinton [2002] introduced a new learning

algorithm, contrastive divergence learning, that can be used to train restricted Boltz-

mann machines much more efficiently than the traditional Boltzmann machine learning

algorithm [Ackley et al., 1985; Hinton and Sejnowski, 1986].

In Chapter III, we consider linear diffusion networks, diffusion networks for which

the unit activation function (the mapping from pre-synaptic to post-synaptic activation)

is linear. We focus on linear diffusion networks that have the same architecture as the

restricted Boltzmann machine: the units are partitioned into hidden and visible layers,

with intra-layer (hidden-visible) connections but no inter-layer connections (no hidden-

hidden nor visible-visible connections). We call these linear factorial diffusion networks

(linear FDNs).

We prove in Chapter III that linear FDNs model the exact same class of data

distributions that can be modeled by factor analysis, a linear Gaussian probabilistic

model that has been used to model a wide range of phenomena in numerous fields. This

is somewhat surprising, because the linear FDN generative model is a feedback network,
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whereas the generative model for factor analysis is feedforward. The existence of a

neurally plausible method for learning and implementing factor analysis models means

that the brain could be capable of using not only factor analysis, but a host of nonlinear

and non-Gaussian extensions of factor analysis.

Not only do factorial diffusion networks share the same architecture as the re-

stricted Boltzmann machine, but like the RBM, they can be trained efficiently using

contrastive divergence. In Chapter III, we derive the contrastive divergence learning

rules for linear FDNs, and use them to learn the structure of 3D face space from a set

of biometric laser scans of human heads.

Learning 3D Deformable Models with Contrastive Hebbian Learning In

Chapter II, we derive and test a highly effective system for tracking both the rigid

and nonrigid 3D motion of faces from video data. The system uses 3D deformable mod-

els of a type that, as we describe in Chapter III, can be learned by a neurally plausible

network model with a local, Hebbian-like learning rule.

This does not prove beyond a reasonable doubt that the human brain uses 3D

deformable models to track faces and other flexible objects. Nonetheless, this dissertation

does demonstrate that the brain has both the motive (efficient, accurate on-line face

tracking) and the means (a neurally plausible architecture with an efficient learning

rule) to use flexible 3D models.

I.2 List of Findings

The following list itemizes the main contributions of this dissertation to the lit-

erature.

Chapter II

• Describe a generative graphical model for how 3D deformable objects generate 2D

video sequences.

• Derive an optimal inference algorithm, a type of Rao-Blackwellized particle filter,

for inferring the time sequence of an object’s rigid pose (position and orientation of



12

the object in 3D world coordinates) and nonrigid pose (e.g., facial expressions), as

well as the object and background texture (appearance), from an observed image

sequence.

• Demonstrate that this filtering algorithm contains two standard computer vision

algorithms, optic flow and template matching, as special limiting cases.

• Show that this filtering algorithm encompasses a wide range of new approaches to

filtering, including spanning a continuum from template matching to optic flow.

• Develop an infrared-based method for obtaining ground truth 3D surface data while

collecting video of a deformable object (a human face) without visible markings.

• Use this method to collect a new video dataset of a deforming face with infrared-

based ground truth measurements, the first of its kind, which we are making pub-

licly available to other researchers in the field.

• Evaluate the performance of the aforementioned 3D tracking system using this new

data set, and demonstrate that it outperforms existing algorithms.

• Derive an expression for the second derivative of a rotation matrix with respect

to the exponential rotation parameters. This new expression can be used in a

wide variety of probabilistic applications in computer vision and robotics to obtain

estimates of uncertainty.

Chapter III

• Explore a new class of neurally plausible stochastic neural networks, diffusion net-

works, focusing on the subclass of diffusion networks that has linear unit activation

functions and restricted connections: linear Factorial Diffusion Networks (linear

FDNs).

• Prove that this subclass of feedback diffusion networks models the exact same class

of distributions as factor analysis, a well-known approach to modeling distributions

based on a feedforward generative model.
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• As a corollary, show that the factor analysis model factorizes in two important

senses: it is Morton separable, and it is a Product of Experts.

• Demonstrate that principal component analysis (PCA) can be modeled by diffusion

networks as a limiting special case of the linear Factorial Diffusion Network model

for factor analysis.

• Derive learning rules to show that linear FDNs can be trained using an efficient,

local (Hebbian-like) learning technique known as contrastive divergence [Hinton,

2002].

• Demonstrate the effectiveness of these learning rules by training a linear FDN to

model a database of 3D biometric scans of human faces.

• Show that a neurally plausible model, the linear FDN, can learn a 3D deformable

model of a human face, which could then be used by the system of Chapter II to

track natural head and face motion from monocular video.



Chapter II

Joint 3D Tracking of Rigid

Motion, Deformations, and

Texture using a Conditionally

Gaussian Generative Model

Abstract

We present a generative model and stochastic filtering algorithm for simultaneous

tracking of 3D position and orientation, nonrigid deformations (e.g., facial expressions),

object texture, and background texture from single-camera video. We show that the

solution to this problem is formally equivalent to stochastic filtering of conditionally

Gaussian processes, a problem for which well known approaches exist [Chen et al., 1989;

Murphy, 1998; Ghahramani and Hinton, 2000]. In particular, we propose a solution to

3D tracking of deformable objects based on Monte Carlo sampling of the nonlinear com-

ponent of the process (rigid and nonrigid object motion) and exact filtering of the linear

Gaussian component (the object and background textures given the sampled motion).

The smoothness of image sequences in time and space is exploited to generate an effi-

cient Monte-Carlo sampling method. The resulting inference algorithm encompasses two

For a summary of the notational conventions used in this dissertation, see page 1.
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classic computer vision algorithms, optic flow and template matching, as special cases,

and elucidates the conditions under which each of these methods is optimal. In addition,

it provides access to a continuum of appearance models ranging from optic flow-based

to template-based. The system is more robust and more accurate than deterministic op-

tic flow-based approaches to tracking [Torresani et al., 2001; Brand and Bhotika, 2001],

and is much more efficient than standard particle filtering. We demonstrate an applica-

tion of the system to 3D nonrigid face tracking. We also introduce a new method for

collecting ground truth information about the positions of facial features while filming

an unmarked test subject, and present a new data set that was created using this new

technique.

II.1 Introduction

Probabilistic discriminative models provide a direct method for mapping from the

observed values of a random variable, to a probability distribution over the values of the

hidden variables. In contrast, generative approaches begin with a forward model of how

the hidden variables (the values to be inferred) would generate observed data. In many

situations it is easier to develop a forward model that maps causes into observations,

than to develop a model for the inverse process of inferring causes from observations. The

generative approach leverages our knowledge of the forward process by asking: according

to my model of how observable patterns are generated, what hidden cause could have

produced the information observed?

Real-world video sequences, such as video of people interacting with each other

or with machines, include both static elements and moving elements. Often the most

important moving object in a video exhibits both rigid motion (rotation, translation,

and scale-change) and nonrigid motion (e.g., changes in facial expressions). The goal of

a monocular 3D nonrigid tracking system is to take as input a sequence of video from

a single camera, and output a sequence of pose parameters that separately describe the

rigid and nonrigid motion of the object over time. Although the input is a sequence of

2D images, the output parameters specify the 3D positions of a number of tracked points

on the object.

The generative model approach is well suited to this problem domain. First, we
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have much prior knowledge about the system that can be incorporated with generative

models more easily than with discriminative models. For example, we can incorporate

our knowledge about the physics of the world: how a person’s face can move, as well

as how three-dimensional objects form two-dimensional images on the camera’s image

plane. Second, specifying the forward model explicitly helps us to understand the nature

of the problem that needs to be solved. Deriving an optimal inference algorithm for the

generative model can shed new light on existing approaches, and can provide insight

into the types of problems the brain might need to solve in order to accomplish the same

task. Third, we can use inexpensive specialized graphics hardware that was developed

for 3D computer animation in video games.

Nonrigid tracking of facial features has a number of application areas, includ-

ing human-computer interaction (HCI) and human-robot interaction, automated and

computer-assisted video surveillance, and motion capture for computer animation. One

example of importance to many fields is the automated tracking of facial features for the

identification of emotions and/or for the coding of facial actions using the Facial Action

Coding System (FACS) [Ekman and Friesen, 1978]. First of all, the output of a tracking

system such as ours can be used directly to help identify facial actions, including rigid

head motion (an important component of facial actions that is difficult for humans to

code with either precision or efficiency). Secondly, the 3D tracking results can be used

to take a video of a moving, talking, emoting face and artificially undo both in-plane

and 3D out-of-image-plane rotations, as well as (if desired) warp to undo facial defor-

mations. The stabilized, “frontalized” images could be used as input to existing systems

for automated facial action coding that require frontal views [Bartlett et al., 2003].

Bayesian inference on generative graphical models is frequently applied in the

machine learning community, but until recently, less so in the field of computer vision.

Recent work applying generative graphical models to computer vision includes [Torralba

et al., 2003; Hinton et al., 2005; Fasel et al., 2005; Beal et al., 2003; Jojic and Frey, 2001].

The tracking system presented in this chapter is similar in spirit to the approach of Jojic

and Frey [2001] in that we present a probabilistic grahical model for generating image se-

quences, all the way down to the individual pixel values, and apply Bayesian inference on

this model to track humans in real-world video. However, their work focused on models

with a layered two-dimensional topology and with discrete motion parameters, whereas
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we address the problem for models with dense three-dimensional flexible geometry and

continuous motion parameters.

II.1.1 Existing systems for nonrigid 3D face tracking

3D Morphable Models Recently, a number of 3D nonrigid tracking systems have

been developed and applied to tracking human faces [Bregler et al., 2000; Torresani

et al., 2001; Brand and Bhotika, 2001; Brand, 2001; Torresani et al., 2004; Torresani

and Hertzmann, 2004; Brand, 2005; Xiao et al., 2004a,b]. Every one of these trackers

uses the same model for object structure, sometimes referred to as a 3D morphable

model (3DMM) [Blanz and Vetter, 1999]. The object’s structure is determined by the

3D locations of a number of points, which we refer to as vertices. To model nonrigid

deformations (e.g., facial expressions), the locations of the vertices are restricted to be

a linear combination of a small number of fixed 3D basis shapes, which we call morph

bases. This linear combination may then undergo rigid motion (rotation and translation)

in 3D. Finally, a projection model (such as weak perspective projection) is used to map

the 3D vertex locations onto 2D coordinates in the image-plane. See Section II.3.1 for a

more detailed explanation of this model of 3D nonrigid structure.

3D Nonrigid Structure-from-Motion The systems in [Bregler et al., 2000; Torre-

sani et al., 2004; Xiao et al., 2004b; Brand, 2005] perform nonrigid structure-from-motion.

That is, they assume that the 2D vertex locations are already known, and that the point

correspondences across frames are known. These systems take as input a set of point

tracks (2D vertex locations at every time step), rather than a sequence of 2D images.

Thus although these systems have a model for structure, they have no model for object

appearance (texture). We will not discuss these nonrigid structure-from-motion systems

further in this chapter, but instead focus on systems that, like our G-flow system, have

both a 3D morphable model for structure and a model for grayscale or color appearance

(texture).

Appearance Models: Template-Based vs. Flow-Based Nonrigid tracking sys-

tems that feature both a 3D structure model and an appearance model include [Torresani

et al., 2001; Brand and Bhotika, 2001; Brand, 2001; Torresani and Hertzmann, 2004; Xiao
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et al., 2004a]. While all of these systems use the same 3D morphable model for struc-

ture (see Section II.3.1), they differ in how they model the texture of the object. The

systems of Torresani and Hertzmann [2004] and Xiao et al. [2004a] use a model of the

object’s appearance that is constant across all time. We refer to these as template-based

appearance models.

In contrast to these template-based models, the appearance models of Torresani

et al. [2001], Brand and Bhotika [2001], and Brand [2001] do not remain constant over

time, but are completely changed as each new image is presented. In these systems, each

new observed frame of video is compared with a texture model that is based entirely

on the previous frame. Specifically, a small neighborhood surrounding the estimated

location of each vertex in the previous image, is compared with a small neighborhood

surrounding the proposed location of the same vertex in the current image. We call these

flow-based appearance models.

A Continnuum of Appearance Models from Template to Flow All of the non-

rigid 3D tracking systems that have appearance models, whether flow-based [Torresani

et al., 2001; Brand and Bhotika, 2001; Brand, 2001] or template-based [Torresani and

Hertzmann, 2004; Xiao et al., 2004a], minimize the difference between their appearance

model and the observed image using the Lucas-Kanade image alignment algorithm [Lu-

cas and Kanade, 1981; Baker and Matthews, 2004], an application of the Gauss-Newton

method (see Appendix II.C) to nonlinear regression. This suggests that the template-

based approach and the flow-based approach may be related.

Intuitively, one can think of a flow-based texture model as a template which,

rather than remaining constant over time, is reset at each time step based upon the

observed image. In this conceptualization, template-based and flow-based appearance

models can be considered as the two ends of a continuum. In the middle of the contin-

uum would be appearance models that change slowly over time, gradually incorporating

appearance information from newly presented images into the existing appearance model.

Flow-based tracking methods make few assumptions about the texture of the

object being tracked, but they require precise knowledge of the initial pose of the object

and tend to drift out of alignment over time. The appearance information in a flow-based

model is only as good as its alignment in the previous frame. As a result, the alignment
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error builds over time, which can lead to catastrophic results.

In contrast, template-based approaches are more robust to position uncertainty.

However, template-based trackers require good knowledge of the texture appearance of

the object, and are unable to adapt when the object appearance changes over time (e.g.,

due to changes in lighting or facial expression). In short, flow-based trackers are good

at adapting to changes in appearance, but their memory of the object’s appearance is

fleeting, which leads to growing alignment error. Template-based models are good at

initial alignment and at re-aligning when they get off track, but they are unable to

adapt to changing circumstances. The best of both worlds would be an appearance

model in the middle of the conceptual continuum from template-based to flow-based,

which could reap the benefits of both types of appearance model without suffering from

their limitations.

Modeling Uncertainty in the Filtering Distribution The algorithms proposed by

[Torresani et al., 2001; Brand and Bhotika, 2001; Brand, 2001; Xiao et al., 2004a] commit

to a single solution for pose and appearance at each time step; i.e., they do not model

uncertainty. But image information can be ambiguous, and a model that is allowed to be

uncertain about the pose at each time step would be less likely to lose track of the object.

The model of Torresani and Hertzmann [2004] similarly models rigid pose as point esti-

mate. However, their system maintains a Gaussian probability distribution over nonrigid

pose parameters, which affords the system some ability to accommodate uncertain data.

However, the Gaussian uncertainty model limits their system to unimodal distributions

over the pose parameters, which can be risky for image-based tracking systems. The

main limitation of a Gaussian approximation is that although it represents uncertainty,

it still commits to a single hypothesis in that it is a distribution with a single mode.

When tracking objects, it is often the case that more than one location may have high

probability. In such cases, Gaussian approaches place maximum certainty on the average

of the high-probability locations. This can have disastrous effects if the average location

is in a region of very low probability.

The tracking system we present in this chapter has a more general model of uncer-

tainty in the filtering distribution. We have a particle-based model for the distribution

of both rigid and nonrigid pose parameters, which provides a Monte Carlo estimate of
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an arbitrary distribution—including multimodal distributions. In addition, we have a

conditionally Gaussian probabilistic model for object and background texture (appear-

ance): for a given value of the pose parameters, the texture uncertainty is a Gaussian

distribution. A Gaussian model for texture is reasonable because it models the changes

in pixel values due to sensor noise, which is Gaussian to first approximation.

Batch Processing vs. On-Line Processing The flow-based trackers of Torresani

et al. [2001], Brand and Bhotika [2001], and Brand [2001], as well as the template-

based tracker of Xiao et al. [2004a], all utilize on-line processing of observed images,

which enables them to be considered for real-time and memory-intensive applications. In

contrast, the system of Torresani and Hertzmann [2004] is a batch-processing algorithm,

which cannot process incoming data in an on-line fashion.

II.1.2 Our approach

The mapping from rigid and nonrigid pose parameters to image pixels is nonlin-

ear, both because the image positions of vertices are a nonlinear function of the pose

parameters, and because image texture (grayscale or color intensity) is not a linear

function of pixel position in the image. In addition, the probability distributions over

pose parameters that occur in 3D face tracking can be non-Gaussian (e.g., they can

be bimodal). Inference in linear Gaussian dynamical systems can be performed exactly

[Kalman, 1960], whereas nonlinear and non-Gaussian models often lend themselves to

Monte Carlo approaches such as particle filtering [Arulampalam et al., 2002]. Due to

the complexity of nonrigid tracking, however, it is infeasible to naively apply sampling

methods such as particle filtering to this problem. Nevertheless, as we show in this

chapter, the problem has a special structure that can be exploited to obtain dramatic

improvements in efficency. In particular: (1) the problem has a conditionally Gaussian

structure, and (2) the peak and covariance of the filtering distribution can be estimated

efficiently.

In this chapter, we present a stochastic filtering formulation of 3D tracking that

addresses the problems of initialization and error recovery in a principled manner. We

propose a generative model for video sequences, which we call G-flow, under which image

formation is a conditionally Gaussian stochastic process [Chen et al., 1989; Doucet et al.,
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2000a; Chen and Liu, 2000; Doucet and Andrieu, 2002] ; if the pose of the object is

known, the conditional distribution of the texture given the pose is Gaussian. This

allows partitioning the filtering problem into two components: a linear component for

texture that is solved using a bank of Kalman filters with a parameter that depends upon

the pose, and a nonlinear component for pose whose solution depends on the states of

the Kalman filters.

When applied to 3D tracking, this results in an inference algorithm from which op-

tic flow and template-matching emerge as special cases. In fact, flow-based tracking and

template-based tracking are the two extremes of a continuum of models encompassed by

G-flow. Thus our model provides insight into the precise conditions under which tracking

using a flow-based appearance model is optimal and, conversely, the conditions under

which template-based tracking is optimal. The G-flow model spans the entire spectrum

from template-based to flow-based models. Every individual texel (texture element) in

G-flow’s texture map can act as template-like or as flow-like as the situation demands.

In general, optimal inference under G-flow combines flow-based and template-based in-

formation, weighing the relative importance of each type of information according to its

relative uncertainty as new images are presented.

II.1.3 Collecting video with locations of unmarked smooth features

Although there are now a number of 3D nonrigid tracking algorithms, measuring

their effectiveness has been exceedingly difficult. A large part of proving the effectiveness

of one’s tracking algorithm is to make a demo video that looks good, or to demonstrate

the system’s performance on toy data. But it is difficult to assess the relative difficulty

of different groups’ test videos. The problem lies in the lack of video data of real moving

human faces (or other deformable objects) in which there are no visible marks on the

face, and yet for which the actual 3D positions of the features being tracked is known.

Nonrigid face-tracking systems present special challenges, because the points on the face

whose ground truth positions must be measured, need to remain unobscured during the

collection of the video. The traditional method for measuring nonrigid face motion is

to attach visible markers to the face and then label the positions of these markers in

several cameras. Needless to say, the presence of such visible markers during the video
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Figure II.1: A single frame of video from the IR Marks dataset. Before video collection,
the subject’s face was marked using an infrared marking pen. The figure shows the
same frame of video simultaneously captured by a visible-light camera (upper left) and
three infrared-sensitive cameras. The infrared marks are clearly visible using the infrared
cameras, but are not visible in the image from the visible-light camera.
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collection process would make it impossible to measure a system’s performance on video

of an unmarked face.

In order for the field to continue to progress, there is a great need for publicly

available data sets with ground truth information about the true 3D locations of the facial

features that are to be tracked. Such data sets will facilitate refinement of one’s own

algorithm during development, as well as provide standards for performance comparison

with other systems.

We have developed a new method for collecting the true 3D positions of points

on smooth facial features (such as points on the skin) without leaving a visible trace

in the video being measured. We used this technique, described in Section II.7 and

Appendix II.A, to collect a face motion data set, the IR Marks video data set, which

we are making available in order to begin filling the need for good data sets in the field.

Figure II.1 shows an example of the same frame of video from the IR Marks data set,

captured simultaneously by a visible-light camera and three infrared-sensitive cameras.

We present our tracking results on this new data set in Section II.8, using it to compare

our performance with other tracking systems and to measure the effects that changing

parameter values have on system performance.

II.2 Background: Optic flow

Let yt represent the current image (video frame) in an image sequence, and let lt

represent the 2D translation of an object vertex, x, at time t. We let x(lt) represent

the image location of the pixel that is rendered by vertex x at time t. We label all of

the pixels in a neighborhood around vertex x by their 2D displacement, d, from x; viz.

xd(lt)
def= x(lt) + d.

The goal of the standard Lucas-Kanade optic flow algorithm [Lucas and Kanade,

1981; Baker and Matthews, 2002] is to estimate lt, the translation of the vertex at time

t, given lt−1, its translation in the previous image. All pixels in a neighborhood around

x are constrained to have the exact same translation as x. The Lucas-Kanade algorithm

uses the Gauss-Newton method (see Appendix II.C) to find the value of the translation,

lt, that minimizes the squared image intensity difference between the image patch around
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x in the current frame and the image patch around x in the previous frame:

l̂t = argmin
lt

1
2

∑
d∈D

[
yt
(
xd(lt)

)
− yt−1

(
xd(lt−1)

)]2 (II.1)

where D is the set of displacements that defines the neighborhood (image patch) around

a vertex.

Constrained Optic Flow for Deformable 3D Objects Under the assumption that

every vertex moves independently of the others, we would perform the minimization (II.1)

separately for each vertex x. Suppose, however, that the vertices do not move indepen-

dently, but rather move in concert according to a global model, as a function of pose

parameters ut. In G-flow, for example, we constrain the locations of the object vertices

on the image plane to be consistent with an underlying 3D morphable model. In our

model, the pose ut comprises both the rigid position parameters (3D rotation and trans-

lation) and the nonrigid motion parameters (e.g., facial expressions) of the morphable

model (see Section II.3.1 for details).

Then the image location of the ith vertex is parameterized by ut: we let xi(ut)

represent the image location of the pixel that is rendered by the ith object vertex when

the object assumes pose ut. Suppose that we know ut−1, the pose at time t − 1, and

we want to find ut, the pose at time t. This problem can be solved by minimizing the

following form with respect to ut:

ût = argmin
ut

1
2

n∑
i=1

[
yt
(
xi(ut)

)
− yt−1

(
xi(ut−1)

)]2
. (II.2)

Applying the Gauss-Newton method (see Appendix II.C) to achieve this mini-

mization yields an efficient algorithm that we call constrained optic flow, because the

vertex locations in the image are constrained by a global model. This algorithm, derived

in Appendix II.D, is essentially equivalent to the methods presented in [Torresani et al.,

2001; Brand, 2001]. In the special case in which the xi(ut) are neighboring points that

move with the same 2D displacement, constrained optic flow reduces to the standard

Lucas-Kanade optic flow algorithm for minimizing (II.1).

Standard optic flow (whether constrained or not) does not maintain a represen-

tation of uncertainty: for each new frame of video, it chooses the best matching pose,
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throwing away all the rest of the information about the pose of the object, such as the

degree of uncertainty in each direction. For example, optic flow can give very precise esti-

mates of the motion of an object in the direction perpendicular to an edge, but uncertain

estimates of the motion parallel to the edge, a phenomenon known in the psychophysics

literature as the aperture problem.

For our G-flow model, a key step in the inference algorithm is a Gauss-Newton

minimization over pose parameters (described in Section II.5.2) that is quite similar to

constrained optic flow. Unlike standard approaches to optic flow, however, our algorithm

maintains an estimate of the entire probability distribution over pose, not just the peak

of that distribution.

II.3 The Generative Model for G-Flow

The problem of recovering 3D structure from sequences of 2D images has proven

to be a difficult task. It is an ill-posed problem, in that a given 2D image may be

consistent with more than one 3D explanation. We take an indirect approach to the

problem of inferring the 3D world from a 2D observation. We start with a model of the

reverse process, which is much better understood: how 2D images are generated by a

known 3D world. This allows us to frame the much harder problem of going from 2D

images to 3D structure as Bayesian inference on our generative model. The Bayesian

approach is well suited to this ill-posed problem, because it enables us to measure the

relative goodness of multiple solutions and update these estimates over time.

In this section, we lay out the forward model: how a 3D deformable object gener-

ates a video sequence (a sequence of 2D images). Then in Section II.5, we describe how

to use Bayesian inference to tackle the inverse problem: Determining the pose (nonrigid

and rigid motion) of the 3D object from an image sequence.

Assumptions of the Model We assume the following knowledge primitives:

• Objects occlude backgrounds.

• Object texture and background texture are independent.
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• The 3D geometry of the deformable object to be tracked is known in advance.

In Chapter III, we will address how such 3D geometry could be learned using a

neurally plausible architecture.

In addition, we assume that at the time of object tracking, the system has had sufficient

experience with the world to have good estimates of the following processes (it would be

a natural extension to infer them dynamically during the tracking process):

• Observation noise: the amount of uncertainty when rendering a pixel from a given

texture value.

• A model for pose dynamics

• The texture process noise: How quickly each texel (texture element) of the fore-

ground and background appearance models varies over time

Finally, the following values are left as unknowns and inferred by the tracking algorithm:

• Object texture (grayscale appearance)

• Background texture

• Rigid pose: Object orientation and translation

• Nonrigid pose: Object deformation (e.g., facial expression)

II.3.1 Modeling 3D deformable objects

In a 3D Morphable Model [Blanz and Vetter, 1999], we define a non-rigid object

by the 3D locations of n vertices. The object is a linear combination of k fixed morph

bases, with coefficients c = [c1, c2, · · · , ck]T . The fixed 3 × k matrix hi contains the

position of the ith vertex in all k morph bases.

Thus in 3D object-centered coordinates, the location of the ith vertex is hic. Scale

changes are accomplished by multiplying all k morph coefficients by the same scalar. In

practice, the first morph basis is often the mean shape, and the other k− 1 morph bases

are deformations of that base shape (e.g., the results of applying principal component

analysis (PCA) to the 3D locations of the vertices in several key frames). In this case, the
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first morph coefficient, c1, can be used as a measure of scale. The transformation from

object-centered to image coordinates consists of a rotation, weak perspective projection,

and translation. Thus xi, the 2D location of the ith vertex on the image plane, is

xi = grhic+ l, (II.3)

where r is the 3× 3 rotation matrix, l is the 2× 1 translation vector, and g =
[

1 0 0
0 1 0

]
is

the projection matrix.

The object pose at time t, denoted by ut, comprises both the rigid motion param-

eters (rotation, r, and translation, l) and the nonrigid motion parameters (the morph

coefficients, c): ut = {rt, lt, ct}. Note that while we always include the time subscript

for the pose parameter, ut, to avoid clutter we usually omit the subscript t from its three

components:

ut = {r, l, c}. (II.4)

II.3.2 Modeling an image sequence

We model the image sequence Y as a stochastic process generated by three hidden

causes, U , V , and B, as shown in the graphical model (Figure II.3). The m× 1 random

vector Yt represents the m-pixel image at time t. The n× 1 random vector Vt represents

the n-texel object texture∗, and the m × 1 random vector Bt represents the m-texel

background texture. As illustrated in Figure II.2, the object pose, Ut, determines onto

which image pixels the object and background texels project at time t.

For the purposes of the derivations in this chapter, we make the following simpli-

fying assumption. We assume that the object has n vertices, one corresponding to each

texel in the object texture map, vt: the ith texel in vt corresponds to the ith vertex of

the object. We further assume that the mapping (which is a function of the pose, ut)

from object texels (in vt) to image locations (in yt) is one-to-one, i.e., that every object

texel renders exactly one pixel in the image (unless an object texel is self-occluded, in

which case it does not render any image pixels). Thus, of the m pixels in each observed

image, at most n of the pixels are rendered by the object (one pixel per unoccluded

texel in vt), and the remaining pixels in the image are rendered by the background. In
∗We use the term texel (short for texture element) to refer to each individual element in a texture

map, just as pixel (picture element) refers to an individual element of an image.
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a(Ut)
Assigns texels 

to pixels

Vt

Yt

Bt

Figure II.2: Each pixel in image Yt is rendered using the color of either an object texel (a
pixel in the object texture map, Vt) or a background texel (a pixel in the background tex-
ture map, Bt). The projection function a(Ut), where Ut is the pose at time t, determines
which texel is responsible for rendering each image pixel.

practice, we actually use a great deal fewer vertices than pixels, and each pixel that is

part of the object is rendered by interpolating the location from the surrounding vertex

positions and correspondingly interpolating the texture value from the object texture

map. However, the simplifying assumption that the rendering process is a one-to-one

discrete function from vertices/texels to pixels is a convenient fiction, in that it makes

the derivations easier to follow without affecting the underlying mathematics.

The ith texel in the object texture map renders the pixel at xi(ut), which is the

image location to which vertex i projects. From Section II.3.1, this image location is

given by:

xi(ut) = grhic+ l. (II.5)

To simplify notation, we index pixels in the image vector, yt, by their 2D image locations.

Thus yt
(
xi(ut)

)
represents the grayscale value of the image pixel that is rendered by

object vertex i. In our image generation model, this is equal to the grayscale value of
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3D Object 
Pose and Morph

Object 
Texture

2D Background
Texture

Observed 2D Image
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Vt−1

Yt
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Yt−1
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U1 Ut−1 Ut
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Figure II.3: G-flow video generation model: At time t, the object’s 3D pose, Ut, is used
to project the object texture, Vt, into the 2D image. This projection is combined with
the background texture, Bt, to generate the observed image, Yt. The goal is to make
inferences about (Ut, Vt, Bt) based on the observed video sequence, {Y1, . . . , Yt}.

texel i in the object texture map, plus Gaussian observation noise:

Foreground

pixel xi(ut)
: Yt

(
xi(ut)

)
= Vt(i) +Wt

(
xi(ut)

)
, Wt

(
xi(ut)

)
∼ N(0, σw), σw > 0

(II.6)

where the random variables Wt(j) represent the independent, identically distributed

observation noise (rendering noise) at every image pixel j ∈ {1, . . . ,m}.
The background texture map, bt, is the same size as the image yt. Every image

pixel j that is not rendered by a foreground texel, is rendered by background texel j. The

grayscale value of each pixel rendered by the background is equal to the grayscale value

of the corresponding texel in the background texture map, plus Gaussian observation

noise:

Background

pixel j
: Yt(j) = Bt(j) +Wt(j), Wt(j) ∼ N(0, σw), σw > 0. (II.7)
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In order to combine the scalar equations (II.6) and (II.7) into a single vector

equation, we introduce the projection function, a(Ut). For a given pose, ut, the projection

a(ut) is a block matrix,

a(ut)
def=
[
av(ut) ab(ut)

]
. (II.8)

Here av(ut), the object projection function, is an m×n matrix of 0s and 1s that tells onto

which image pixel each object vertex projects; e.g., a 1 at row j, column i means that the

ith object vertex projects onto image pixel j. Matrix ab(ut), an m×m diagonal matrix of

0s and 1s, plays the same role for background pixels. Assuming the foreground mapping is

one-to-one (each texel projects to exactly one pixel), we let ab(ut) = Im−av(ut)[av(ut)]T ,

expressing the simple occlusion constraint that every image pixel is rendered by object

or background, but not both.

Then we can express the observation model given in (II.6) and (II.7) by a single

matrix equation:

Yt = a(Ut)

Vt
Bt

+Wt Wt ∼ N(0, σwIm), σw > 0 (II.9)

where σw > 0 is a scalar.

For t ≥ 2, the system dynamics are given by:

Vt = Vt−1 + Zvt−1 Zvt−1 ∼ N(0,Ψv), Ψv is diagonal

Bt = Bt−1 + Zbt−1 Zbt−1 ∼ N(0,Ψb), Ψb is diagonal
(II.10)

where Zv, Zb,W are independent over time and of each other, and are independent of the

initial conditions. The n values on the diagonal of ψv represent the variance of the process

noise for each of the n texels of the object texture map. Similarly, the m values on the

diagonal of ψb represent the variance of the process noise for the m background texels.

We let the pose, Ut, be a Markov process with a known pose transition distribution:

p(ut |u1:t−1, y1:t−1) = p(ut |ut−1). (II.11)

The form of the pose distribution is left unspecified since the algorithm proposed here

does not require the pose distribution or the pose dynamics to be Gaussian.

The model is specified by the following terms:
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• Initial conditions, which consist of a distribution for the object pose U1, and Gaus-

sian distributions of object and background texture, V1 and B1, all of which are

independent of each other. We assume that the covariance matrix of V1 is diagonal

(the initial noise on every foreground texel is independent of the noise on every

other foreground texel) and the covariance matrix of B1 is a scalar times the iden-

tity matrix (the initial noise on every background texel is independent of, and has

the same covariance as, the noise on every other background texel).

• The diagonal covariance matrices for the state transitions (process noise), Ψv

and Ψb.

• The pose transition distribution, p(ut |ut−1).

• The covariance matrix for the image rendering noise, Ψw = σ2
w Im, where σw is a

scalar.

Using standard methods, the above parameters could be either learned from training

data, or inferred dynamically during tracking to adjust to the observed data. For the

results described in this chapter, we simply choose generic parameter values that work

well. For example, we use a weak model for the pose transition distribution p(ut |ut−1),

that simply requires object pose to not change too much in adjacent frames, and also

penalizes facial expressions whose morph coefficients exceed the range observed in the

training data.

The imaging model (e.g., weak perspective projection) determines the functions

av and ab.

II.4 Inference in G-Flow: Preliminaries

II.4.1 Conditionally Gaussian processes

Nonrigid 3D tracking is a difficult nonlinear filtering problem because the image

location of each vertex is a nonlinear function of the pose (i.e., xi(ut) and a(ut) are

nonlinear functions of ut), and the image intensity is a nonlinear function of image

location (i.e., yt(x) is a nonlinear function of x). Fortunately, the problem has a rich

structure that we can exploit: under the G-flow model, video generation is a conditionally
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Gaussian process [Chen et al., 1989; Doucet et al., 2000a; Chen and Liu, 2000; Doucet

and Andrieu, 2002].

If the specific values taken by the pose sequence, u1:t, were known, then the

texture processes, V and B, and the image process, Y , would be jointly Gaussian. In

addition to V and B, the image sequence Y would itself be a linear Gaussian process,

with time-varying parameter a(ut) determined by the known pose ut. Hence, given the

poses u1:t, we could use a Kalman filter to optimally infer the object and background

texture maps from the observed images over time.

II.4.2 Importance sampling

Importance sampling is a Monte Carlo technique that was designed in the 1940s

for efficient estimation of expected values [Doucet et al., 2000b]. The approach works as

follows. Suppose we want to estimate the expected value of a function h of a random

variable X, whose probability density function is p(x):

E
(
h(X)

)
=
∫
p(x)h(x)dx (II.12)

One way to do so is to take n samples {x(1), · · · , x(n)} from X and average the values

taken by h on those samples

E
(
h(X)

)
≈ 1
n

n∑
i=1

h(x(i)) (II.13)

Instead of sampling directly from p, which may be intractable or computationally costly,

in some cases it is desirable to obtain samples from a proposal distribution, π, from which

samples can be drawn efficiently, and compensate by using importance weights that are

proportional to the ratio of p to π. To see why, note that

E
(
h(X)

)
=
∫
px(x)h(x)dx =

∫
π(x)

p(x)
π(x)

h(x)dx =
∫
π(x)w(x)h(x)dx (II.14)

where the importance weight, w(x), is the ratio of the values taken by the desired

distribution and the proposal distribution:

w(x) =
p(x)
π(x)

. (II.15)



33

Thus, the corresponding importance sampling estimate would be

E
(
h(X)

)
≈ 1
n

n∑
i=1

w(x(i))h(x(i)) (II.16)

where now the samples {x(1), · · · , x(n)} are taken from the proposal distribution π. Since

the approach provides estimates for expected values of arbitrary functions h, it can be

interpreted as providing an estimate for the distribution of X itself, i.e.,

p̂(x) =
1
n
w(x)δ(x− x(i)), (II.17)

where δ(·) is the Dirac delta function.

When p(x) is only known up to a proportionality constant, then the importance

weights are also known up to a proportionality constant. In this case we can rewrite

(II.16) as follows:

E(X) =
∫
π(x)w(x)h(x)dx∫
π(x)w(x)dx

(II.18)

where w(x) ∝ p(x)
π(x) is now known up to a normalizing constant. Since the ratio of two

consistent estimators is also consistent, a standard estimate in this case is as follows

[Andrieu et al., 2003]:

E
(
h(X)

)
≈

1
n

∑n
i=1w(x(i))h(x(i))

1
n

∑n
i=1w(x(i))

=
n∑
i=1

w̃(x(i))h(x(i)), (II.19)

where

w̃(x(i)) =
w(x(i))∑n
j=1w(x(j))

(II.20)

is the normalized importance weight. The corresponding estimate of the distribution of

X is as follows:

p̂(x) = w̃(x)δ(x− x(i)). (II.21)

For the estimation process to be efficient, the proposal distribution π must be as close

as possible to the original distribution, p. For our application, we found that in addition

to Rao-Blackwellization, it was critical to use the Gauss-Newton method and Laplace’s

method to generate good proposal distributions for importance sampling. As we explain

in Section II.5.2.1, we accomplish this in the context of G-flow by performing an optic

flow-like optimization.
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II.4.3 Rao-Blackwellized particle filtering

Stochastic filtering is the process of sequentially estimating the distributions of a

random process (a sequence of random variables), obtaining each new estimate by com-

bining one’s prior estimates with the current observation. In linear Gaussian dynamical

systems, inference (stochastic filtering) can be performed exactly, using a Kalman fil-

ter [Kalman, 1960]. For nonlinear problems, it is standard to use approximations, such

as an extended Kalman filter, variational methods, and Monte Carlo (sampling-based)

methods such as particle filters.

In the particle filtering literature, the term Rao-Blackwellization [Doucet et al.,

2000a; Doucet and Andrieu, 2002] refers to some dimensions of the system’s state being

integrated out analytically. As a result, the portion of the system’s state that must

be sampled (that must be represented using particles) is lower dimensional. Thus the

variance of the Rao-Blackwellized particle filter is reduced, and fewer samples of the state

space (fewer particles) are required in order to achieve the same level of performance. The

Rao-Blackwellized particle filtering approach, also known in the statistics community as

a Monte Carlo filtering solution for conditionally Gaussian processes [Chen et al., 1989;

Chen and Liu, 2000], takes advantage of the structure of the filtering distribution in

order to get the best of both worlds: it uses exact filtering on the variables that can be

inferred analytically, and uses the Monte Carlo approach of particle filtering only for the

variables that cannot be inferred exactly.

Standard particle filtering alone is insufficient to solve the 3D nonrigid tracking

problem, because the combined sample space for pose and texture would be too high-

dimensional to sample effectively. In order to perform stochastic filtering on the G-flow

model, we use a Rao-Blackwellized particle filter, employing a particle filter to estimate

the pose distribution, and using an exact solution to infer the texture appearance given

the pose. We use particle filtering to obtain a distribution of pose experts: Each expert

corresponds to a particular pose history, u1:t, and the entire collection of experts is

our Monte Carlo estimate of the pose distribution. For each expert, we then use exact

filtering (the Kalman filtering equations) to infer the distribution of texture given the

sampled pose distribution.
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II.5 Inference in G-flow: A bank of expert filters

Our goal is to find an expression for p(ut, vt, bt | y1:t), the posterior distribution of

pose and texture given the observed sequence of images . This is commonly known as

the filtering distribution. In addition, we want the filtering distribution to be updated in

a recursive manner; i.e., given the filtering distribution from time t− 1 and given a new

image yt at time t, we want to find the filtering distribution at time t, without requiring

knowledge of the past images. The following equation provides the key to doing so.

Using the law of total probability, we have that

p(ut, vt, bt | y1:t) =
∫
p(ut, vt, bt, u1:t−1 | y1:t)du1:t−1

=
∫
p(u1:t−1 | y1:t)p(ut, vt, bt |u1:t−1, y1:t)du1:t−1,

or equivalently:

p(ut, vt, bt | y1:t)︸ ︷︷ ︸
Filtering

Distribution

=
∫
p(u1:t−1 | y1:t)︸ ︷︷ ︸
Credibility

of expert

p(ut |u1:t−1, y1:t)︸ ︷︷ ︸
Pose Opinion

of expert

p(vt, bt |u1:t, y1:t)︸ ︷︷ ︸
Texture Opinion

of expert
(Distribution of

texture given pose)

du1:t−1 (II.22)

We can think of the integral in (II.22) as a weighted sum over a distribution of experts,

where each expert corresponds to a past history of poses, u1:t−1. Each expert is endowed

with: (1) an opinion distribution about the current pose, p(ut |u1:t−1, y1:t); (2) an opinion

distribution about the current object and background textures, p(vt, bt |u1:t, y1:t); and (3)

a credibility value, p(u1:t−1 | y1:t). Because the image generation model is conditionally

Gaussian given the pose (see Section II.4.1), we can perform exact inference to determine

the foreground and background texture opinion distributions for each pose expert. This

turns out to be a filtering problem for each expert; thus, inference in G-flow is performed

using a bank of expert filters.

We adopt the following scheme: Use Monte-Carlo methods to obtain a distribution

of pose experts (highly probable samples of U1:t), then use analytic methods to determine

the exact filtering distribution of texture, V1:t, B1:t, for each expert. Table II.1 gives an

overview of how we compute each term in the integral. We cover pose opinion in II.5.2,
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texture opinion (the distribution of texture given pose) in Section II.5.1, and credibility

in II.5.3.

Table II.1: Overview of Inference in G-flow. To infer the filtering distribution at time t,
we evaluate the integral in (II.22) as a sum over experts. For every expert, we compute
each of the three terms in the integral using the method indicated.

Pose opinion
(Section II.5.2)

−→ Efficient Monte Carlo sampling. We use impor-
tance sampling, starting with a Gaussian proposal
distribution for importance sampling that is ob-
tained by Laplace’s method under the assumption
of a white-noise background.

Texture opinion
(Section II.5.1)

−→ Analytical solution given the estimated pose opin-
ion distribution (object and background dynamic
texture maps for each expert).

Credibility
(Section II.5.3)

−→ Analytical solution given the estimated pose opin-
ion distribution.

II.5.1 Expert Texture Opinions

Due to the conditionally Gaussian nature of the image generation process, the

distribution of texture given a pose sequence, u1:t, and a sequence of images, y1:t, is

Gaussian. The mean of this texture opinion, which can be thought of as an expert’s

texture template, consists of a single texture value for each texel (each location in the

texture map). The covariance matrix of the texture opinion, which in our model can be

shown to be diagonal, represents the expert’s uncertainty about the texture values at

each texel in the texture maps. The problem of updating the texture mean and texture

uncertainty maps given a sequence of poses, is equivalent to solving a time-dependent

Kalman filtering problem, for which well known recursive solutions exist.

Let us denote the expected values and covariance matrices of the texture maps
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(the texel means and variances) as follows:

v̂t|t(i)
def= ith element of E(Vt |u1:t, y1:t),

v̂t|t−1(i) def= ith element of E(Vt |u1:t−1, y1:t−1),

b̂t|t(j)
def= jth element of E(Bt |u1:t, y1:t),

b̂t|t−1(j) def= jth element of E(Bt |u1:t−1, y1:t−1) .

(II.23)

Vt|t(i)
def= ith diagonal element of V ar(Vt |u1:t, y1:t),

Vt|t−1(i) def= ith diagonal element of V ar(Vt |u1:t−1, y1:t−1),

Bt|t(j)
def= jth diagonal element of V ar(Bt |u1:t, y1:t),

Bt|t−1(j) def= jth diagonal element of V ar(Bt |u1:t−1, y1:t−1).

(II.24)

We refer similarly to the process noise for each texel:

Ψv(i)
def= ith diagonal element of Ψv Ψb(j)

def= jth diagonal element of Ψb.

(II.25)

II.5.1.1 Kalman equations for dynamic update of texel maps

Assume that by time t, the system already has the means and variances of the

predictive texture maps from the previous time step: {v̂t|t−1, b̂t|t−1,Vt|t−1,Bt|t−1}. First

we apply the Kalman state estimation (correction) equations to obtain the sufficient

statistics of the filtering distribution for texture at time t: {v̂t|t, b̂t|t,Vt|t,Bt|t}. From these,

we apply the Kalman state propagation (prediction) equations to obtain the predictive

distribution at time t: {v̂t+1|t, b̂t+1|t,Vt+1|t,Bt+1|t}.

Correction equations : v̂t|t(i) = k t(i) yt
(
xi(ut)

)
+
[
1− k t(i)

]
v̂t|t−1(i) (II.26)

Vt|t(i) = [1− k t(i)]Vt|t−1(i) (II.27)
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where k t(i), the Kalman gain for texel i, is the scalar given by:

k t(i) =


Vt|t−1(i)

Vt|t−1(i) + σw
, if texel i is visible

0, if texel i is occluded.

(II.28)

Prediction equations : v̂t+1|t(i) = v̂t|t(i)

= k t(i) yt
(
xi(ut)

)
+
[
1− k t(i)

]
v̂t|t−1(i) (II.29)

Vt+1|t(i) = Vt|t(i) + Ψv(i)

= [1− k t(i)]Vt|t−1(i) + Ψv(i) (II.30)

Identical update equations are obtained for the update of background maps, but replacing

the object texture means and variances by the corresponding background texture means

and variances (see Appendix II.E).

II.5.1.2 Interpreting the Kalman equations

The updated texture map is a combination of the previous texture map and the

new image. The Kalman gain dynamically determines the relative contributions of the

previous texture map and the new image. A Kalman gain of 1 means that all of the

information comes from the new observation, and the previous texture map is ignored.

On the other hand, a Kalman gain of 0 means that all of the information comes from

the previous texture map, and the new image is ignored.

It follows from (II.28) that if the uncertainty (variance) of a texel in the object

texture map is much larger than the image rendering noise, then the Kalman gain will

be close to 1:

Vt|t−1(i)� σw =⇒ k t(i) ≈ 1. (II.31)

In other words, the information from the texture map will be ignored in favor of the

(more accurate) information from the image. On the other hand, if a texel’s variance is

much less than the image rendering noise, then the Kalman gain will be close to 0:

Vt|t−1(i)� σw =⇒ k t(i) ≈ 0, (II.32)

and thus the information from the image will be ignored in favor of the (more accurate)

information from the texture map.
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II.5.2 Expert Pose opinions

Our goal is to find an expression for the pose opinion

p(ut |u1:t−1, y1:t), (II.33)

the belief of expert u1:t−1 about the pose at time t. Since the effect of ut on the observed

image yt is nonlinear, exact analytical solutions are not available. However, the spatio-

temporal smoothness of video signals can be exploited to obtain efficient estimates:

First approximate the pose opinion of each expert as a Gaussian distribution, then

use importance sampling to correct for the potential bias introduced by the Gaussian

approximation.

II.5.2.1 Gaussian approximation of each expert’s pose opinion

Laplace’s method consist of approximating an arbitrary probability density func-

tion (pdf) by a Gaussian function centered at the peak of the distribution and with

covariance matrix proportional to the inverse of the matrix of second-order derivatives

(the Hessian matrix) at the peak. This is equivalent to approximating the logarithm of

the pdf with a second-order Taylor series approximation centered about the peak of the

distribution. We apply Laplace’s method to obtain a Gaussian approximation to the

pose opinion distribution of each expert. We then use this Gaussian approximation as

our proposal distribution for importance sampling. The method requires: (1) Finding

the peak of the distribution, and (2) estimating the spread of the opinon (i.e., the Hessian

matrix) at the peak.

Finding the Peak of an Expert’s Pose Opinion We want to estimate ût(u1:t−1),

the value of ut that maximizes the pose opinion (II.33). We can write the pose opinion
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distribution as:

p(ut |u1:t−1, y1:t)︸ ︷︷ ︸
Pose Opinion

of expert u1:t−1

=
p(ut |u1:t−1)p(y1:t |u1:t)

p(y1:t |u1:t−1)

=
p(ut |u1:t−1)
p(y1:t |u1:t−1)

p(y1:t−1 |u1:t) p(yt |u1:t, y1:t−1)

=
p(y1:t−1 |u1:t−1)
p(y1:t |u1:t−1)

p(ut |ut−1) p(yt |u1:t, y1:t−1). (II.34)

To find the peak of this pose opinion distribution, we maximize (II.34) with respect to

ut, eliminating the terms that are constant with respect to ut:

ût(u1:t−1) def= argmax
ut

p(ut |u1:t−1, y1:t)

= argmax
ut

p(ut |ut−1) p(yt |u1:t, y1:t−1). (II.35)

We now need an expression for the final term in (II.35), the predictive distribution

p(yt |u1:t, y1:t−1). As we derive in Appendix II.F (II.178),

log p(yt |u1:t, y1:t−1) =− m

2
log 2π (II.36)

− 1
2

n∑
i=1

[
log
(
Vt|t−1(i) + σw

)
+

[yt(xi(ut))− v̂t|t−1(i)]2

Vt|t−1(i) + σw

]

− 1
2

∑
j 6∈X (ut)

[
log
(
Bt|t−1(j) + σw

)
+

[yt(j)− b̂t|t−1(j)]2

Bt|t−1(j) + σw

]
,

where xi(ut) is the image pixel rendered by the ith object vertex when the object assumes

pose ut, and X (ut) is the set of all image pixels rendered by the object under pose ut. The

first sum in (II.36) corresponds to the foreground pixels, while the second sum in (II.36)

corresponds to the background pixels.

As we show in Appendix II.F, substituting (II.36) into (II.35) and eliminating the



41

terms that don’t depend on ut yields:

ût(u1:t−1) = argmin
ut

(
− log p(ut |ut−1) (II.37)

+
1
2

n∑
i=1

[ Foreground terms︷ ︸︸ ︷
[yt(xi(ut))−v̂t|t−1(i)]2

Vt|t−1(i) + σw
+log[Vt|t−1(xi(ut)) + σw]

−
[yt(xi(ut))−b̂t|t−1(xi(ut))]2

Bt|t−1(xi(ut)) +σw
−log[Bt|t−1(xi(ut)) + σw]︸ ︷︷ ︸

Background terms

])

The sum in (II.37) is difficult to optimize in the general case. However, an efficient

approximation can be obtained under the following assumptions: (1) If there are no self-

occlusions (i.e., the object texels are never occluded), then the second foreground term,

log[Vt|t−1(xi(ut)) +σw], is constant with respect to pose, and thus may be ignored in the

optimization. (2) If the uncertainty about the background is very large, e.g., a white

noise background model, then the background terms can be ignored. (3) If the transition

probability is Gaussian, then the prior term, log p(ut |ut−1), becomes a quadratic penalty

term. Under these conditions, the optimization problem reduces to solving a nonlinear

regression problem, for which the Gauss-Newton algorithm is an efficient and popular

approach. The details of this method for estimating the peak of the pose opinion are

explained in Appendix II.G.

We index each individual expert by d, where d ∈ {1, 2, . . . , η}. Then u(d)
1:t−1 refers

to the pose history of expert d, and ût(u
(d)
1:t−1) refers to our estimate of the peak of

that expert’s pose opinion, obtained (as explained above) by using Gauss-Newton to

minimize (II.37).

Estimating the Spread of the Expert’s Pose Opinion We have just seen how to

estimate ût(u
(d)
1:t−1), the peak of the pose opinion of expert d. The Laplace estimate of

the covariance matrix of this expert’s pose opinion is the inverse of the Hessian matrix

(matrix of second derivatives) of (II.37) evaluated at this peak, under the same assump-

tions listed above for obtaining the peak. (A full derivation is in Appendix II.H.) We

call this Laplace estimate U
(
ût(u

(d)
1:t−1)

)
.
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The Laplace estimate of the pose opinion of expert d is a Gaussian distribution

whose mean is ût(u
(d)
1:t−1) and whose covariance is proportional to U

(
ût(u

(d)
1:t−1)

)
:

π(ut |u(d)
1:t−1, y1:t)

def= N
(
ût(u

(d)
1:t−1), αU

(
ût(u

(d)
1:t−1)

))
. (II.38)

The parameter α > 0 determines the sharpness of the distribution. (Note that letting

α → 0 would be equivalent to the greedy approach of simply setting the new pose ut

equal to the peak of the estimated pose opinion distribution.)

II.5.2.2 Importance sampling correction of the Gaussian approximation

Let u(d)
1:t−1 represent the dth pose expert. Instead of simply accepting the Gaussian

approximation (II.38) to the opinion distribution of that expert, we use it as a proposal

distribution for importance sampling. This corrects for the potential bias induced by

the Gaussian approximation and guarantees that we have a consistent estimator for the

opinion distribution of that expert.

For each expert u(d)
1:t−1, we begin by generating a set of λ independent samples

{u(d,1)
t , . . . , u

(d,λ)
t } drawn from the proposal distribution π(ut |u(d)

1:t−1, y1:t). We then as-

sign each of these samples from the proposal distribution an importance weight, wt(d, e),

which is proportional to the ratio between the true pose opinion distribution and the

proposal distribution, both evaluated at that sample:

wt(d, e) ∝
p(u(d,e)

t |u(d)
1:t−1, y1:t)

π(u(d,e)
t |u(d)

1:t−1, y1:t)
. (II.39)

We may choose the proportionality constant in order to simplify the evaluation of (II.39).

Observing that the pose opinion of expert d is proportional to the joint distribution over

the current pose and image, given the pose and image history,

p(ut |u(d)
1:t−1, y1:t) =

p(yt, ut |u(d)
1:t−1, y1:t−1)

p(yt |u(d)
1:t−1, y1:t−1)

∝ p(yt, ut |u(d)
1:t−1, y1:t−1), (II.40)

we let

wt(d, e) =
p
(
yt, u

(d,e)
t |u(d)

1:t−1, y1:t−1

)
π(u(d,e)

t |u(d)
1:t−1, y1:t)

(II.41)

=
p(u(d,e)

t |u(d)
t−1) p(yt |u(d)

1:t−1, u
(d,e)
t , y1:t−1)

π(u(d,e)
t |u(d)

1:t−1, y1:t)
, (II.42)
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and the normalized importance weights are:

w̃t(d, e) =
wt(d, e)∑λ
f=1wt(d, f)

. (II.43)

Equation (II.42) is used to compute the importance weights: The pose transition proba-

bility in the numerator, p(u(d,e)
t |u(d)

t−1), is known (as part of the image generation model).

The predictive probability in the numerator is expressed in (II.36), and the proposal

probability in the denominator is expressed in (II.38).

Our importance sampling estimate of the expert’s pose opinion distribution is as

follows:

p̂(ut |u(d)
1:t−1, y1:t) = δ

(
ut − u(d,e)

t

)
w̃t(d, e). (II.44)

II.5.3 Expert credibility

At the beginning of frame t, each expert d has a posterior credibility from the

previous frame, p(u(d)
1:t−1 | y1:t−1), which our system represents by

C(d)
t−1|t−1 = p̂(u(d)

1:t−1 | y1:t−1), (II.45)

a consistent estimate of the credibility before the image at time t is observed. The

credibility of expert d at time t, the scalar p(u(d)
1:t−1 | y1:t), is represented by

C(d)
t−1|t = p̂(u(d)

1:t−1 | y1:t), (II.46)

a consistent estimate of the credibility of expert d after the new image, yt, has been

observed.

Suppose we have η opinion experts at time t, each endowed with a consistent

estimate, C(d)
t−1|t−1 = p̂(u(d)

1:t−1 | y1:t−1), of its posterior credibility from the previous frame.

After image yt is observed, the credibility can be updated using Bayes rule:

p(u(d)
1:t−1 | y1:t)︸ ︷︷ ︸

Credibility
of expert d

=
p(u(d)

1:t−1 | y1:t−1) p(yt |u(d)
1:t−1, y1:t−1)

p(yt | y1:t−1)

∝ p(u(d)
1:t−1 | y1:t−1) p(yt |u(d)

1:t−1, y1:t−1) (II.47)
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We already generated a set of samples {u(d,e)
t : e = 1, . . . , λ} to estimate the pose opinion

of the dth expert. We can now use these same samples to estimate the final term

in (II.47). Note that

p(yt |u(d)
1:t−1, y1:t−1) =

∫
p(yt, ut |u(d)

1:t−1, y1:t−1)dut

=
∫
p(yt, ut |u(d)

1:t−1, y1:t−1)

π(ut |u(d)
1:t−1, y1:t)

π(ut |u(d)
1:t−1, y1:t) dut (II.48)

Since the samples u(d,e)
t were drawn from the proposal distribution π(ut |u(d)

1:t−1, y1:t), we

can use them to estimate the integral in (II.48):

p̂(yt |u(d)
1:t−1, y1:t−1) =

1
λ

λ∑
e=1

p
(
yt, u

(d,e)
t |u(d)

1:t−1, y1:t−1

)
π(u(d,e)

t |u(d)
1:t−1, y1:t)

=
1
λ

λ∑
e=1

wt(d, e), (II.49)

where the last step follows from (II.41). Substituting (II.49) into (II.47), we obtain a

consistent estimate for the credibility of the dth expert:

C(d)
t−1|t = p̂(u(d)

1:t−1 | y1:t) ∝ C(d)
t−1|t−1

λ∑
e=1

wt(d, e), (II.50)

where we normalize so that the credibilities of all experts sum to 1:

C(d)
t−1|t =

C(d)
t−1|t−1

∑λ
e=1wt(d, e)∑

f

[
C(f)
t−1|t−1

∑λ
e=1wt(f, e)

] (II.51)

Let u(d,e)
1:t represent the concatenation of the pose history of expert d with pose

sample e of the same expert: u(d,e)
1:t

def= {u(d)
1:t−1, u

(d,e)
t }. To compute the posterior credibil-

ities for frame t, note that

p(u(d,e)
1:t | y1:t) = p(u(d)

1:t−1 | y1:t) p(u
(d,e)
t |u(d)

1:t−1, y1:t) (II.52)

Thus, a consistent estimator of the posterior credibilities at time t is:

p̂(u(d,e)
1:t | y1:t) = C(d)

t|t−1w̃t(d, e). (II.53)
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II.5.4 Combining Opinion and Credibility to estimate the new filtering

distribution

If there are η experts, u(d)
1:t−1 where d ∈ {1, . . . , η}, and each of these experts has

λ pose samples, u(d,e)
t where e ∈ {1, . . . , λ}, then there are a total of η ·λ potential next-

generation pose experts, which we shall call seeds. Say the number of next-generation

experts desired is ν. These are obtained by sampling ν times, with replacement, from

the set of all η · λ seeds, where on each draw, the probability of choosing seed u
(d,e)
1:t is

given by p̂(u(d,e)
1:t | y1:t) from (II.53).

After this resampling step, known in the literature as a selection step [Andrieu

et al., 2003], the filtering distribution is represented by ν pose experts, u(d)
1:t where

d ∈ {1, . . . , ν}, and each expert is assigned equal posterior credibility:

C(d)
t|t =

1
ν
. (II.54)

A consistent estimator of the filtering distribution for pose at time t is obtained

by integrating over all of the next-generation experts, weighting each by its credibility:

p̂(ut | y1:t) =
∫
p̂(u1:t | y1:t)d(u1:t−1) =

ν∑
d=1

δ
(
ut − u(d)

t

)
C(d)
t|t , (II.55)

where δ(·) is the Dirac delta function. For each new expert u(d)
1:t , the corresponding

texture opinion is Gaussian and fully determined by its mean and variance, as explained

in Section II.5.1. Thus the following is a joint estimator of the filtering distribution: the

joint distribution of pose, object texture, and background texture, given the images up

to time t:

p̂(ut, vt, bt | y1:t) =
∫
p̂(u1:t, vt, bt | y1:t)d(u1:t−1) (II.56)

=
∑
d

δ(ut − u(d)
t ) C(d)

t|t N (vt; v̂t|t,Vt|t)N (bt; b̂t|t,Bt|t) (II.57)

II.5.5 Summary of the G-flow inference algorithm

Here is a summary of the G-flow inference algorithm, which has been the subject of

this entire section (Section II.5). At each time step (each frame of video), the procedure

is to first obtain the filtering distribution for pose (Step I), then find the distribution of
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texture given those pose experts (Step II). As is common in particle filters, we do not

resample at every time step [Arulampalam et al., 2002]. Rather, we resample periodically.

We call time steps at which we resample resampling frames, and call the other time

steps continuation frames. The instructions for finding the pose filtering distribution

in continuation frames (Step IC) are a simpler, reduced version of the instructions for

resampling frames (Step IB).

I. Filtering distribution for pose At the end of each time step t, our estimate of

the filtering distribution for pose is:

p̂(ut | y1:t) =
η∑
d=1

C(d)
t|t δ(ut − u

(d)
t ), (II.58)

where η is the number of experts at time t. Thus the filtering distribution for pose

at each frame, t, is determined by the poses of the η experts, {u(d)
t : d = 1, · · · , η},

and the weight of each expert, w(d)
t . For the first video frame (t = 1), the filtering

distribution for pose is obtained using Step A below. Every subsequent video

frame, t > 1, is either a resampling frame (use Step B) or a continuation frame

(use Step C), with resampling frames occuring periodically.

A. Initialization (t = 1)

1. Obtain the pose of each of the η experts by sampling {u(d)
1 : d = 1, . . . , η}

from p(u1).

2. Every expert at t = 1 has the same Gaussian predictive texture distri-

butions for object and background, which are given as part of the model

specification: For each expert d ∈ {1, . . . , η},

v̂
(d)
1|0 = v̂1|0, V(d)

1|0 = V1|0, b̂
(d)
1|0 = b̂1|0, B(d)

1|0 = B1|0. (II.59)

3. Observe y1, the first image in the video sequence.

4. To calculate the posterior credibility of the dth expert, use (II.36):

C(d)
1|1 ∝ p(y1 |u(d)

1 ), normalized so that
η∑
d=1

C(d)
1|1 = 1. (II.60)

B. Resampling frames
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1. Observe yt, the image at time t.

2. Use the Gauss-Newton method to estimate the peak of each expert’s

pose opinion distribution, ût(u
(d)
1:t−1), as explained in Section II.5.2.1 and

Appendix II.G.

3. For each expert d, use Laplace’s method to estimate the covariance of

the expert’s pose opinion distribution about that peak, U
(
ût(u

(d)
1:t−1)

)
.

Then generate a set of λ independent samples, u(d,e)
t = {r(d,e), l(d,e), c(d,e)},

e ∈ {1, · · · , λ}, from the Gaussian proposal distribution:

π(ut |u(d)
1:t−1, y1:t)

def= N
(
ût(u

(d)
1:t−1), αU

(
ût(u

(d)
1:t−1)

))
, (II.61)

as explained in Section II.5.2.1 and Appendix II.H.

4. For each sample u(d,e)
t , use (II.36) to calculate the value of the predic-

tive distribution, p(yt |u(d)
1:t−1, u

(d,e)
t , y1:t−1). Use this value to obtain the

sample’s importance weight, wt(d, e):

wt(d, e) =
p(u(d,e)

t |u(d)
t−1) p(yt |u(d)

1:t−1, u
(d,e)
t , y1:t−1)

π(u(d,e)
t |u(d)

1:t−1, y1:t)
. (II.62)

5. Estimate the credibility of the dth expert, C(d)
t−1|t = p̂(u(d)

1:t−1 | y1:t):

C(d)
t−1|t ∝ C

(d)
t−1|t−1

λ∑
e=1

wt(d, e), normalized so that
η∑
d=1

C(d)
t−1|t = 1.

(II.63)

6. Create ν next-generation pose experts, {u(j)
1:t : j = 1, . . . , ν}, as follows.

a. Randomly select a parent expert, d, who will sire the child. The prob-

ability of selecting parent expert d is equal to that parent’s credibility,

C(d)
t−1|t.

b. Randomly select u(d,e)
t , the child’s pose at time t, from the parent’s

pose opinion (from the set of samples {u(d,1)
t , u

(d,2)
t , . . .}). The prob-

ability of selecting pose u(d,e)
t is proportional to that sample’s impor-

tance weight, wt(d, e).

c. The pose history for the new child (the next-generation expert) is:

u
(j)
1:t =

{
u

(d)
1:t−1 , u

(d,e)
t

}
. (II.64)
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7. Give every next-generation pose expert equal posterior credibility:

C
(j)
t|t =

1
ν
. (II.65)

C. Continuation frames

1. Observe yt, the image at time t.

2. Use the Gauss-Newton method to estimate the peak of each expert’s

pose opinion distribution, ût(u
(d)
1:t−1), as explained in Section II.5.2.1 and

Appendix II.G, and assign that pose to the expert at time t:

u
(d,1)
t = ût(u

(d)
1:t−1). (II.66)

For each expert d, use (II.36) to calculate the value of the predictive

distribution, p(yt |u(d)
1:t−1, u

(d,1)
t , y1:t−1). Use this value to obtain wt(d, 1):

wt(d, 1) = p(u(d,1)
t |u(d)

t−1)p(yt |u(d)
1:t−1, u

(d,1)
t , y1:t−1) (II.67)

3. Estimate the credibility of the dth expert, C(d)
t−1|t = p̂(u(d)

1:t−1 | y1:t):

C(d)
t−1|t ∝ C

(d)
t−1|t−1wt(d, 1), normalized so that

η∑
d=1

C(d)
t−1|t = 1. (II.68)

4. Each new expert’s pose history is a concatenation of the old expert’s pose

history and its new pose at time t:

u
(d)
1:t = {u(d)

1:t−1 , u
(d,1)
t }. (II.69)

5. Set the posterior credibility of each new expert equal to its credibility:

C(d)
t|t = C(d)

t−1|t (II.70)

II. Distribution of texture given pose

For each new expert d, the Gaussian predictive distribution of texture given the

pose history, u(d)
1:t , is obtained from the previous frame’s predictive distribution for
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texture using the Kalman equations for each texel:

object texel i : v̂
(d)
t+1|t(i) = k (d)

t (i) yt
(
xi(u

(d)
t )
)
+
[
1− k (d)

t (i)
]
v̂

(d)
t|t−1(i) (II.71)

V(d)
t+1|t(i) =

[
1− k (d)

t (i)
]
V(d)
t|t−1(i) + Ψv(i) (II.72)

where k (d)
t (i) =


V(d)
t|t−1(i)

V(d)
t|t−1(i) + σw

, if texel i is visible

0, if texel i is occluded.

(II.73)

background texel j : b̂
(d)
t+1|t(j) = k (d)

t (j) yt(j) +
[
1− k (d)

t (j)
]
b̂
(d)
t|t−1(j) (II.74)

B(d)
t+1|t(j) =

[
1− k (d)

t (j)
]
B(d)
t|t−1(j) + Ψb(i) (II.75)

where k (d)
t (j) =


B(d)
t|t−1(j)

B(d)
t|t−1(j) + σw

, if texel j is visible

0, if texel j is occluded.

(II.76)

II.6 Relation to optic flow and template matching

In basic template matching, the same time-invariant texture map is used to track

every frame in the video sequence. Optic flow can be thought of as template matching

with a template that is completely reset at each frame for use in the subsequent frame.

In most cases, optimal inference under G-flow involves a combination of optic flow-based

and template-based tracking, in which the texture template gradually evolves as new

images are presented. Pure optic flow and template-matching emerge as special cases.

II.6.1 Steady-state texel variances

For texels that are never occluded, the Kalman filter asymptotically approaches a

steady state in which the texel variance is constant. To find V∞(i) and k∞(i), the steady-

state variance and steady-state Kalman gain of object texel i, we substitute into (II.30)

and (II.28):

V∞(i) =
[
1− k∞(i)

]
V∞(i) + Ψv(i) (II.77)

k∞(i) =
V∞(i)

V∞(i) + σw
. (II.78)
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Substituting (II.78) into (II.77) yields the algebraic Ricatti equation,

V∞(i) =
σwV∞(i)
V∞(i) + σw

+ Ψv(i), (II.79)

which we can solve for the steady-state texel variance, V∞(i):

V∞(i) =
Ψv(i) +

√
Ψ2
v(i) + 4σwΨv(i)
2

. (II.80)

We can then solve for the steady-state Kalman gain by substituting this value into (II.78):

k∞(i) =
−Ψv(i) +

√
Ψ2
v(i) + 4σwΨv(i)

2σw
. (II.81)

A useful descriptive parameter of the Kalman filters is τt(i), which we call the

temperature of object texel i at time t, defined by:

τt(i)
def= Vt|t−1(i) + σw . (II.82)

As we saw in (II.36), the temperature τt(i) is the variance of the predictive distribution

for the intensity of the image pixel rendered by texel i. It is also the denominator of

the foreground term in the G-flow objective function (II.37). We call it temperature

in analogy to the role of the term temperature in statistical mechanics; it provides a

measure of the total amount of noise in the texture value of each image pixel. A useful

parameter for characterizing the Kalman filters is the steady-state temperature of texel i,

denoted τ∞(i):

τ∞(i) = V∞(i) + σw . (II.83)

II.6.2 Optic flow as a special case

Suppose that the pose transition probability p(ut |ut−1) is uninformative, and that

the background is uninformative (e.g., a white noise background). Then the only terms

remaining to minimize in the G-flow objective function (II.37) are the two foreground

terms. If we further suppose that there are no self-occlusions (none of the object texels

is ever occluded), then the second foreground term, log
[
Vt|t−1

(
xi(ut)

)
+ σw

]
, is constant

with respect to pose, and thus may be ignored in the optimization. In this case, the

only term remaining to minimize in the G-flow objective function (II.37) is the first
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foreground term:

ût(u1:t−1) = argmin
ut

1
2

n∑
i=1

[yt(xi(ut))− v̂t|t−1(i)]2

Vt|t−1(i) + σw
. (II.84)

Suppose we further restrict our model so that the process noise is the same at every texel

and is much larger than the rendering noise, i.e.,

Ψv = σvIn , where σv � σw . (II.85)

Once the system has settled to its steady state, it follows from the formula

for steady-state texel variance (II.80) that every texel will have the same variance,

V∞ ≈ σv, and it then follows from equation (II.78) that every texel’s Kalman gain will be

k∞(i) ≈ 1. As a result, the Kalman equation for the object texture map means (II.29)

reduces to:

v̂t|t−1 = yt−1

(
xi(ut−1)

)
, (II.86)

i.e., the mean of texel i of the object texture map is simply the texture value taken from

the location of vertex i in the previous image. Hence, the G-flow objective function (II.84)

further reduces to

ût(u1:t−1) = argmin
ut

1
2

n∑
i=1

[
yt(xi(ut))− yt−1(xi(ut−1))

]2
, (II.87)

which is identical to the constrained optic flow objective function (II.2). With this

objective function, the Gauss-Newton minimization that we use to find the peak of the

pose opinion (see Section II.5.2.1 and Appendix II.G) reduces to exactly the Gauss-

Newton minimization performed in optic flow. Thus constrained optic flow [Torresani

et al., 2001; Brand and Bhotika, 2001; Brand, 2001] is simply a special limiting case

of optimal inference under G-flow, with a single expert (η = 1) and with sampling

parameter α→ 0.

Interpretation Assuming that the G-flow generative model is a fairly accurate model

of the world, we can conclude that optic flow is only optimal in the extreme conditions

given by (II.85), which essentially amount to the object’s texture changing so fast that

at every point on the object (at every vertex), the texture value varies a great deal from

each frame to the next. However, optic flow is typically applied in situations in which the
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object’s texture changes very little from each frame to the next. In such situations, the

optimal solution calls not for optic flow, but for a texture map that integrates information

across multiple frames.

II.6.3 Template Matching as a Special Case

Suppose that the pose transition probability p(ut |ut−1) is uninformative, that the

background is uninformative, and that none of the foreground texels is ever occluded, as

in the optic flow case above. Then the G-flow objective function (II.37) reduces to just

its foreground term (II.84). In order for our system to reduce to template-matching with

a fixed template, we need it to be the case that once the system reaches steady state, the

texture map means do not change at all as new images are observed. In other words, we

need the steady-state Kalman gain to be k∞(i) ≈ 0. To make this happen, we restrict

our model so that the image rendering noise is much greater than the process noise at

every object texel, i.e.,

σv � Ψv(i) for all i ∈ {1, . . . , n} (II.88)

It follows from the formula for steady-state Kalman gain (II.81) that

k∞(i) ≈ 0, (II.89)

which implies that the texture map means are constant over time. Denoting this texture

template as v̂∞,

v̂∞(i) def= v̂t|t−1(i) ≈ v̂t−1|t−2(i) ≈ v̂t−2|t−3(i) ≈ · · · , (II.90)

the G-flow objective function (II.84) further reduces to:

ût(u1:t−1) = argmin
ut

1
2

n∑
i=1

[yt(xi(ut))− v̂∞(i)]2. (II.91)

This is the error function minimized by standard template-matching algorithms.

Interpretation In this case, the key assumption (II.88) amounts to supposing that in

comparison to the image rendering noise, the object’s texture value at every point on

the object (at every vertex) is basically constant from each frame to the next. This is

rarely true in real data, and G-flow provides a principled way to relax this unrealistic

assumption of template methods.
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II.6.4 General Case

In general, if the background is uninformative, then minimizing the G-flow ob-

jective function (II.37) results in a weighted combination of optic flow and template

matching, with the weight of each approach depending on the current level of uncer-

tainty about (i.e., the current variance of) each texel in the object texture map.

Figure II.4 demonstrates G-flow’s ability to run the gamut from optic flow to

template-matching. The top row of the figure shows four consecutive frames of video,

i.e., the observed image, yt, for four consecutive values of t. To improve visibility for the

figure, each image has been cropped around the face, with the tracked vertex locations

shown as red dots. The second row shows the result of warping each of these four frames

to the geometry of the texture map. The bottom three rows show the texture map mean,

v̂t+1|t, that results from three different values of the steady-state Kalman gain, k∞. Row

3 shows the optic flow limit, k∞(i) ≈ 1 for every texel. In this limit, the texture map

mean is a perfect match for the warped version of the current observed image just above

it: v̂t+1|t = yt
(
xi(ut)

)
.

Row 5 of Figure II.4 shows the template limit, k∞(i) ≈ 0 for every texel. In

this limit, the texture map mean is unchanged by each new observed image, so every

image in this row is identical: v̂t+1|t = v̂t|t−1. Row 4 is partway on the continuum from

flow to template, k∞(i) = 0.4 for every texel, with the result that the texture map

mean partially adapts as each new image is presented. To make the comparison in the

figure a fair one, rows 3, 4, and 5 all have the same steady-state temperature, τ∞(i). In

other words, the overall level of noise is the same in rows 3, 4, and 5. In row 3 (optic

flow limit), it’s all process noise (the prior texture map is much less reliable than the

observed image). In row 5 (the template-matching limit), it’s all image rendering noise

(the observed image is much less reliable than the prior texture map). In row 4, the

noise is split between the two sources.

Template matching, optic flow, and the whole continuum in between, are all

special cases of G-flow under the assumption of an uninformative background. When

there is useful information in the background, G-flow additionally infers a model of the

background that is used to improve tracking.
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Observed image
yt

(cropped to face)

t = 101 t = 102 t = 103 t = 104

yt warped to
texture map
geometry:

Texel i has value
yt
(
xi(ut)

)
.

Texture map mean
v̂t+1|t

in optic flow limit:
k∞(i) = 0.99999

Texture map mean
v̂t+1|t
when

k∞(i) = 0.4

Texture map mean
v̂t+1|t

in template limit:
k∞(i) = 0.001

Figure II.4: The continuum from flow to template. Top row: Four consecutive observed
images, yt, from the middle of a long sequence. The image is cropped around the face.
Estimated vertex locations are shown in red. Second row: Each observed image warped
to the shape of the texture map. Rows 3–5: The inferred texture map mean, v̂t+1|t, in
the case in which every texel has the stated steady-state Kalman gain. Row 3: Flow,
k∞(i) = 0.99999. Row 4: Between flow and template, k∞(i) = 0.4. Row 5: Template,
k∞(i) = 0.001.



55

II.7 Invisible face painting: Marking and measuring

smooth surface features without visible evidence

Until now, there has been no publicly available video data set of a real human

face moving that is up to the task of measuring the effectiveness of 3D nonrigid tracking

systems. The reason is the difficulty of obtaining ground truth information about the

true 3D locations of the points being tracked, some of which are located on smooth

regions of the skin. Some researchers tracking rigid head motion [La Cascia et al., 2000;

Morency et al., 2003] have been able to obtain ground truth rigid head pose during the

collection of video test data, by attaching to the head a device that measures 3D position

and orientation. Because the device only needs to measure the rigid pose parameters,

and not the flexible motion of individual points on the face, it can be mounted atop the

head without obscuring the facial features that the system observes.

Nonrigid tracking systems present greater challenges, however, because the points

on the face that the system is to track must remain unobscured even as their positions are

being measured. Typically, the measurement of 3D flexible face motion is accomplished

by applying visible markers to the face and then labeling the positions of these markers

in video captured by multiple cameras. Needless to say, the presence of visible markers

during data collection would make it impossible to test the system’s performance on an

unmarked face. Structured light cameras show promise at being able to collect ground

truth 3D data during collection of a test video, but to our knowledge no such data set yet

exists. Typically, developers of nonrigid face-tracking systems demonstrate a system’s

effectiveness simply by presenting a video of the system in action, or by testing on a

more easily controlled simulated data set.

We developed a new collection method utilizing an infrared marking pen that is

visible under infrared light but not under visible light (see Figure II.1). This involved

setting up a rig of visible cameras (to which the infrared marks were not visible) for col-

lecting the test video, plus three infrared (IR) cameras (to which the infrared marks were

clearly visible), and painstakingly calibrating all of the cameras both spatially and tem-

porally. We collected video sequences simultaneously in all cameras, and reconstructed

the 3D ground truth information by hand-labeling several key frames from the IR cam-

eras in each video sequence. We use this data set to rigorously test the performance of
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our system, and to compare it to other systems. We are making this data set, called IR

Marks, freely available to other researchers in the field, to begin filling the need for facial

video with nonrigid ground truth information.

For more details on the collection method and the IR Marks data set, see Ap-

pendix II.A.

II.8 Results

II.8.1 Comparison with constrained optic flow:

Varying the number of experts

Constrained optic flow [Torresani et al., 2001; Brand and Bhotika, 2001; Brand,

2001] represents the filtering distribution for pose using a single point estimate. This

results in a great deal of drift in difficult sequences. G-flow uses multiple experts, each of

which has its own point estimate for pose, to represent an arbitrary filtering distribution

for pose. To test the value of maintaining a full estimate of the pose distribution, we

performed tracking runs using varying numbers of experts on the Emote video sequence

of the IR Marks data set, the most difficult of the three video sequences in the data set.

Figure II.5 shows a plot of the average error (in pixels) of each vertex, at several different

time points in the sequence. For all of the runs, we used a texture model of small elliptical

patches around each vertex, and a steady-state Kalman gain of k∞(i) ≈ 1 (the optic flow

limit). In these conditions, the 1-expert case corresponds exactly to constrained optic

flow [Torresani et al., 2001; Brand and Bhotika, 2001; Brand, 2001]. As the figure clearly

demonstrates, constrained optic flow (the line labeled “1 expert”) completely loses track

of the object. Increasing the number of experts to 5 improves the tracking performance

significantly, and 10 or more experts results in a great deal of improvement.

II.8.2 Multiple experts improve initialization

The results summarized in Figure II.5 demonstrate that having multiple experts

greatly reduces the tendency of flow-based systems to drift out of alignment. In addition,

multiple experts improves initialization, as Figure II.6 demonstrates. We collected a

video (30 frames/sec) of a subject in an outdoor setting who made a variety of facial
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Figure II.5: The advantage of multiple experts. Constrained optic flow [Brand and
Bhotika, 2001; Brand, 2001; Torresani et al., 2001], labeled “1 expert” in the graph,
quickly loses track of a difficult video sequence (the Emote sequence of the IR Marks
data set). Multiple experts provide a Monte Carlo estimate of an entire pose distribution,
rather than collapsing the distribution to a single pose estimate. The graph shows that in
the optic flow limit, k∞(i) ≈ 1, multiple experts greatly improve tracking performance.
Each line represents an average of several runs.



58

expressions while moving her head. A later motion-capture session was used to create a

3D morphable model of her face, consisting of a set of 5 morph bases (k = 5).

Twenty experts were initialized randomly near the correct pose on frame 1 of the

video and propagated using G-flow inference (assuming an uninformative background).

See http://mplab.ucsd.edu for video. Figure II.6 shows the distribution of experts for

three frames. In each frame, every one of the 20 experts has a hypothesis about the

pose (translation, rotation, scale, and morph coefficients). The 38 points in the model

are projected into the image according to each expert’s pose, yielding 760 red dots in

each frame. In each frame, the mean of the experts gives a single hypothesis about the

3D nonrigid deformation of the face (shown from frontal and profile view, lower right)

as well as the rigid pose of the face (rotated 3D axes, lower left). Notice G-flow’s ability

to recover from error: bad initial hypotheses are quickly weeded out, leaving only good

hypotheses.

Figure II.6: G-flow tracking an outdoor video. Results are shown for frames 1, 81, and
620. In each frame, the algorithm simultaneously estimates the rigid pose of the head
and the nonrigid face deformations. There are 20 experts, each of which has a hypothesis
about the 3D locations of 38 points on the face. The set of all 20 experts is represented
by 20× 38 = 760 red dots superimposed on the figure at the top of each frame. Despite
the large initial uncertainty about the pose in frame 1, G-flow determines the correct
pose by frame 81, and maintains accurate tracking for the remainder of the sequence.
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II.8.3 Exploring the continuum from template to flow:

Varying the Kalman gain

The object texture process noise, Ψv(i), and the image rendering noise (observa-

tion noise), σw, provide two degrees of freedom with which to tune the tracker. Using

the equations in Section II.6.1 as a guide, we can choose these two values in order to

get any desired values for the steady-state Kalman gain, k∞(i), and the steady-state

temperature, τ∞(i). (Though note that since σw is the same for every pixel in the im-

age, k∞(i) and τ∞(i) may not be varied independently for each texel.) To assess the

effect of varying the Kalman gain on tracking performance, we performed several runs,

keeping the steady-state temperature τ∞(i) constant across all runs and across all texels

(keeping the overall contribution of noise the same across all runs and texels). We varied

the steady-state Kalman gain of all object texels from k∞(i) = 0.001 (near the tem-

plate limit) to k∞(i) = 0.999 (near the optic flow limit). For each value of steady-state

Kalman gain, we performed several tracking runs on the Talk1 video sequence of the

IR Marks data set. The results, shown in Figure II.7, demonstrate that for this video

sequence, the template end of the continuum is best.

II.8.4 Varying the Kalman gain for different texels

Previous tracking systems use either a flow-based approach [Torresani et al., 2001;

Brand and Bhotika, 2001; Brand, 2001] or a template-based approach [Torresani and

Hertzmann, 2004; Xiao et al., 2004a] to appearance modeling, but G-flow is the first

system to enable variations from template-based to flow-based approaches in a principled

manner. In fact, the theoretical framework of G-flow makes possible varying the level

of template-ness or flow-ness dynamically over time and also across space. Thus, some

texels can be more flow-like, whereas others can be more template-like. Ultimately, the

parameters of each texel should be set automatically by the tracker according to the

demands of the data set (see Section II.9.3). As a first step towards demonstrating the

potential of varying the Kalman gain from one texel to another, we implemented a simple

case: the object texels for the mouth have one value of Kalman gain, and all of the other

face texels have a second value of the Kalman gain.

Figure II.8 shows some results from this experiment. In each set of conditions
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Figure II.7: Varying the Kalman gain. The results of tracking the Talk1 sequence of
the IR Marks data set using 20 experts. The steady-state Kalman gain was varied from
k∞(i) = 0.001 for every object texel (near the template-matching limit) to k∞(i) = 0.999
for every texel (near the optic flow limit). The steady-state temperature, τ∞(i), was kept
constant across all values of Kalman gain in order to have the same overall level of noise
in all runs. Each line represents an average of several runs.
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(across all runs), we used the same value of steady-state Kalman gain fixed for all of

the face texels: k∞(i) = 0.00001. Different runs had different values of Kalman gain

for the mouth texels: from k∞(i) = 0.0001 (near the template limit) for all mouth

texels to k∞(i) = 0.999 (near the flow limit) for all mouth texels. As the figure shows,

tracking performance is best when the Kalman gain for the mouth texels is different from

the Kalman gain for the face texels. Much better performance could likely be achieved

by varying individual texels’ parameters in a more fine-grained manner than all mouth

texels vs. all other face texels. These results demonstrate the potential value of varying

the Kalman Gain independently for each texel, to match the characteristics of the data

set.

II.8.5 Implementation details

The numerical results presented in our Results (Section II.8) all use the three test

sequences of the IR Marks data set. (See Appendix II.A for details on this data set.) In

this section, we first describe how the 3D ground truth data from the 9 frames of the IR

Marks training sequence were used to create a 3D morphable model. We then describe

the parameter settings we employed when using this 3D morphable model to track the

face in the three test sequences (Talk1, Talk2, and Emote).

Obtaining the 3D Morphable Model The 3D ground truth locations of 52 vertices

were obtained for the 9 labeled frames of the IR Marks data set’s training sequence, as

explained in Appendix II.A. We then needed to find a 3D morphable model, consisting

of morph bases that could be linearly combined to give (or closely approximate) the 3D

locations of the points in all 9 frames.

First we used the Procrustes method [Golub and Van Loan, 1989] to subtract

any rigid motion between the frames (to rotate all of the frames in 3D to align with

each other). We did not need to rescale any of the frames, since the camera calibration

meant that our 3D data were already scaled to the correct absolute size (in mm). Once

the frames were rigidly aligned, the only remaining differences between the frames were

the nonrigid motion (due to changes in facial expressions). We performed principal

component analysis (PCA) on the rigidly aligned 3D data for the 9 training frames,

to obtain 9 morph bases (the mean plus 8 variational modes) that make up the 3D
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Figure II.8: Varying Kalman gain within the same texture map. The results of tracking
the Talk2 sequence of the IR Marks data set using 20 experts. To demonstrate G-flow’s
ability to vary the Kalman gain independently for each texel, we track using two different
values of the Kalman gain. In every run, every face texel—other than the mouth texels—
had steady-state Kalman gain k∞(i) = 0.00001 (near the template-matching limit). A
second value of the steady-state Kalman gain was assigned to all of the mouth texels,
ranging from k∞(i) = 0.0001 (template) to k∞(i) = 0.999 (flow). Each line represents
an average of several runs. The best performance results when the mouth texels have
different Kalman gain than the rest of the face: when mouth texels have k∞(i) = 0.5
(halfway between template and flow), but face texels have k∞(i) = 0.00001 (near the
template limit).
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morphable model.

Parameter Settings The original 3D morphable model had 9 morph bases, but for

our tracking results, we reduced this to the mean and top 4 modes of variation, for a

total of 5 morph bases: k = 5.

The spread of the proposal distribution for pose opinon changes the balance be-

tween exploration and exploitation: a wider proposal distribution (larger value of α)

gives the system more opportunity to find more optimal pose parameters. We found

that a relatively large spread, α = 50, works well. We used a steady-state temperature

of τ∞ = 1000. We chose resampling frames to occur every 25 frames. Unless stated

otherwise, we performed tracking using 20 experts, η = 20, and used 5 samples for each

expert’s pose opinion: λ = 5.

For determining the proposal distribution, we implemented our algorithm using

small circular windows (diameter 15 pixels) around each vertex. For the importance

sampling correction to the proposal distribution, we usually used a dense triangular

mesh, but occasionally used small circular windows (when stated explicitly, for the optic

flow limit).

We tracked the Talk1 sequence of the IR Marks data set using all 45 of the vertices

that were visible in every labeled frame of the three test sequences. Because we used

small windows around each vertex (rather than a dense triangular mesh) to obtain our

proposal distributions, we had some difficulty handling points on the far right edge of

the face (points that were self-occluded in extreme out-of-image-plane rotations). This

difficulty with tracking the Talk2 and Emote sequences could be minimized by eliminating

three vertices from the mesh that are on the rightmost edge of the face: the right dimple,

and the two rightmost vertices under the right eye (RD, RE4, and RE5).

In the experiments described in this chapter, we have assumed an uninformative

background. Thus we have not implemented the background texture model. As a result,

for the experiments described in this chapter, we eliminated both background terms and

the second of the two foreground terms from (II.37).
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II.8.6 Computational complexity

For a video sequence using 640 x 480 pixel images, tracking 45 vertices, using

highly unoptimized Matlab code, a Macintosh with a 2GHz G5 processor can track on

the order of 1 frame per second with a 10-expert system. The time required is roughly

inversely proportional to the number of experts (e.g., a 20-expert system tracks at about

1 frame every 2 seconds.) The times given are for a circular-patches texture map. The

time required for a dense triangular mesh texture map can be longer, depending on the

speed of the graphics card and on the speed of the bus for obtaining results from the

graphics card.

For a circular-patches texture map, the time required is directly proportional to

the number of vertices. For a dense triangular mesh texture map, the time required

is roughly independent of the number of vertices, and is roughly proportional to the

number of texels in the texture map (approximately the number of pixels subtended by

a rectangle around the face in the original image sequence).

II.9 Discussion

II.9.1 Relation to previous work

II.9.1.1 Relation to other algorithms for tracking 3D deformable objects

Table II.2 compares the features of G-flow and a number of existing approaches

to 3D tracking of deformable objects from image sequences.

Batch vs. Online Processing Of the existing monocular image-based 3D nonrigid

trackers, some [Brand, 2001; Torresani and Hertzmann, 2004] operate in batch mode

(with the entire sequence of images available throughout the tracking process) to simul-

taneously learn the shape model (learn the morph bases) and infer the morph parameters

(track the vertices). Others operate in an on-line fashion (incorporating the information

from each new frame as it appears) and either have limited ability to learn the shape

model [Torresani et al., 2001] or assume that these morph bases are already known before

the tracking process begins [Brand and Bhotika, 2001; Xiao et al., 2004a].
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Table II.2: Approaches to 3D tracking of deformable objects. The table compares the
features of G-flow with other approaches. The approaches compared are (from left to
right): Constrained optic flow [Torresani et al., 2001; Brand and Bhotika, 2001; Brand,
2001]; 2D+3D active appearance models [Xiao et al., 2004a]; the 3D generative template
model of Torresani and Hertzmann [2004]; and our G-flow model.

Constrained

optic flow
2D+3D AAM 3DGT G-flow

Structure model

(3D Morphable Model)
3DMM 3DMM 3DMM 3DMM

Inference uses

On-line vs. Batch

processing

On-line On-line Batch On-line

Appearance model:

Flow-based

vs.

Template-based

Flow

Template subspace

(linear combination

of templates)

Template

Template or Flow,

plus an entire

continuum in

between. Adjusts

dynamically,

independently

for each texel.

Appearance model:

Small windows

around vertices

vs.

Dense triangular mesh

Small windows Dense mesh Small windows
Small windows

or Dense mesh

Generative model

for image sequence
No No Yes Yes

Filtering distribution

for nonrigid pose

(morph coefficients)

Single

hypothesis

(point

estimate)

Single

hypothesis

(point

estimate)

Gaussian

distribution

Arbitrary

distribution

(Monte Carlo

approximation)

Filtering distribution

for rigid pose

(rotation, translation)

Single

hypothesis

(point

estimate)

Single

hypothesis

(point

estimate)

Single

hypothesis

(point

estimate)

Arbitrary

distribution

(Monte Carlo

approximation)

Occlusion handling Limited Not permitted

Good (though

occlusions are

assumed to be

independent

of pose)

Limited

Background model No No No Yes
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Because our G-flow system has a well-defined conditionally Gaussian graphical

model for generating image sequences, we would be able to use the EM algorithm to learn

the shape basis in batch mode while simultaneously inferring a posterior distribution over

the (rigid and nonrigid) pose parameters (i.e., while tracking the vertices in 3D). The

implementation details would be similar to those in [Torresani and Hertzmann, 2004],

with some added complications since we have a conditionally Gaussian model rather

than a simple Gaussian model. In the work described in this chapter, we have focused

our efforts on the on-line inference process (tracking assuming an existing 3D model), in

order to more fully investigate the tracking capabilities of the G-flow model. Learning

the shape model from image sequence data is a natural extension.

Relation to Constrained Optic Flow and texture template models Tracking

algorithms that use constrained optic flow [Brand and Bhotika, 2001; Brand, 2001; Tor-

resani et al., 2001], as well as tracking algorithms that use basic appearance templates,

are entirely subsumed into the G-flow model as a special cases (see Section II.6), in which

a single pose estimate (a single expert) is used to approximate the posterior distribution

of pose at each frame, in which the predictive pose distribution of that expert is col-

lapsed to a single point (α→ 0, i.e., the peak of the pose opinion distribution is retained

but the information about the distribution of pose is thrown away at every time step),

and in which the background is assumed to be uninformative (e.g., a white noise back-

ground). Flow-based trackers result from the limit in which at every texel the process

noise (change in the object appearance between two adjacent frames) is much greater

than the image rendering noise, which results in a Kalman gain of 1. Template-based

trackers result from the opposite limit, in which the rendering noise is much greater than

every texel’s process noise, which results in a Kalman gain of 0.

G-flow can be considered as a generalization of both of these models in which the

entire continuum from template-matching to optic flow can be utilized independently

by each texel in the appearance model. Texels whose texture values remain roughly

constant over time may be near the template end of the tracking spectrum (Kalman

gain close to 0), whereas texels whose values change rapidly may be near the optic flow

end of the spectrum (Kalman gain close to 1).

It is important to note that in existing optic flow-based trackers [Brand and
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Bhotika, 2001; Brand, 2001; Torresani et al., 2001], the goal of inference is to explain the

flow vectors. These systems use optic flow only because the models are explicitly designed

to explain optic flow. Thus these systems can be viewed as models for generating flow

vectors. In contrast, G-flow is explicitly designed as a model for generating images. In

G-flow, the goal of inference is to explain the observed images (all of the pixel intensities)

as well as possible. In our model, optic flow emerges naturally as part of the inference

solution, rather than being the observable data in the model.

Relation to Torresani and Hertzmann’s 3D Generative Template Model Two

recent template-based trackers deserve special consideration, as they have elements which

are not currently part of the G-flow model. The system developed by Torresani and

Hertzmann [2004] is in many ways similar to the template special case of G-flow. Al-

though they use raw optic flow on the image sequence to initialize their system, their

inference and learning procedures assume a template model. They have a generative

model for images that closely resembles (the template special case of) G-flow, and they

also perform Bayesian inference on their generative model. In order to make inference

tractable, they assume a purely Gaussian distribution over the nonrigid pose parame-

ters. In contrast, in G-flow we make inference tractable using Rao-Blackwellization to

maintain a particle-based non-Gaussian pose distribution, and Kalman filtering to en-

able an appearance model that can span the entire continuum from templates to optic

flow. Finally, their EM algorithm treats rigid pose (rotation) as a parameter (with a

single value), rather than as a random variable (which can take on an entire distribution

of values). Thus while their model accommodates uncertainty in the morph parameters,

it cannot accommodate uncertainty in (cannot maintain a distribution over) the rigid

motion parameters. One excellent feature of the tracker of Torresani and Hertzmann

[2004] is that they include an indicator variable which enables texels to be occluded (or

texture outliers) some fraction of the time. This enables their system to handle self-

occlusion extremely well. We may incorporate a similar indicator variable into G-flow in

the future, when we implement batch EM learning.

Relation to 2D+3D Active Appearance Models The system of Torresani and

Hertzmann [2004] is a relatively slow batch processing system: it requires the entire
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sequence of images before the tracking process can begin. In contrast, the so-called

combined 2D+3D active appearance model (2D+3D AAM) [Xiao et al., 2004a] is a real-

time, on-line 3D tracking system. We classify it as a template-based model because its

appearance model does not change over time. However, the 2D+3D AAM appearance

model is not a simple template, but a multidimensional subspace of templates. Rather

than choosing the warp of the observed image that causes it to best match a single

texture template, AAMs choose the image warp that causes it to best match any linear

combination of a small number of appearance templates, i.e., that causes the warped

image to be as close as possible to the linear subspace formed by this set of appearance

templates. The 2D+3D AAM assumes that the 3D morphable shape model is already

known before tracking begins, and that a corresponding 2D active appearance model

[Cootes et al., 1998; Matthews and Baker, 2004] is also known. The system can only track

vertex positions that are simultaneously explainable by both the 3D morphable model

and the 2D AAM. Their system is thus unable to handle self-occlusions (triangular facets

of the 3D model are not able to face backwards, or to partially occlude other patches),

because self-occlusions are not consistent with the shape model of the 2D AAM.

Because the 2D+3D AAM is not a generative model for image sequences (unlike

G-flow or [Torresani and Hertzmann, 2004]), it is not clear how the 2D+3D AAM could

be extended to learn models automatically. One of the most appealing features of active

appearance models (AAMs), including the 2D+3D AAM, is their impressive speed. Their

speed is a result of the efficiency of the inverse compositional form of the Lucas-Kanade

image alignment algorithm [Matthews and Baker, 2004; Baker and Matthews, 2004].

Because they use a fixed template, they can precompute the computationally demanding

steps on the template (the gradient of the template and the Jacobian of incremental

warpings of the template) before tracking begins. Because the G-flow texture map is

not fixed except in the template limit, we would not be able to accelerate our inference

algorithm by precomputing the gradient of the texture map. However, we might be able

to increase the efficiency of G-flow by precomputing the incremental warp Jacobian. One

aspect of 2D+3D AAMs that we may incorporate into the G-flow model in the future is

their use of an appearance subspace, rather than a single appearance model. We could

use Kalman filters to infer a whole appearance subspace for each texel, with different

texel variance in each dimension (i.e., we could use a factor analysis model of the texture
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map for each texel).

Modeling Object Texture: Discrete Image Patches vs. Dense Triangular

Mesh The appearance models in [Brand and Bhotika, 2001; Brand, 2001] consist of

the pixel intensity values in a small neighborhood around each vertex. At each new

frame, the pixel values in a small patch surrounding the predicted position of the vertex

in the current frame are compared with the pixel values in a small patch surrounding

each vertex’s estimated position in the previous frame. The motion from one image to

another is assumed to be pure translation (no warping of the image patch), and subpixel

displacements are accommodated using image interpolation. The texture models of

[Torresani et al., 2001; Torresani and Hertzmann, 2004] similarly consist of small windows

(small image patches) around the vertex locations, though each small patch is permitted

to undergo affine transformation to better match the patch in the new image. One

disadvantage of using small patches (small windows) as the texture model is that the

model does not properly account for overlapping patches. The model is thus unable to

handle self occlusions based on the object pose.

In contrast, the appearance model of Xiao et al. [2004a] is a 2D triangular mesh

connecting the object vertices, with an associated dense texture map. Each new image

is warped in a piecewise-affine manner (with dense triangular patches defined by the

predicted vertex locations in the image) to compare with the appearance model. This

appearance model is not merely a single template, but is a linear subspace of texture

templates. That is, the appearance of each observed image is modeled as a linear combi-

nation of a small number of fixed texture templates. Because the triangular mesh of Xiao

et al. [2004a] is not permitted to model self occlusions (such as when the nose obscures

part of the face), the system has difficulty tracking large out-of-plane rotations.

For the G-flow texture model, we have used both types of texture model: small

windows (elliptical patches) around each vertex, and a dense triangular mesh connecting

the vertices. We analyze results from both versions in Section II.8. For the dense trian-

gular mesh, we take advantage of graphics hardware acceleration for texture-mapping to

speed up the image warping and image comparison. In our current implementation of

the triangular mesh texture model, we actually use small elliptical patches around the

vertices to obtain the proposal distribution, then use the full dense triangular mesh to
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obtain the importance weights.

II.9.1.2 Relation to Jacobian images of texture maps

After developing G-flow, we learned that we were not the first to have the idea

of using dynamic texture maps. A similar idea was proposed in [Dellaert et al., 1998]

as a means for obtaining super-resolution images of an object (their texture template is

a higher resolution than the observed images). Their basic approach can be seen as a

special case of G-flow inference, in which the background is uninformative, there is only

one expert, the proposal distribution collapses to a single point (α→ 0), and the object

is rigid (k = 1). One advantage of their system over G-flow is that their imaging model

(describing how texels map to pixels) is more sophisticated than the one-texel-to-one-

pixel assumption we use in our derivations.

II.9.1.3 Relation to other Rao-Blackwellized particle filters

Virtually all particle filters suffer from a problem known as sample impoverish-

ment [de Freitas et al., 2004; Arulampalam et al., 2002]. In most particle filters, the

samples of the hidden variable Ut depend only on the past samples of that variable: The

samples of Ut are drawn from the prior distribution, p(ut |ut−1). This can lead to the

samples that are selected being inadequate to represent the main contours of the poste-

rior distribution, p(ut | y1:t), because most (or even all) of the samples may be wasted in

regions of ut at which p(ut | y1:t) is negligible. Thus very few of the particles will have

high weight, so at the next time step, the same few particles will each be sampled several

times. (Hence the name sample impoverishment).

A large part of this problem stems from the fact that standard particle filters have

proposal distributions that rely only on observations up to time t − 1, but ignore the

already available sensor information from time t. In order to get our tracking scheme to

work, we needed more informed hypotheses about the pose, Ut. More informed hypothe-

ses can be obtained by looking “ahead” to the current observation, using the observation

at time t to help determine the location of our samples of Ut. That is, we can use the

information at time t to help decide which of the particles at time t − 1 (our experts

u1:t−1) should be propagated forward to become estimates at time t. This leads to a
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technique known as look-ahead Rao-Blackwellized Particle Filtering [de Freitas et al.,

2004], which minimizes the problem of sample impoverishment.

As we explain in Section II.5, we obtain our more informed hypotheses about

pose from the current observation using an optic flow-like technique. Not only does the

filtering distribution for the new pose, Ut, depend upon the past poses, U1:t−1, as in

conventional particle filters, but it also depends upon the new image, yt. Our use of

the Gauss-Newton method and Laplace’s method to perform this look-ahead using an

optic-flow-like algorithm, distinguishes inference in G-flow from other look-ahead Rao-

Blackwellized particle filters [de Freitas et al., 2004]. In addition, the sample space for

the look-ahead Rao-Blackwellized particle filter of de Freitas et al. [2004] was a finite set

that they sampled exhaustively, whereas the sample space in G-flow (the space of Ut) is

a high dimensional space (e.g., 10-dimensional) that we sample selectively.

Rao-Blackwellized particle filters have not previously been applied to 3D tracking

of deformable objects. They have been used to track 2D rigid objects: honeybees [Khan

et al., 2004]. For this bee-tracking system, the sample space over poses was much lower-

dimensional than our pose space for 3D deformable models. As a result, they could

simply sample from their prior distribution for location, a lower-dimensional analogue to

our prior distribution p(ut |ut−1). The higher-dimensional pose space (many more pose

parameters) that we face in 3D deformable models required us to have more informed

hypotheses about pose, which spurred us to develop our optic flow-like Gauss-Newton

minimization utilizing Laplace’s method for the sampling distribution.

II.9.2 Additional contributions

The new method of using infrared markings to obtain 3D ground truth information

while collecting video of deformable objects opens the possibility for new data sets, such

as our IR Marks data set that we are making publicly available. (See Section II.7 and

Appendix II.A for more details.) Such data sets make it possible not only to compare

different methods, but also to gauge the effectiveness of changes to one’s own method.

Another contribution is our derivation of the second derivatives of rotation matri-

ces with respect to exponential rotation parameters (see Appendix II.B). These second

derivatives have the potential for wide application in machine learning, computer vision,
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and robotics.

II.9.3 Future work

MCMC Step After Resampling To ensure that we have a good estimate of the fil-

tering distribution for pose, we use Gauss-Newton and Laplace’s method to “look ahead”

to the image at time t, in order to obtain a good proposal distribution for importance

sampling. (See Sections II.9.1.3 and II.5.2.1 for more details). To further minimize sam-

ple impoverishment and improve our estimate of the filtering distribution for pose, we

could incorporate a Markov Chain Monte Carlo (MCMC) step after resampling [Doucet

et al., 2000a].

Dynamic Weighting of Old vs. New Information Optimal inference under G-flow

incorporates an entire continuum from template-matching to optic-flow. The location

along this continuum (the degree to which the texture map changes as new images are

presented) depends upon the Kalman gain at each texel. The model allows this mixing

ratio to vary across texels (because Ψv and Ψb can be different at every texel), but the

Kalman gain has limited ability to evolve over time (the Kalman gain for texels that are

never occluded will soon reach steady-state values). The good news is that the G-flow

model opens up avenues for principled dynamic weighting of new images versus the old

template (the existing texture map).

In future work, we plan to allow the parameters Ψv,Ψb, and σw to vary over

time, and to have the system infer the values of these parameters along with the pose

and texture, dynamically weighting the relative importance of template-based and flow-

based information as new images come in. Not only would this improve performance in

cases in which the environment (e.g., lighting and occluders) changes over time, but it

would also help the system to work better with generic noise models. We could implement

this tracking of parameters using an approach similar to Myers and Tapley [1976], or we

could explicilty assume a prior model for these time-varying noise parameters and then

use Bayesian inference to find their values over time.

Improved Imaging Model To simplify the derivations in this chapter, we made the

assumption that there is a one-to-one mapping from object texels to image pixels. In
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practice, to find the texture values at image pixels that are rendered by the object, we

interpolate the texture from the nearest object texels. The procedure of interpolating

without developing an explicit model for interpolation is common in face-tracking sys-

tems based on optic flow [Brand and Bhotika, 2001; Brand, 2001; Torresani et al., 2001;

Baker and Matthews, 2004] and active appearance models [Matthews and Baker, 2004;

Xiao et al., 2004a]. In the future, we would like to incorporate interpolation directly into

our imaging model (our model of how texels map to pixels), using an approach similar

to that of Dellaert et al. [1998]. This would allow us to explicitly consider the theoretical

ramifications of the interpolation step, and to deal in a more principled manner with

situations in which a very small area of the texture map must render a large portion

of the image, and vice versa. This would also enable us to handle in a more principled

manner situations in which changing poses cause the number of foreground pixels to vary

considerably from frame to frame, or from expert to expert.

Background Tracking In our simulations we only used the foreground terms of the

predictive distribution (II.36) and the objective function (II.37). This is equivalent to an

assumption of a white noise background, and our mathematical analysis in this chapter

has demonstrated that other tracking algorithms (such as optic flow) make this assump-

tion implicitly. Though we may take consolation in the fact that we made this assumption

explicit, future implementation of the background model (which we have already fully

described and derived in this chapter) will no doubt improve performance.

Sophisticated Texture Models The current G-flow model uses a simple model for

texture: an expected texture map and associated variance parameters for each texel.

More sophisticated models are possible in which object texture is produced by a linear

combination of texture maps, in the same way that geometric deformations are modeled

as a linear combination of key shapes. Subspace texture models have previously been

used effectively for 3D face tracking [Xiao et al., 2004a], for 2D tracking with Rao-

Blackwellized particle filters [Khan et al., 2004], and for 2D tracking using a dynamic

texture map [Ho et al., 2004]. Since G-flow combines Rao-Blackwellized particle filtering

with 3D face tracking using dynamically updated texture maps, the incorporation of

subspace texture models into our model is likely to have a positive outcome.
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Shape and texture parameters could also be permitted to be correlated. This

would, for example, allow the system to use movements of points on the eyebrows to

help detect the presence of wrinkles in the forehead, or to use the presence of wrinkles

to help detect movements of parts of the face. Ultimately, models in which pose and

texture are coupled may be critical for realistic coding of facial behavior, as well as for

generating realistic animation.

Psychophysics Experiments In Section II.6, we demonstrate that optic flow and

template matching can be seen as special limiting cases of inference in which a host of

restrictive assumptions are made to reduce G-flow inference to optic flow or template

matching. We predict that the human visual system does not make these restrictive

assumptions, but rather uses something more general than simple optic flow or template

matching. It would be possible to design psychophysics experiments to test whether

human vision uses sources of information that optic flow ignores, but that G-flow does

not. For example, we predict that like the general case of G-flow inference (but unlike

optic flow), humans use background information to help track foreground objects. In

addition, it is likely that humans do not simply track based on an object’s appearance

in the previous instant (as in optic flow) nor based on a constant template, but rather

that they dynamically integrate appearance information over time.

II.9.4 Conclusion

By introducing a probabilistic formulation of the video generation process for 3D

deformable objects, and deriving an optimal inference algorithm, we have helped clarify

the conditions under which optic flow-based tracking is optimal, and the conditions un-

der which tracking based on template-matching is optimal. Our derivations demonstrate

that in most cases, neither approach is optimal. Assuming that the background is un-

informative (white noise background), then in most cases optimal inference consists of a

combination of optic flow-based and template-based tracking, which can be conceptual-

ized as a continuum with optic flow at one end and static templates at the other. This

opens up possibilities for a whole spectrum of trackers, in which the the kalman gain

of each texel (the degree to which each element in the texture map is template-like vs.

flow-like) may be varied dynamically to match the environment. If the background is
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informative, as it usually is in practice, then optimal object tracking under G-flow also

makes use of the background information.

Many aspects of the G-flow system for on-line inference of nonrigid 3D pose and

texture are not reflected in any of the existing nonrigid 3D tracking systems. Unlike the

other systems, G-flow incorporates a background model that enables information in the

background to be utilized. The other systems include only a foreground model, which

(as we demonstrated in this chapter) implicitly assumes a white noise background. In

addition, G-flow uses Rao-Blackwellized particles (experts) to maintain an unrestricted

(nonlinear, non-Gaussian) distribution over the pose parameters (both rigid and non-

rigid). Most other models [Torresani et al., 2001; Brand and Bhotika, 2001; Brand,

2001; Xiao et al., 2004a] collapse the pose distribution to a single point at every time

step. Torresani and Hertzmann [2004] incorporates a Gaussian distribution over non-

rigid pose parameters (morph coefficients), but uses a single point estimate of rigid pose

parameters (rotation). Every one of these tracking systems is either template-based or

flow-based, but G-flow spans an entire spectrum from template to flow. Additionally, in

G-flow each texel’s Kalman gain (the measure of how flow-like or template-like it is) can

be set individually.

Finally, each expert in G-flow contains not only a pose estimate, but also a Gaus-

sian distribution over texture, inferred using a Kalman filter. We jokingly refer to G-

flow’s experts as smarticles, because rather than simply holding a single pose estimate,

each expert also maintains a Kalman filter for texture, plus an importance-sampled

predictive distribution that “looks ahead” to the next frame, using a collection of pose

samples at time t to evaluate the expert’s credibility at time t−1. Because each expert is

“smart,” not nearly as many experts are required as in a standard particle filter. Indeed,

existing constrained optic flow-based trackers can be thought of as limited one-particle

implementations of G-flow. As demonstrated in Section II.8 (see Figure II.5), on the or-

der of 10 experts is enough to produce a considerable improvement over existing tracking

systems .



76

II.A Appendix: Using infrared to label smooth features

invisibly

We have developed a new method for collecting the true 3D positions of points

on facial features (such as points on smooth regions of the skin) without leaving a visible

trace in the video being measured. This appendix describes our infrared data collection

technique. We used this technique to collect a face motion data set, the IR Marks video

data set (described below), which we are making available in order to begin filling the

need for good data sets in the field. Figure II.1 shows an example of a single frame of

video from the IR Marks data set, captured simultaneously by a visible-light camera and

three infrared-sensitive cameras. We presented our tracking results on this new data set

in Section II.8, where we used it to compare our performance with other tracking systems

and to measure the effects that changing parameter values have on system performance.

Although there are now a number of 3D nonrigid tracking algorithms, measuring

and comparing their effectiveness has proven to be quite a challenge. A large part of

proving the effectiveness of one’s tracking algorithm is typically to make a demo video

that looks good, or to demonstrate the system’s performance on toy data. But it is

difficult to assess the relative difficulty of different groups’ test videos. The problem lies

in the lack of video data of real moving human faces (or other deformable objects) in

which there are no visible marks on the face, and yet for which the actual 3D positions

of the features being tracked is known.

Until this thesis research, there has been no publicly available video data set

of a real human face moving that is up to the task of measuring the effectiveness of

3D nonrigid tracking systems. The reason is the difficulty of obtaining ground truth

information about the true 3D locations of the points being tracked, some of which are

located on smooth regions of the skin. Some researchers tracking rigid head motion [La

Cascia et al., 2000; Morency et al., 2003] have been able to obtain ground truth rigid

head pose during the collection of video test data, by attaching to the head a device

that measures 3D position and orientation. Because the device only needs to measure

the rigid pose parameters, and not the flexible motion of individual points on the face,

it can be mounted atop the head without obscuring the facial features that the system

observes.
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Nonrigid tracking systems present greater challenges, however, because the points

on the face that the system is to track must remain unobscured even as their positions are

being measured. Typically, the measurement of 3D flexible face motion is accomplished

by applying visible markers to the face and then labeling the positions of these markers

in video captured by multiple cameras. Needless to say, the presence of visible markers

during data collection would make it impossible to test the system’s performance on an

unmarked face. Structured light cameras show promise at being able to collect ground

truth 3D data during collection of a test video, but to our knowledge no such data set

yet exists.

In order for the field to continue to progress, there is a great need for publicly

available data sets with ground truth information about the true 3D locations of the facial

features that are to be tracked. Such data sets will facilitate refinement of one’s own

algorithm during development, as well as provide standards for performance comparison

with other systems. We are making our IR Marks data set, described below, available

in order to begin filling that need.

II.A.1 Details of the data collection method

Our new data collection method utilizes an infrared marking pen that is visible

under infrared light but not under visible light (see Figure II.1). We set up three infrared-

sensitive cameras and four visible-light cameras to simultaneously film a person’s face.

The three infrared-sensitive cameras were placed close to the face. Of the four visible-

light cameras, two were far away from the face and zoomed in (for systems that use

orthographic projection or weak-perspective projection), and two were close up (for

systems that use perspective projection). We used two, rather than just one, visible-

light cameras at each distance in order to accommodate systems that use video from

multiple cameras for tracking.

Infrared marking The human eye can see light with wavelengths from roughly 400

nm to approximately 700 nm. Ultraviolet light has wavelengths shorter than 400 nm,

whereas infrared light has wavelengths longer than 700 nm. We used the IR1 pen from

maxmax.com: http://maxmax.com/aXRayIRInks.asp which has ink that absorbs

infrared (IR) light with peak wavelength 793 nm. Over the lens of each IR-sensitive
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camera, we used a filter that blocks visible light: the X-Nite 715 infrared filter, also from

maxmax.com. (We also tried the X-Nite 665 filter and it seemed to work about as well,

but in the end we went with the recommendations from the maxmax.com website and

used the X-Nite 715.) The markings from the IR1 pen showed up as dark spots in the

video when viewed through the IR-sensitive cameras.

The ink in the IR1 pen is in an alcohol base. We cannot vouch for the safety of

the ink for use on the skin, except to say that we used it liberally on the faces of two

different people, without any adverse reaction.

Infrared-Sensitive Cameras In order to reconstruct the 3D location of the infrared-

marked points, they must be visible simultaneously by at least two IR-sensitive cameras.

We used three IR cameras, one directly in front of the face, another slightly to the left,

and a third slightly to the right. The goal was to ensure that even when the head was

turned, as many of the marked points as possible would be visible in at least two of the

three cameras, to enable 3D reconstruction of the point locations.

For our IR cameras, we used regular (purchased at a retail store) Sony camcorders

which we used in Niteshot mode. This caused some difficulties due to the limited aper-

ture/shutter settings. Here is a general description of the Sony Niteshot limitations from

the maxmax.com web site:

All currently manufactured Sony camcorders will shoot a washed-out pic-
ture in daylight situations when in Niteshot mode without an IR filter! For a
brief period a few years ago, some Sony handycams/handicams could shoot
in daylight when in 0-Lux Niteshot mode. Then, some users discovered the
ability to see through some fabrics in certain situations (The infamous X-Ray
effect). When Sony found out, they changed the camcorders so that when you
are in Niteshot mode, the aperture is forced to full open and slow shutter
speed. The result is that if you try shooting in daylight situations when in
Niteshot mode, your picture will be completely washed-out and overexposed.
Further, even if you use neutral density filters to compensate, the depth of
field is very shallow meaning that your focus will only be correct in a narrow
range. Also, the slow shutter speed will blur moving objects.

Because we were forced to use a fully open aperture, we could not use incandescent lights

to illuminate the scene, as they overexposed the image. Instead, we illuminated with

fluorescent lights to provide ample illumination for our visible light cameras, but at the
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same time provide only a small amount of illumination that could penetrate the X-Nite

715 filters (so as not to overexpose the IR images). We experimented with different color

temperatures of infrared bulbs until we found one that worked pretty well. Because

of the fully open aperture and slow shutter speed, however, our infrared images were

somewhat noisy, and also somewhat blurry during motion.

The lack of adjustability of the Sony cameras in Niteshot mode really hampered

us—we had to adjust the lighting to match the camera, rather than adjusting the camera

to match the lighting. We would recommend the following instead: Buy a camera

that is fully enabled in the near-infrared range. For example, maxmax.com sells Sony

camcorders in which they have reenabled the full Niteshot mode (so that aperture and

shutter speed can adjust even in Niteshot mode). This is probably the most economical

way to get a fully enabled near-infrared camera, and is likely what we will do the next

time we collect data with our method.

Visible-Light Cameras We used four Firefly cameras from Point Grey Research

( http://www.ptgrey.com ), which we chose due to their ability to record synchronized

video. These cameras captured 640× 480 color video at 30 frames per second.

The ink from the IR1 pen shows up as a very faint yellow/green that it is nearly

invisible to the naked eye, as long as it is applied without pressing too hard with the pen

(which can make visible indentations in the skin). However, the Firefly cameras we used,

like many visible-light cameras, have more sensitivity in the near-infrared than does the

human eye. Probably as a result of this, the IR ink showed up somewhat more in our

visible-light cameras than it did to our unaided vision. The way we solved this problem

was to make the dots just dark enough that they showed up in the infrared cameras,

but not so dark that they would show up in the visible-light cameras. In retrospect, a

better solution would probably be to put a visible-pass, IR-blocking filter (something

like maxmax.com’s X-Nite CC1 filter) on the visible-light cameras. Then it would be

possible to draw darker dots, which would be easier to see in the IR cameras. The next

time we collect data of this type, that is what we intend to do.

The combination of the blur that resulted from the slow shutter speed (because of

Sony’s limitations on its Niteshot mode) and the lightness of the marks we drew required

us to use time-averaging and contrast-enhancement to make the IR marks more visible,
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and also resulted in some marks not being reliably visible in frames during which the

head was moving quickly. As a result, we could only get reliable ground truth information

for the frames in which the head was moving slowly, or frames in which a fast-moving

head was temporarily slowed due to a change in direction. By following the advice we

give above, both the slow shutter speed and the necessity for light IR markings could be

avoided, which would result in much darker marks that are more easily visible without

the need for post-processing, even during fast motion.

Camera Synchronization The four visible-light cameras were well synchronized, as

they were all triggered by an electrical pulse to capture each frame in synchrony. How-

ever, our three IR-sensitive cameras were inexpensive off-the-shelf cameras that recorded

to digital videotape, without the ability to synchronize electronically. We later uploaded

the video from these tapes by capturing the video frames as a sequence of digital images.

At several times during the video session, the subject held up an LED connected to a

switch, and switched it on. The onset of the light, which was visible in all of the visible-

light and IR cameras, was used as a synchronizing signal for temporal alignment of the

frames from the three IR cameras with each other and with the visible-light cameras.

The alignment was implemented as a piecewise-linear function to map the frame number

from each IR camera to the corresponding frame number from the visible camera. This

resulted in a temporal alignment error on the order of just one-half of a frame ( 1
60 sec).

3D Camera Calibration We used Jean-Yves Bouguet’s camera calibration toolbox

for Matlab: http://www.vision.caltech.edu/bouguetj/calib_doc/ . During col-

lection of the video, we held a calibration object (a checkerboard of known dimensions)

at several different 3D orientations, making sure that at each orientation, the entire

checkerboard was visible in every one of the seven cameras (4 visible-light and 3 IR-

sensitive). We used the calibration toolbox’s stereo calibration tool to simultaneously

calibrate one of the visible cameras with one of the IR cameras. We repeated this pro-

cess three times, each time with the same one visible camera and a different IR camera.

After this process, we had each of the IR cameras calibrated with respect to the same

visible-light camera (and hence with respect to each other). We have only calibrated

one of the visible cameras to date. (In the data set, we provide the calibration frames
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from all of the cameras, enabling anyone to perform the calibration for the other cameras

themselves.)

Hand-Labeling of IR Points We chose several frames for which we hand-labeled the

locations of each IR dot in the image from each of the IR-sensitive cameras. After the

hand-labeling, we know the 2D image location of each IR dot in the 2D image from each

of the three IR cameras.

3D reconstruction of labeled points After the camera calibration, we know the

extrinsic and intrinsic camera parameters of each IR camera. The labeled 2D position

of an IR dot in an image corresponds to a 3D line on which the point lies in 3D world

coordinates. If a point were visible in just two IR cameras, we could find its 3D world

position by calculating the intersection of the lines extending from the two cameras. Due

to errors in calibration and labeling, however, the two lines will not quite intersect in

general, in which case we need to find the single 3D point that is closest to the two lines.

If an IR dot is visible (and labeled) in images from all three IR cameras, then the goal

is to find the single 3D point that is closest to the three lines extending from all three

cameras.

This is a least-squares problem (finding the 3D location in the world that min-

imizes the sum of squared differences corresponding to the two or three labeled 2D

positions in the IR cameras). The 3D location of each point can be found using the

method of homogeneous least squares [Hartley and Zisserman, 2004].

II.A.2 The IR Marks data set for 3D face tracking

This section describes our new data set, called IR Marks. The data set consists

of a training sequence (which includes 9 labeled training frames) and 3 test sequences,

of a human face that is moving both rigidly and nonrigidly (making facial expressions

and talking). We used these three test sequences to rigorously test the performance of

our system, and to compare it to other systems (see Section II.8). In addition, having

ground truth information available (and thus having an accurate quantitative measure

of error, rather than just “eyeballing” it approximately), has been invaluable to us in

debugging our code, as well as in choosing values of parameters for optimal tracking.
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We are making the IR Marks data set freely available to other researchers in the

field, to begin filling the need for facial video with nonrigid ground truth information.

It can be used to test and compare the performance, not only of 3D nonrigid tracking

systems (its primary purpose), but also of systems for determining 3D nonrigid structure-

from-motion. We encourage others to collect their own data sets using our method and to

similary make them available to other researchers. We believe the existence of standard

data sets with good ground truth information is crucial for the field to progress. This

data set is a first step in that direction.

Training Sequence We drew a number of infrared (IR) dots on a male subject. In

addition to frames (of a checkerboard object) for spatial calibration and (of an LED

being switched on) for temporal calibration of the cameras, we collected a training video

sequence whose purpose was to learn a 3D morphable model of the subject that would

later be used to track the face in the test sequences. The training sequence consists of

the subject, always from frontal view (minimal rigid head motion), making a series of

facial expressions. We chose one frame of each facial expression (and two neutral frames,

near the beginning and the end of the sequence)—a total of 9 frames—for hand-labeling:

• neutral

• closed-mouth smile

• happy

• sad

• angry

• disgusted

• afraid

• surprised

• neutral
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For each of these 9 frames, the 2D image locations of 58 IR dots were labeled twice, in

each of the three IR-sensitive cameras. Of the 58 IR dots, 6 were not visible in at least

two IR cameras for all 9 chosen training frames. These 6 vertices were removed, leaving

52 IR dots (vertices) whose 3D locations were reconstructed in all 9 training frames. The

reconstruction error is on the order of 1 mm.

We then collected three test video sequences simultaneously in all cameras. For

each sequence, we chose several key frames that we hand-labeled in all three IR cameras,

from which we reconstructed the 3D ground truth information for those frames. Of the

52 IR dots in the training sequence, 7 were not visible in at least two IR cameras for all

of the selected test frames. This leaves 45 vertices whose ground truth information is

known for all of the chosen frames in the test sequences.

Three Test Sequences In addition to the training sequence, the IR Marks data set

has three test sequences: Talk1, Talk2, and Emote.

The first test sequence, which we call the Talk1 sequence, is empirically the easiest

test sequence for us to track (probably because it is the shortest and has the least out-

of-image-plane rotation). The sequence consists of the subject talking and naturally

moving the head and face in a conversation. We labeled 9 key frames from this sequence

twice, and used these labelings to compute the ground truth 3D locations of all of the

vertices in each of these 9 frames. From the first labeled frame to the last labeled frame,

the Talk1 sequence is 914 frames (over 30 sec) long.

The second test sequence, which we call the Talk2 sequence, is empirically of

medium difficulty to track (it is almost twice as long as the Talk1 sequence, and includes

larger out-of-image-plane rotations). Like the Talk1 sequence, the Talk2 sequence con-

sists of the subject talking and naturally moving the head and face in a conversation.

We labeled 11 key frames from the Talk2 sequence, and used these labelings to compute

the ground truth 3D locations of all of the vertices in each of these 11 frames. From the

first labeled frame to the last labeled frame, the Talk2 sequence is 1716 frames (over 57

sec) long.

The third test sequence, which we call the Emote sequence, consists of the subject

making each of the facial expressions that are listed above in the description of the train-

ing sequence, and holding each facial expression while making fast rigid head motions
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that include large out-of-image-plane rotations. The Emote sequence is empirically the

most difficult to track, probably due to its greater length, its greater extremes of facial

expressions, its fast motion, fast transitions from one extreme expression to another, and

large out-of-plane rotations. We labeled 9 key frames from this sequence, and used these

labelings to compute the ground truth 3D locations of all of the vertices in each of these

9 frames. From the first labeled frame to the last labeled frame, the Emote sequence is

1855 frames (over 61 sec) long.

II.B Appendix: Exponential rotations and their deriva-

tives

Before we derive the constrained optic flow algorithm, we must discuss exponential

rotations. Taking derivatives with respect to rotations is not trivial. The straightforward

approach of differentiating a 3× 3 rotation matrix with respect to each of the elements

in the matrix individually (used, for example, in [Brand and Bhotika, 2001]) is not ideal.

The problem is that although there are 9 elements in the matrix, there are nonlinear

constraints between the 9 values.

In fact, there are only 3 degrees of freedom in a rotation matrix. These 3 degrees

of freedom are expressed perhaps more naturally using the 3 exponential rotation pa-

rameters, described below. We begin this appendix by deriving the widely known first

derivative of rotations with respect to the rotation parameters [Murray et al., 1994].

Then we derive the second derivative with respect to rotation parameters. To

our knowledge, this dissertation is the first time that this second derivative has been

derived or used in the fields of machine learning, computer vision, and robotics. This

second derivative has numerous potential applications in these fields; we explain its use

in G-flow in Appendix II.H.

An arbitrary rotation in 3D can be specified by the axis of rotation and the angle

of rotation about this axis. Let δ be the vector in the direction of the axis of rotation

whose magnitude is the angle of rotation (in radians), and let ∆ be the skew-symmetric



85

matrix that is defined from δ as follows:

δ =


δ1

δ2

δ3

 , ∆ =


0 −δ3 δ2

δ3 0 −δ1

−δ2 δ1 0

 . (II.92)

Then the rotation matrix is given by e∆, which is defined using the matrix exponential:

e∆ = I3 + ∆ +
∆2

2!
+O(δ3) (II.93)

where O(δ3) represents the third-order and higher-order terms of the Taylor series.

Define γ1, γ2, and γ3 to be the matrices given by:

γj =
∂∆
∂δj

. (II.94)

Then the γj are the following skew symmetric matrices:

γ1 =


0 0 0

0 0 −1

0 1 0

 γ2 =


0 0 1

0 0 0

−1 0 0

 γ3 =


0 −1 0

1 0 0

0 0 0

 (II.95)

II.B.1 Derivatives of rotations

To find the first derivatives of the rotation matrix e∆ around δ = 0, we just need

the first two terms in the Taylor series (II.93) for e∆.

∂e∆

∂δj
=

∂

∂δj
(I3 + ∆)

=
∂∆
∂δj

= γj . (II.96)

To find the second derivatives of the rotation matrix e∆ around δ = 0, we need the first

three terms in the Taylor series (II.93) for e∆.

∂2e∆

∂δj∂δk
=

∂

∂δj

∂

∂δk

(
I3 + ∆ +

∆2

2

)
=

∂

∂δj

(
γk +

1
2

(∆γk + γk∆)
)

=
γjγk + γkγj

2
. (II.97)
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To find the derivative of any 3 × 3 rotation matrix, r, with respect to delta, we

consider the composite rotation e∆ r, and evaluate its derivative at δ = 0.

∂r

∂δj
=
∂ e∆r

∂δj

=
(
∂e∆

∂δj

)
r

= γj r. (II.98)

We use the same approach to find the second derivatives of any 3× 3 rotation matrix, r,

with respect to delta (the terms of the Hessian matrix):

∂2r

∂δj∂δk
=

∂2e∆r

∂δj∂δk

=
(
∂2e∆

∂δj∂δk

)
r

=
(
γjγk + γkγj

2

)
r. (II.99)

II.B.2 Derivatives of a vertex location in the image

We are now in a position to take derivatives of the vertex locations with respect

to rotation angle (with respect to the rotation parameters, δ). Taking the first derivative

of equation (II.3) for the image coordinates of vertex i gives:

∂xi
∂δj

=
∂

∂δj
(grhic+ t)

= g
∂r

∂δj
hic

= gγjrhic, (II.100)

where for the final step we used (II.98). We can find the second derivatives of xi with a

similar approach using (II.99) :

∂2xi
∂δj∂δk

= g

(
∂2r

∂δj∂δk

)
hic

= g

(
γjγk + γkγj

2

)
rhic. (II.101)
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II.C Appendix: Gauss-Newton and Newton-Raphson Op-

timization

II.C.1 Newton-Raphson Method

Let ρ(x) be a scalar function of the vector x ∈ Rd. The Newton-Raphson algo-

rithm is an iterative method to find the value of x that optimizes (maximizes or mini-

mizes) ρ(x). The Newton-Raphson method is often called simply “Newton’s method,”

because it finds a zero of ∇xρ(x) using the d-dimensional analogue of a 1-D technique

known as Newton’s method for finding a zero.

We start the process at an arbitrary point x0 ∈ Rd . Let xs ∈ Rd represent the

state of the algorithm at iteration s. We approximate the function ρ using the linear

and quadratic terms of the Taylor expansion of ρ around xs,

ρ̃s(x) = ρ(xs) + (∇xρ(xs))T (x− xs) +
1
2

(x− xs)T
(
∂2

∂x2
ρ(xs)

)
(x− xs), (II.102)

where the second derivative ∂2

∂x2 ρ(x) denotes the Hessian of ρ,

∂2

∂x2
ρ(x) def= ∇x [∇xρ(x)]T . (II.103)

We then find the extremum of ρ̃s with respect to x and move directly to that extremum.

To do so note that

∇xρ̃
s(x) = ∇xρ(xs) +

(
∂2

∂x2
ρ(xs)

)
(x− xs). (II.104)

We let xs+1 be the value of x for which ∇xρ̃
s(x) = 0:

xs+1 = xs −
(
∂2

∂x2
ρ(xs)

)−1

∇xρ(xs). (II.105)

Newton-Raphson simply consists of iterating this equation.

It is useful to compare the Newton-Raphson method with the standard method

of gradient descent. The gradient descent iteration is defined as follows

xs+1 = xs − εId∇xρ(xs) (II.106)

where ε is a small positive constant. Thus gradient descent can be seen as a Newton-

Raphson method in which the Hessian matrix is approximated by 1
ε Id.
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II.C.2 Gauss-Newton Method

The Gauss-Newton method is an iterative optimization method that is often used

in least squares problems. In a least squares problem, the goal is to minimize an error

function, ρ, which comprises a sum of squared terms:

ρ(x) =
1
2

n∑
i=1

[fi(x)]2 , (II.107)

or equivalently,

ρ(x) =
1
2
‖f(x)‖2 =

1
2

[f(x)]T f(x), (II.108)

where

f(x) = [f1(x) f2(x) · · · fn(x)]T (II.109)

and fi : Rd → R. (The factor of 1
2 is included in (II.107) and (II.108) simply to cancel

the factor of 2 that will occur in the derivatives.)

The Gauss-Newton method can be viewed in two different ways, each of which

can be used to derive the Gauss-Newton algorithm. The first is to perform Newton-

Raphson, but approximate the Hessian of ρ as the square of the Jacobian matrix of f .

The second is to approximate f as a linear function of x (and approximate ρ as the square

of this linear approximation), then perform either standard least-squares optimization

or Newton-Raphson to optimize the approximated ρ. We address these two viewpoints

in the following two subsections.

II.C.2.1 Gauss-Newton approximates Newton-Raphson

The Gauss-Newton method can be seen as an approximation to the Newton-

Raphson method in which the Hessian matrix of ρ is approximated by the square of

the Jacobian matrix of f . While Gauss-Newton will generally require more steps than

Newton-Raphson to converge to the optimum, it can be more practical or more efficient

if the second derivatives are difficult to derive or expensive to compute.

Let J(x) represent the Jacobian matrix of f(x),

J(x) =
∂

∂x
[f(x)T ], (II.110)
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and let Js represent the Jacobian matrix of f evaluated at xs:

Js = J(xs). (II.111)

Now begin with Newton-Raphson (II.105), but substitute the approximation Js(Js)T

for the Hessian matrix ∂
∂x2 ρ(xs):

xs+1 = xs −
[
Js(Js)T

]−1∇xρ(xs). (II.112)

By the chain rule,

∇xρ(x) =
∂
[
f(x)T

]
∂x

∂ρ(x)
∂f(x)

, (II.113)

and from Equations (II.107), (II.108), and (II.109),

∂ρ(x)
∂f(x)

= f(x). (II.114)

Thus

∇xρ(x) = J(x) f(x) (II.115)

and in particular,

∇xρ(xs) = Js f(xs). (II.116)

Substituting this into (II.112) yields the Gauss-Newton update rule:

xs+1 = xs −
[
Js(Js)T

]−1
Js f(xs). (II.117)

How good is the approximation? Gauss-Newton approximates Newton-Raphson

by substituting J(x) J(x)T for the Hessian matrix ∂2

∂x2 ρ(x). Let’s examine the validity

of this approximation. Consider the term in row j, column k of the Hessian matrix:(
∂2ρ(x)
∂x2

)
jk

=
∂

∂xj

(
∂ρ(x)
∂xk

)
. (II.118)

Substituting from (II.107), this becomes:(
∂2ρ(x)
∂x2

)
jk

=
n∑
i=1

∂

∂xj

(
1
2
∂

∂xk
[fi(x)]2

)
(II.119)

=
n∑
i=1

∂

∂xj

(
fi(x)

∂fi(x)
∂xk

)
. (II.120)
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By the product rule for derivatives,(
∂2ρ(x)
∂x2

)
jk

=
n∑
i=1

[
∂fi(x)
∂xj

∂fi(x)
∂xk

+ fi(x)
∂

∂xj

(
∂fi(x)
∂xk

)]
(II.121)

=
(
J(x) J(x)T

)
jk

+
n∑
i=1

fi(x)
∂2fi(x)
∂xj∂xk

. (II.122)

Thus
∂2ρ(x)
∂x2

= J(x) J(x)T +
n∑
i=1

fi(x)
∂2fi(x)
∂x2

. (II.123)

The first term on the right side of (II.123) is the Gauss-Newton approximation to the

Hessian. The second term on the right side of (II.123) is the error of the approximation.

This error term must be small in order for Gauss-Newton to be a good approximation

to Newton-Raphson.

Note that if each fi(x) were linear in x, then the error term in (II.123) would

equal zero, and Gauss-Newton would be exactly equivalent to Newton-Raphson.

II.C.2.2 Gauss-Newton approximates ρ using squares of linear terms

An alternative way to derive Gauss-Newton is to approximate f as a linear function

of x using just the linear terms of its Taylor series expansion, and to approximate ρ as

the sum of the squares of these linear terms. Then apply either standard least squares

optimization or Newton-Raphson to this approximation of ρ, and the result is the Gauss-

Newton algorithm, as we now show.

First, approximate f(x) using the linear terms of its Taylor expansion around xs.

Call the resulting linear approximation f̂ s(x):

f̂ s(x) = f(xs) +
(
∇x

[
f(xs)T

])T
(x− xs)

= f(xs) + (Js)T (x− xs) (II.124)

Then define ρ̂s(x) as the square of this linear approximation of f :

ρ̂s(x) =
1
2

∥∥∥f̂ s(x)
∥∥∥2

=
1
2

[
f̂ s(x)

]T
f̂ s(x) (II.125)
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Using Newton-Raphson to minimize ρ̂s(x) yields Gauss-Newton Note that

because of the way we defined f̂ s(x) in (II.124), the Jacobian matrix of f̂ s(x) is equal to

the Jacobian matrix of f(xs), i.e.,

∇x

[
f̂ s(x)T

]
= ∇x

[
f(xs)T

]
= Js (II.126)

At this point, we may observe that if we apply the Newton-Raphson method to minimize

the approximation ρ̂s(x), the Newton-Raphson update rule (II.105) reduces to the Gauss-

Newton update rule (II.117), due to fact that the error term in (II.123) is zero since f̂ s(x)

is linear in x.

Using least squares methods to minimize ρ̂s(x) yields Gauss-Newton Alter-

natively, we may observe that minimizing ρ̂s(x) is a linear least squares problem that

can be solved by setting ∇xρ̂
s(x) = 0 and solving for x. Using a derivation similar to

that of (II.115), we find that

∇xρ̂
s(x) = Js f̂ s(x) (II.127)

= Jsf(xs) + Js(Js)T (x− xs). (II.128)

Solving for the value of x for which ∇xρ̂
s(x) = 0 yields the Gauss-Newton update

rule (II.117).

II.D Appendix: Constrained optic flow for deformable 3D

objects

In this section we derive the constrained optic flow algorithm, which is essentially

equivalent to the tracking algorithms presented in [Torresani et al., 2001; Brand and

Bhotika, 2001]. As mentioned in Section II.2, the goal of constrained optic flow is to find

the value of the pose parameters that minimizes the sum of squared differences between

the appearance of each vertex at frame t and the appearance of the same vertex at frame

t− 1. In other words, the goal is to find ût, the value of ut that minimizes ρ(ut):

ût = argmin
ut

ρ(ut), (II.129)
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where

ρ(ut) =
1
2

n∑
i=1

[
yt
(
xi(ut)

)
− yt−1

(
xi(ut−1)

)]2 (II.130)

We will minimize the sum of squares in (II.130) using the Gauss-Newton method

(see Appendix II.C for background on the Gauss-Newton method). First rewrite ρ(ut)

as follows:

ρ(ut) =
1
2
fT f =

1
2

n∑
i=1

f2
i (II.131)

where the vector f ,

f = [f1 f2 · · · fn]T , (II.132)

is analagous to the difference image in standard optic flow. Each term fi is the difference

in texture values between the pixel rendered by vertex i at time t and the pixel rendered

by the same vertex at time t− 1:

fi = yt
(
xi(ut)

)
− yt−1

(
xi(ut−1)

)
, (II.133)

Before giving the Gauss-Newton update rules, we first calculate the derivatives of

f with respect to each of the motion parameters in ut.

II.D.1 Derivatives with respect to translation

Let Jl(ut) be the Jacobian matrix (matrix of first derivatives) of f with respect

to the 2× 1 translation vector, l:

Jl(ut) =
∂fT

∂l
(ut) =

[
∂f1

∂l
(ut)

∂f2

∂l
(ut) · · · ∂fn

∂l
(ut)

]
(II.134)

The ith column in this Jacobian matrix is

∂fi
∂l

(ut) =
(
∂xi(ut)T

∂l

)
∂yt

∂xi(ut)
(II.135)

=
(
∂(grhic+ l)T

∂l

)
∂yt
∂x

(
xi(ut)

)
(II.136)

= I2
∂yt
∂x

(
xi(ut)

)
(II.137)

= ∇yt
(
xi(ut)

)
, (II.138)
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where we define the 2 × 1 vector ∇yt(x) as the spatial gradient of the observed image

yt at pixel location x. In practice, we blur the image yt before computing ∇yt to ensure

that this spatial gradient is well-behaved.

The following two products will be needed later for the Gauss-Newton update

rule for translation (II.154):

Jl(ut)[Jl(ut)]T =
n∑
i=1

[
∇yt

(
xi(ut)

)][
∇yt

(
xi(ut)

)]T (II.139)

Jl(ut)f(ut) =
n∑
i=1

[
∇yt

(
xi(ut)

)][
yt
(
xi(ut)

)
− yt−1

(
xi(ut−1)

)]
(II.140)

II.D.2 Derivatives with respect to morph coefficients

Let Jc(ut) be the Jacobian matrix of f with respect to c, the k×1 vector of morph

coefficients:

Jc(ut) =
∂fT

∂c
(ut) =

[
∂f1

∂c
(ut)

∂f2

∂c
(ut) · · · ∂fn

∂c
(ut)

]
(II.141)

The ith column in this Jacobian matrix is

∂fi
∂c

(ut) =
(
∂xi(ut)T

∂c

)
∂yt

∂xi(ut)
(II.142)

=
(
∂(grhic+ l)T

∂c

)
∇yt

(
xi(ut)

)
(II.143)

= (grhi)T ∇yt
(
xi(ut)

)
. (II.144)

The following two products will be needed later for the Gauss-Newton update rule for

morph coefficients (II.155):

Jc(ut)[Jc(ut)]T =
n∑
i=1

(grhi)T
[
∇yt

(
xi(ut)

)][
∇yt

(
xi(ut)

)]T
grhi (II.145)

Jc(ut)f(ut) =
n∑
i=1

(grhi)T
[
∇yt

(
xi(ut)

)][
yt
(
xi(ut)

)
− yt−1

(
xi(ut−1)

)]
(II.146)

II.D.3 Derivatives with respect to rotation

Let Jδ(ut) be the Jacobian matrix of f with respect to δ, the 3 × 1 vector of

rotation parameters (see Appendix II.B for more details on exponential coordinates for
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rotation):

Jδ(ut) =
∂fT

∂δ
(ut) =

[
∂f1

∂δ
(ut)

∂f2

∂δ
(ut) · · · ∂fn

∂δ
(ut)

]
(II.147)

The ith column in this Jacobian matrix is

∂fi
∂δ

(ut) =
(
∂xi(ut)T

∂δ

)
∂yt

∂xi(ut)
(II.148)

=


(
∂xi(ut)
∂δ1

)T(
∂xi(ut)
∂δ2

)T(
∂xi(ut)
∂δ3

)T
 ∇yt(xi(ut)). (II.149)

We then use (II.96) to get:

∂fi
∂δ

(ut) = [gγ1rhic gγ2rhic gγ3rhic]
T ∇yt

(
xi(ut)

)
. (II.150)

The following two products will be needed later for the Gauss-Newton update rule for

rotation (II.156):

Jδ(ut)[Jδ(ut)]T = (II.151)

n∑
i=1


(gγ1rhic)T

(gγ2rhic)T

(gγ3rhic)T

 [∇yt(xi(ut))][∇yt(xi(ut))]T [gγ1rhic gγ2rhic gγ3rhic]

Jδ(ut)f(ut) =
n∑
i=1


(gγ1rhic)T

(gγ2rhic)T

(gγ3rhic)T

 [∇yt(xi(ut))][yt(xi(ut))− yt−1

(
xi(ut−1)

)]
(II.152)

II.D.4 The Gauss-Newton update rules

As each new video frame, yt, arrives, the goal of the constrained optic flow al-

gorithm is to find the ût, the value of the pose parameters, ut, that minimizes the sum

in (II.130). The algorithm begins with an initial guess for ut, namely u0
t = {r0

t , l
0
t , c

0
t }.

This initial guess may be set equal to the pose of the previous frame: u0
t = ut−1. Al-

ternatively, this initial guess may be extrapolated from the poses of the previous two

frames, ut−1 = {rt−1, lt−1, ct−1} and ut−2 = {rt−2, lt−2, ct−2}, in a manner similar to the



95

following:

l0t = lt−1 +
(
lt−1 − lt−2

)
r0
t = rt−1

[
rt−1(rt−2)−1

]
(II.153)

c0
t = ct−1

Once the initial guess is determined, we use the Gauss-Newton method (see Appendix

II.C) to minimize the sum in (II.130). We do so by iterating the following update rules,

which are obtained directly from the Gauss-Newton update rule (II.117). The following

update rules tell us how to perform step s of our iterative estimation of ut. They are used

to get from the estimate ust = {rst , lst , cst} to the next estimate, us+1
t = {rs+1

t , ls+1
t , cs+1

t }.

ls+1
t = lst −

[
Jl(ust )

(
Jl(ust )

)T ]−1
Jl(ust )f(ust ) (II.154)

cs+1
t = cst −

[
Jc(ust )

(
Jc(ust )

)T ]−1
Jc(ust )f(ust ) (II.155)

rs+1
t = e∆rst , where

δ = −
[
Jδ(ust )

(
Jδ(ust )

)T ]−1
Jδ(ust )f(ust ) (II.156)

and ∆ is defined from δ using (II.92). The rest of the terms in the update rules are

written out in full in Equations (II.139–II.140), (II.145–II.146), and (II.151–II.152).

Each of the update rules includes the term ∇yt
(
xi(ust )

)
as part of the Jacobian

matrix and also includes the term fi(ust ) =
[
yt
(
xi(ust )

)
− yt−1

(
xi(ut−1)

)]
. Evaluating

these terms involves obtaining patches from the current image and its gradient images,

which can be computationally expensive. As a result, we typically update the values of

∇yt
(
xi(ust )

)
and yt

(
xi(ust )

)
only once every few iterations of the update rules (II.154–

II.156). In practice, we only need to update the values of ∇yt
(
xi(ust )

)
and yt

(
xi(ust )

)
twice for each frame of video.

II.E Appendix: The Kalman filtering equations

In Section II.5.1.1, we give the Kalman equations for updating each texel of an

expert’s object texture map. In this appendix, we give the equations for updating each

texel of an expert’s background texture map, which are very similar to the foreground

equations. Then we present a version of the Kalman equations in matrix form, which
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notationally combines the update of every background and foreground texel of both

texture maps into a single update equation. It is through the analysis of this matrix

form of the Kalman equations (specifically, by observing that the texture covariance

matrices are diagonal) that we can justify considering each texel individually.

II.E.1 Kalman equations for dynamic update of background texel maps

Kalman equations for background texel j

Correction equations : b̂t|t(j) = k t(j) yt(j) +
[
1− k t(j)

]
b̂t|t−1(j) (II.157)

Bt|t(j) = [1− k t(j)]Bt|t−1(j) (II.158)

where k t(j), the Kalman gain for texel j, is the scalar given by:

k t(j) =


Bt|t−1(j)

Bt|t−1(j) + σw
, if texel j is visible

0, if texel j is occluded

(II.159)

Prediction equations : b̂t+1|t(j) = b̂t|t(j)

= k t(j) yt(j) +
[
1− k t(j)

]
b̂t|t−1(j) (II.160)

Bt+1|t(j) = Bt|t(j) + Ψb(j)

= [1− k t(j)]Bt|t−1(j) + Ψb(j) (II.161)

II.E.2 Kalman equations in matrix form

Kalman correction equations:v̂t|t
b̂t|t

 =

v̂t|t−1

b̂t|t−1

+Kt

yt − a(ut)

v̂t|t−1

b̂t|t−1

 (II.162)

Vt|t
Bt|t

 =

Vt|t−1 0

0 Bt|t−1

−Kt a(ut)

Vt|t−1 0

0 Bt|t−1

 (II.163)

where Kt is the Kalman gain matrix,

Kt =

Vt|t−1 0

0 Bt|t−1

 a(ut)T

a(ut)

Vt|t−1 0

0 Bt|t−1

 a(ut)T + σwIm

−1

(II.164)
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Kalman prediction equations:

v̂t|t−1 = v̂t−1|t−1 (II.165)

b̂t|t−1 = b̂t−1|t−1 (II.166)

Vt|t−1 = Vt−1|t−1 + Ψv (II.167)

Bt|t−1 = Bt−1|t−1 + Ψb (II.168)

It follows from the assumptions of the G-flow model and the Kalman equations

above that the covariance matrices, Vt−1|t−1,Vt|t−1,Vt|t,Bt−1|t−1,Bt|t−1, and Bt|t, are di-

agonal for all t. This justifies our considering the variance of each texel individually in

Section II.5.1.

II.F Appendix: The predictive distribution for Yt

We now tackle the predictive distribution for the current image, yt, given the past

and current poses of the object, u1:t, and the past images, y1:t−1:

p(yt |u1:t, y1:t−1). (II.169)

First note that from the conditional independence relationships defined by the graphical

model (Figure II.3),

p

vt
bt

 ∣∣∣u1:t, y1:t−1

 = p

vt
bt

 ∣∣∣u1:t−1, y1:t−1

 (II.170)

= N

vt
bt

 ;

v̂t|t−1

b̂t|t−1

 ,
Vt|t−1 0

0 Bt|t−1

 (II.171)

where (II.171) follows from definitions (II.23) and (II.24).

From these equations and (II.9), we can derive the mean and variance of the

predictive distribution, which is the Gaussian distribution p(yt |u1:t, y1:t−1). First the
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mean:

E(Yt |u1:ty1:t−1) = E

a(ut)

Vt
Bt

+Wt

∣∣∣ u1:t, y1:t−1


= a(ut)E

Vt
Bt

 ∣∣∣u1:t, y1:t−1

+ E(Wt)

= a(ut)

v̂t|t−1

b̂t|t−1

 (II.172)

= av(ut)v̂t|t−1 + ab(ut)b̂t|t−1, (II.173)

where (II.172) follows from (II.171), and (II.173) follows from (II.8). Equation (II.173)

merely asserts that the expected value of each image pixel is the value of the texel in the

foreground or background texture template that (according to ut) renders that pixel.

Now we compute the variance of the predictive distribution:

V ar(Yt |u1:ty1:t−1) = V ar

a(ut)

Vt
Bt

+Wt

∣∣∣ u1:t, y1:t−1


= a(ut)V ar

Vt
Bt

 ∣∣∣u1:t, y1:t−1

 a(ut)T + V ar(Wt)

= a(ut)

Vt|t−1 0

0 Bt|t−1

 a(ut)T + σwIm (II.174)

= av(ut)Vt|t−1av(ut)
T + ab(ut)Bt|t−1ab(ut)

T + σwIm, (II.175)

where (II.174) follows from (II.171), and (II.175) follows from (II.8). Equation (II.175)

simply asserts that the variance of each image pixel is σw plus the variance of the texel

in the foreground or background texture map that (according to ut) renders that pixel.

Since the covariance matrices are all diagonal, each pixel is rendered by an inde-

pendent Gaussian. we can consider the mean and variance of each pixel independently.

If an image pixel is (according to ut) rendered by foreground texel i, then by (II.173)

and (II.175), the pixel value will have the following normal distribution:

Foreground

pixel xi(ut)
: p

(
yt(xi(ut)) |u1:t, y1:t−1

)
= N

(
yt(xi(ut)); v̂t|t−1(i),Vt|t−1(i) + σw

)
(II.176)
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On the other hand, if an image pixel is (according to ut) rendered by background texel j,

then by (II.173) and (II.175), the pixel value will have this normal distribution:

Background

pixel j
: p

(
yt(j) |u1:t, y1:t−1

)
= N

(
yt(j); b̂t|t−1(j),Bt|t−1(j) + σw

)
(II.177)

Taking the product of the probability distributions of all of the image pixels

from (II.176) and (II.177) yields the the probability distribution for the entire image,

i.e., the predictive distribution. Taking the log of this product yields an expression for

the log of the predictive distribution:

log p(yt |u1:t, y1:t−1) =− m

2
log 2π (II.178)

− 1
2

n∑
i=1

[
log
(
Vt|t−1(i) + σw

)
+

[yt(xi(ut))− v̂t|t−1(i)]2

Vt|t−1(i) + σw

]

− 1
2

∑
j 6∈X (ut)

[
log
(
Bt|t−1(j) + σw

)
+

[yt(j)− b̂t|t−1(j)]2

Bt|t−1(j) + σw

]
,

where X (ut) is the set of all image pixels rendered by the object under pose ut. The first

sum in (II.178) corresponds to the foreground pixels, while the second sum in (II.178)

corresponds to the background pixels.

Substituting (II.178) into (II.35) and eliminating the terms that don’t depend

on ut yields an expression for the peak of the pose opinion distribution:

ût(u1:t−1) = argmax
ut

p(ut |ut−1)p(yt |u1:ty1:t−1)

= argmin
ut

(
− log p(ut |ut−1) (II.179)

+
1
2

n∑
i=1

[
[yt(xi(ut))− v̂t|t−1(i)]2

Vt|t−1(i) + σw
+log[Vt|t−1

(
xi(ut)

)
+ σw]

]

+
1
2

∑
j 6∈X (ut)

[
[yt(j)− b̂t|t−1(j)]2

Bt|t−1(j) + σw
+ log[Bt|t−1(j) + σw]

])

We can subtract any constant that does not depend on ut from the expression inside the

large parentheses above without changing the value of the argmin function. We are thus

justified in subtracting 1
2

∑m
j=1

[
[yt(j)−b̂t|t−1(j)]2

Bt|t−1(j)+σw
+ log[Bt|t−1(j) + σw]

]
from the expression
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inside the large parentheses, which yields:

ût(u1:t−1) = argmin
ut

(
− log p(ut |ut−1) (II.180)

+
1
2

n∑
i=1

[ Foreground terms︷ ︸︸ ︷
[yt(xi(ut))−v̂t|t−1(i)]2

Vt|t−1(i) + σw
+log[Vt|t−1(xi(ut)) + σw]

−
[yt(xi(ut))−b̂t|t−1(xi(ut))]2

Bt|t−1

(
xi(ut)

)
+σw

−log[Bt|t−1

(
xi(ut)

)
+ σw]︸ ︷︷ ︸

Background terms

])

II.G Appendix: Estimating the peak of the pose opinion

This appendix explains how to estimate ût(u1:t−1), the peak of an expert’s pose

opinion distribution, from (II.37). To estimate the peak of the pose opinion, we employ

the Gauss-Newton method (see Appendix II.C), in a manner quite similar to constrained

optic flow (Appendix II.D). In practice, we assume a white noise background. In other

words, we use Gauss-Newton to efficiently find the pose ut that minimizes the sum over

the foreground (object) term in (II.37), and use that as our estimate ût(u1:t−1):

ût(u1:t−1) = argmin
ut

ρobj(ut), (II.181)

where

ρobj(ut) =
1
2

n∑
i=1

[yt(xi(ut))− v̂t|t−1(i)]2

Vt|t−1(i) + σw
, (II.182)

the sum over the foreground term in (II.37). It would also be possible to minimize

the sum over the background terms using Gauss-Newton, and then combine that pose

estimate with the estimate obtained from the foreground term, though Gauss-Newton

cannot be used to minimize them both simultaneously (together, they are a difference—

not a sum—of squares).

The Gauss-Newton method to iteratively minimize (II.182) is virtually identical

to constrained optic flow, as derived in Appendix II.D, except that Equation (II.133) is

replaced by:

fi = yt
(
xi(ut)

)
− v̂t|t−1(i). (II.183)
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As a result, Equations (II.139) and (II.140) become:

Jl(ut)[Jl(ut)]T =
n∑
i=1

[
∇yt

(
xi(ut)

)][
∇yt

(
xi(ut)

)]T
Vt|t−1(i) + σw

(II.184)

Jl(ut)f(ut) =
n∑
i=1

[
∇yt

(
xi(ut)

)][
yt
(
xi(ut)

)
− yt−1

(
xi(ut−1)

)]
Vt|t−1(i) + σw

(II.185)

Similarly, Equations (II.145) and (II.146) become:

Jc(ut)[Jc(ut)]T =
n∑
i=1

(grhi)T
[
∇yt

(
xi(ut)

)][
∇yt

(
xi(ut)

)]T
grhi

Vt|t−1(i) + σw
(II.186)

Jc(ut)f(ut) =
n∑
i=1

(grhi)T
[
∇yt

(
xi(ut)

)][
yt
(
xi(ut)

)
− yt−1

(
xi(ut−1)

)]
Vt|t−1(i) + σw

(II.187)

and Equations (II.151) and (II.152) become:

Jδ(ut)[Jδ(ut)]T = (II.188)

n∑
i=1


(gγ1rhic)T

(gγ2rhic)T

(gγ3rhic)T

 [∇yt(xi(ut))][∇yt(xi(ut))]T [gγ1rhic gγ2rhic gγ3rhic]

Vt|t−1(i) + σw

Jδ(ut)f(ut) =
n∑
i=1


(gγ1rhic)T

(gγ2rhic)T

(gγ3rhic)T

 [∇yt(xi(ut))][yt(xi(ut))− yt−1

(
xi(ut−1)

)]
Vt|t−1(i) + σw

(II.189)

The Gauss-Newton update rules (II.154–II.156) remain unchanged.

II.H Appendix: Gaussian estimate of the pose opinion dis-

tribution

In this appendix, we describe how to obtain a Gaussian estimate of an expert’s

pose opinion distribution, which we use as the proposal distribution for importance

sampling. First we repeat the definition of ρobj , which measures how well the object pixels

match the corresponding texels in the object (foreground) template. Equation (II.182)
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defines this error measure as follows:

ρobj(ut) =
1
2

n∑
i=1

[yt(xi(ut))− v̂t|t−1(i)]2

Vt|t−1(i) + σw
. (II.190)

For each expert u(d)
1:t−1, we compute ût(u

(d)
1:t−1) = argminut

ρobj(ut), the peak of

the pose distribution at time t according to that expert, using the method explained

in Appendix II.G. The Laplace estimate of the covariance matrix of the expert’s pose

opinion is the inverse of the Hessian matrix (second derivatives) of (II.190) evaluated

at this peak. For simplicity, we take the Hessian matrix with respect to each of pose

parameters independently (neglecting cross-derivatives ∂2ρ
∂c∂δ ). The Hessian with respect

to translation and the Hessian with respect to morph coefficients are equal to their

Gauss-Newton approximations from (II.184) and (II.186):

∂2ρobj(ut)
∂l2

= Jl(ut)[Jl(ut)]T (II.191)

∂2ρobj(ut)
∂c2

= Jc(ut)[Jc(ut)]T (II.192)

However, because the rotation, r, is not a linear function of the rotation parame-

ters, δ, the Hessian with respect to δ is not equal to its Gauss-Newton approximation

from (II.188). Instead, we actually compute the full Hessian with respect to δ, using the

method we introduced in Appendix II.B.

II.H.1 Hessian matrix of ρobj with respect to δ

By (II.123),

∂2ρobj(ut)
∂δ2

= Jδ(ut)[Jδ(ut)]T +
n∑
i=1

fi(ut)
∂2fi(ut)
∂δ2

. (II.193)

The first term on the right side of (II.193) is just the Gauss-Newton approximation to
∂2ρobj(ut)

∂δ2
from (II.188), and the second term on the right side of (II.193) can be thought

of as a correction term to that Gauss-Newton approximation. We examine the latter

term, the Hessian matrix of fi(ut) with respect to δ, one element at a time:

∂2fi(ut)
∂δj∂δk

=
(
∂2xi(ut)
∂δj∂δk

)T
∇yt

(
xi(ut)

)
+
(
∂xi(ut)
∂δj

)T
Hyt

(
∂xi(ut)
∂δk

)
(II.194)
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where Hyt is the Hessian of the current image, yt, with respect to spatial coordinates,

evaluated at xi(ut). Since the image Hessian, Hyt , can be sensitive to noise and/or

computationally expensive, we replace it by its Gauss-Newton approximation:

Hyt

def=
∂2yt
∂x2

(
xi(ut)

)
≈
[
∇yt

(
xi(ut)

)][
∇yt

(
xi(ut)

)]T (II.195)

Now using the exponential rotation derivatives from (II.100) and (II.101), we have the

following formula for element (j, k) of the Hessian matrix of ρobj with respect to the

rotation parameters:

∂2ρobj(ut)
∂δj∂δk

≈
[
Jδ(ut)[Jδ(ut)]T

]
jk

+
n∑
i=1

fi(ut)

[(
g

(
γjγk + γkγj

2

)
rhic

)T
∇yt

(
xi(ut)

)]

+
n∑
i=1

fi(ut)
[
(gγjrhic)

T [∇yt(xi(ut))][∇yt(xi(ut))]T (gγkrhic)
]
(II.196)

=
[
Jδ(ut)[Jδ(ut)]T

]
jk

+
[
Jδ(ut)F(ut)[Jδ(ut)]T

]
jk

+
n∑
i=1

fi(ut)

[(
g

(
γjγk + γkγj

2

)
rhic

)T
∇yt

(
xi(ut)

)]
(II.197)

where

F(ut)
def= diag

(
f(ut)

)
.

II.H.2 Sampling from the proposal distribution

The Laplace approximation to the covariance matrices of each of l, c, and δ is the

inverse of the corresponding Hessian matrix of ρobj from (II.191), (II.192), or (II.197):

Ul(ut) =
[
∂2ρobj(ut)

∂l2

]−1
, Uc(ut) =

[
∂2ρobj(ut)

∂c2

]−1
, Uδ(ut) =

[
∂2ρobj(ut)

∂δ2

]−1
.

(II.198)

We then generate a set of λ independent samples u(d,e)
t = {r(d,e), l(d,e), c(d,e)},

where e ∈ {1, 2, · · · , λ}, and the u
(d,e)
t are drawn from a Gaussian distribution with

mean ût(u
(d)
1:t−1) = {r(d), l(d), c(d)} and variance proportional to the Laplace covariance
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matrices (II.198):

l(d,e) is sampled from N
(
l(d), αUl

(
ût(u

(d)
1:t−1)

))
,

c(d,e) is sampled from N
(
c(d), αUc

(
ût(u

(d)
1:t−1)

))
,

r(d,e) = e∆r(d),

where δ is sampled from N
(

0, αUδ
(
ût(u

(d)
1:t−1)

))
,

(II.199)

and ∆ is defined from δ using (II.92). The parameter α > 0 determines the sharpness

of the sampling distribution. (Note that letting α → 0 would be equivalent to the

greedy approach of simply setting the new pose equal to the peak of the pose opinion,

u
(d,e)
t = û

(d)
t .)

In the Section II.5, we use the single pose sample u(d,e)
t as shorthand for samples

of all three pose parameters, and we use the sampling covariance U as shorthand for the

sampling covariances of all three pose parameters:

u
(d,e)
t

def=
{
r(d,e), l(d,e), c(d,e)

}
, (II.200)

U
(
ût(u

(d)
1:t−1)

) def=
{
Ul
(
ût(u

(d)
1:t−1)

)
, Uc

(
ût(u

(d)
1:t−1)

)
, Uδ

(
ût(u

(d)
1:t−1)

)}
. (II.201)

Likewise, when we discuss sampling from the distribution in II.38, for example when we

make the statement that

u
(d,e)
t is sampled from π(ut |u(d)

1:t−1, y1:t) = N
(
ût(u

(d)
1:t−1), αU

(
ût(u

(d)
1:t−1)

))
, (II.202)

this statement is merely shorthand for all of the statements in II.199.



Chapter III

Learning Factorial Codes with

Diffusion Neural Networks

Abstract

Chapter II explained how to track a deformable 3D object by performing optimal

inference on a generative model. In that chapter, we assumed that the geometric object

model (the set of 3D morph bases) was already known. In this chapter, we will demon-

strate a method for learning such a model from examples of 2D data. Surprisingly, the

method relates to the development of factorial codes.

The concept of factorial representations plays a fundamental role in cognitive

psychology, computational neuroscience, and machine learning. Current approaches to

independent component analysis pursue a form of factorization proposed by Barlow

[1994] as a model for coding in sensory cortex. Morton proposed a different form of fac-

torization that has been shown to fit a wide variety of perceptual data [Massaro, 1987b].

In a recent paper, Hinton [2002] proposed a new class of models, known as products of

experts (POEs), that exhibit yet another form of factorization. Hinton also proposed

an objective function, known as contrastive divergence, that is particularly effective for

training models of this class. In this chapter we analyze factorial codes within the context

of diffusion neural networks, a stochastic version of continuous time, continuous state

For a summary of the notational conventions used in this dissertation, see page 1.
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recurrent neural networks. We concentrate on the analysis of linear diffusions, which

provide important theoretical background and insights for future nonlinear generaliza-

tions. The main result presented here is that a particular class of diffusion networks,

in which the unit activation functions are linear and there are no lateral connections

between hidden units or between output units, model precisely the same class of observ-

able distributions as factor analysis. A consequence is that in addition to factorizing in

Barlow’s sense, factor analyzers also factorize in Morton’s sense and in Hinton’s sense.

Most importantly, the results presented here suggest novel nonlinear generalizations of

factor analysis and independent component analysis that could be implemented using

interactive noisy circuitry. We show the results of simulations in which we trained diffu-

sion networks on a database of 3D faces by minimizing contrastive divergence. We also

explain how diffusion networks can learn a 3D deformable model from 2D data.

III.1 Introduction

In our presentation of the G-flow system for tracking 3D deformable objects in

Chapter II, we assumed that a 3D morphable model for the object was already known. In

this chapter, we will show how a neurally plausible architecture can learn 3D morphable

models from two-dimensional data. The process for learning these models is related to

the development of factorial representations for information.

The concept of factorial representations plays a fundamental role in fields such

as cognitive psychology, computational neuroscience, and machine learning. Barlow

[1994] proposed that the representations developed by sensory cortex encode the world

in a factorial manner. By this Barlow meant that the cortical representations, H =

(H1, · · · , Hn)T , are independent; i.e., that their probability distribution factorizes as

follows∗:

p(h) = p(h1) · · · p(hn) . (III.1)

This factorization concept motivated the development of information maximiza-

tion approaches to independent component analysis within the computational neuro-
∗When possible, we identify probability functions by their arguments and gloss over the distiction

between probability mass and probability density functions. For example p(h) is shorthand notation for
the probability mass or probability density of the random variable H evaluated at h.
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science community [Bell and Sejnowski, 1995] and has driven much of the current work

on understanding the representations used in primary sensory cortex [Bell and Sejnowski,

1997; Wachtler et al., 2001].

Morton analyzed a wide variety of psychophysical experiments on word recog-

nition and proposed a model of perception in which different sources of information

have independent effects on perceptual representations; i.e., the observable units are

conditionally independent given the values of the hidden units. In Morton’s model, the

distribution of observable inputs and perceptual representations factorizes as follows:

p(oh) ∝
∏
i

fi(oih) (III.2)

where Oi is a component of the observable representation O. For example, in audio-visual

speech perception one component of O may be visual sensory input, another component

may be acoustic sensory input, and H may be the word perceived in response to O.

Morton’s factorization is different from Barlow’s: It is possible to find distributions

that adhere to (III.1) but not (III.2) and distributions that adhere to (III.2) but not

(III.1). A consequence of (III.2), obtained by marginalizing over all possible values of

the observable units, is that the hidden unit representations factorize as follows:

p(h) ∝
∏
i

gi(h) (III.3)

where

gi(h) =
∑
oi

fi(oih). (III.4)

(In the equation above, the sum is taken over all possible values of the ith observable

dimension.) Here gi(h) can be seen as the support of the information source oi for the

perceptual representation h. Massaro [1987a,b, 1989] has shown that Morton’s form of

factorization describes accurately a wide variety of psychophysical studies in domains

such as word recognition, phoneme recognition, audiovisual speech recognition, and

recognition of facial expressions. For example, humans combine auditory information

and visual information in a factorial manner in order to understand speech. Likewise,

when people perceive facial expressions, they combine information from the lower and

upper regions of the face in a factorial manner. Movellan and McClelland [2001] analyzed

the conditions under which neural network architectures produce representations that
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factorize in Morton’s sense. They grounded their analysis on diffusion neural networks

[Movellan et al., 2002; Movellan and McClelland, 1993], a stochastic version of the stan-

dard continuous time, continuous state recurrent neural network models [Pearlmutter].

They found that in diffusion networks there is an architectural constraint, which they

called structural separability, that guarantees that the network’s internal representations

factorize in Morton’s sense. Basically, a network without lateral connections between the

observable units is sufficient for the representations to factorize in Morton’s sense (See

Figure III.1). Movellan and McClelland [2001] noted that the cortical organization into

classical and non-classical receptive fields is structurally separable, and proposed that

this cortical architecture is designed to develop Morton-style factorial codes of the world.

Recently, Movellan et al. [2003] presented evidence suggesting that the response of simple

cells in primary visual cortex to stimulus and background colors factorizes in Morton’s

sense.

O2

H2H1

Relay1 Relay 2

O1

Figure III.1: A Morton-separable architecture [Movellan and McClelland, 2001]. In
Boltzmann-style networks with this architecture, the equilibrium distribution of O and
H factorizes in Morton’s sense. By exchanging the labels for O and H, we obtain an
architecture in which the distribution of O and H factorizes in Hinton’s sense. If the
lateral connections between hidden units and the lateral connections between observable
units are both suppressed, then the network representations factorize both in Morton’s
sense and in Hinton’s sense.
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In a recent paper, Hinton [2002] proposed a new class of models, called products of

experts (POEs), and an objective function known as contrastive divergence that is par-

ticularly effective for training these models. In Hinton’s POEs, the marginal distribution

over observable units factorizes as follows:

p(o) ∝
∏
j

gj(o). (III.5)

Here gj(o) can be thought of as the (unnormalized) opinion of the jth expert as to the

likelihood of o, and p(o) is the probability value that the entire system assigns to o.

If we let each hidden unit in the network correspond to an expert in the product

of experts, then

gj(o) =
∑
hj

fj(ohj) (III.6)

(the sum in the above equation is taken over all possible values of the jth hidden unit),

and the joint distribution of observable inputs and hidden codes factorizes as follows:

p(oh) ∝
∏
j

fj(ohj). (III.7)

Note that this form of factorization is a mirror image of the Morton style factorization,

with the roles of O and H reversed. Thus, Movellan and McClelland’s analysis of sepa-

rable neural architectures applies to POEs simply by exchanging the labels of H and O

(See Figure III.1). In particular, Movellan and McClelland [2001] showed that networks

with no direct lateral connections between observable units produce distributions that

factorize in Morton’s sense. It follows that networks with no direct lateral connections

betwen hidden units produce distributions that factorize in Hinton’s sense, i.e., they are

products of experts.

Hinton [2002] focused on restricted Boltzmann machines, Boltzmann machines

that have connections linking hidden units with observable units, but no lateral con-

nections from hidden units to other hidden units, and no lateral connections linking

observable units to other observable units. Not only are such networks products of

experts, but they also factorize in Morton’s sense.

Following Movellan and McClelland [2001], in this chapter we focus on diffusion

networks, a continuous-time, continuous-state version of the Boltzmann machine. Like
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Boltzmann machines, diffusion networks have bidirectional connections, which if sym-

metric result in a Boltzmann equilibrium distribution. For the remainder of this chapter,

we assume symmetric connections. An important advantage of diffusion networks over

Boltzmann machines is their continuous nature, which provides a natural representation

for continuous-valued problems involving images, sounds, or 3D spatial representations.

In this chapter we concentrate on the analysis of linear diffusions, which provide impor-

tant theoretical background for future nonlinear generalizations.

When training networks such as Boltzmann machines by minimizing contrastive

divergence [Hinton, 2002], the activation statistics do not need to be collected at stochas-

tic equilibrium, unlike standard Boltzmann machine learning [Ackley et al., 1985; Hinton

and Sejnowski, 1986]. This results in a dramatic acceleration of learning speed, while

maintaining the desirable properties of the Boltzmann machine learning rule, such as

the fact that it is based on local, Hebbian-like activation statistics.

The main result presented in this document is that when when the unit activation

functions are linear, and there are no lateral connections between hidden units and no

lateral connections between observable units, diffusion networks model precisely the same

class of observable distributions as factor analysis. This is somewhat surprising given the

fact that diffusion networks are feedback models, while the generative model for factor

analysis is a feedforward model. A consequence of this result is that besides factorizing

in Barlow’s sense, factor analyzers also factorize in Morton’s sense and in Hinton’s POE

sense.

Diffusion networks are particularly well suited to inference. We show results

of simulations in which diffusion networks were trained to develop factorial codes by

minimizing contrastive divergence. These factorial codes were then used to infer missing

data values in 3D faces. We then show how 3D morphable models, such as a model of

a person’s head motion and facial expressions (as used in Chapter II for face tracking),

can be learned using diffusion networks.

Importantly, the results presented here suggest novel nonlinear generalizations of

factor analysis and independent component analysis that could be implemented using

interactive noisy circuitry. Indeed, work is ongoing to implement these diffusion networks

in analog VLSI [Chen and Murray, 2002].
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III.2 Diffusion networks

A diffusion network is a neural network specified by a stochastic differential equa-

tion

dX(t) = µ
(
X(t)

)
dt+ σdB(t) (III.8)

where X(t) is a random vector describing the state of the system at time t, and B is a

standard Brownian motion process. The term σ is a constant, known as the dispersion,

that controls the amount of noise in the system. The function µ, known as the drift,

represents the deterministic kernel of the system. In this chapter, we study diffusions

for which the drift is the gradient of an energy function, φ,

µ(x) = −∇xφ(x). (III.9)

If the energy function satisfies certain conditions [Gidas, 1986], then it can be shown

that X has a limit probability density

p(x) ∝ exp
(−2φ(x)

σ2

)
(III.10)

which is independent of the initial conditions. If we set σ =
√

2, Equation III.10 simplifies

to

p(x) ∝ e−φ(x) . (III.11)

III.2.1 Linear diffusions

If the energy is a quadratic function

φ(x) =
1
2
xTax, (III.12)

where the connection matrix a is a symmetric, positive definite matrix, then the limit

distribution is

p(x) ∝ exp
(
−1

2
xTax

)
. (III.13)

This distribution is Gaussian with zero mean and covariance matrix a−1. Taking the

gradient of the energy function, we get

µ(x) = −∇xφ(x) = −ax (III.14)
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and thus in this case the activation dynamics are linear:

dX(t) = −aX(t)dt+ σdB(t) . (III.15)

These dynamics have the following neural network interpretation: Let a = (r − w),

where w represents a matrix of synaptic conductances and r is a diagonal matrix of

transmembrane conductances, ri (current leakage terms). We then get the following

form:

dXi(t) = [X̄i(t)− riXi(t)]dt+ σdB(t), (III.16)

where Xi(t) is the activation of neuron i, and

X̄i(t) =
∑
j

wijXj(t) (III.17)

represents the net input current to neuron i.

III.3 Factor analysis

Factor analysis is a probabilistic model of the form

Õ = cH̃ + Z (III.18)

where Õ is an no-dimensional random vector representing observable data; H̃ is an

nh-dimensional Gaussian random vector representing hidden independent sources, with

E(H̃) = 0 and Cov(H̃) = I, the identity matrix; and Z is a Gaussian vector indepen-

dent of H̃ representing noise in the observation generation process, with E(Z) = 0 and

Cov(Z) = Ψ, a diagonal matrix. The matrix c is called the factor loading matrix.

If H̃ is logistic (has a logistic cumulative density function) instead of being Gaus-

sian, and in the limit as Ψ → 0, Equation (III.18) is the standard model underlying

independent component analysis (ICA) [Bell and Sejnowski, 1995; Attias, 1999]. Note

that in the standard generative interpretation of factor analysis, as well as in ICA, the

observations are generated in a feedforward manner from the hidden sources and the

noise process.

It follows from Equation III.18 that Õ and H̃ have covariances

Cov(X̃) = Cov

Õ
H̃

 =

ccT + Ψ c

cT I

 (III.19)
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where we have defined X̃T def=
[
ÕT , H̃T

]
. Taking the inverse of the block matrix in

(III.19), we get

(Cov(X̃))−1 =

 Ψ−1 −Ψ−1c

−cTΨ−1 I + cTΨ−1c

 . (III.20)

III.4 Factorial diffusion networks

In this section, we discuss a subclass of diffusion networks that factorize both in

Hinton’s sense and in Morton’s sense. To begin with, we divide the state vector of a

diffusion network into observable and hidden units, XT =
[
OT , HT

]
. In addition, we

restrict the connectivity matrix so that there are no lateral connections from hidden units

to hidden units and no lateral connections from observable units to observable units. We

refer to diffusion networks with no hidden-hidden or observable-observable connections

as factorial diffusion networks (FDNs).

The separability theorem presented in Movellan and McClelland [2001] can be

applied to show that the equilibrium distribution of an FDN factorizes in Morton’s

sense. By reversing the role of H and O, the same theorem can be applied to show that

the equilibrium distribution also factorizes in Hinton’s sense, i.e., that these networks

are POEs.

III.4.1 Linear factorial diffusion networks

A linear factorial diffusion network (linear FDN) is a linear diffusion network (see

Section III.2.1) in which there are no lateral connections among hidden units or among

observable units. This corresponds to letting the connection matrix a have the form

a =

 ro −woh

−wToh rh

 (III.21)

where ro and rh are diagonal matrices with positive real elements.

Suppose we are given an arbitrary linear FDN. The limit distribution, p(oh),

has Gaussian marginal distributions p(o) and p(h) whose covariances can be found by
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inverting the block matrix in Equation III.21:

Cov(H) = (rh − wTohr−1
o woh)−1 (III.22)

Cov(O) = (ro − wohr−1
h wToh)−1 (III.23)

Note that in the equations above and henceforth, we use O and H to represent the limit

distributions of the random processes O(t) and H(t). For example, O refers to lim
t→∞

O(t).

Linear FDNs were designed to factorize in Morton’s sense and in Hinton’s sense.

If we also want them to factorize in Barlow’s sense, we need to further restrict them

so that the hidden units are independent, i.e., Cov(H) is diagonal. One might wonder

whether forcing the hidden units to be independent leads to a restriction on the type of

distributions over observable variables that can be represented with these networks.

Let Do represent the set containing every distribution on Rno that is the limit

distribution of the observable units of any linear FDN with nh hidden units. Let Doi
represent the set containing every distribution on Rno that is the limit distribution of

the observable units of any linear FDN with nh hidden units that are independent†,

Cov(H) = I. We now show that forcing the hidden units to be independent does not

constrain the class of observable distributions that can be represented by a linear FDN.

Theorem 1 : Doi = Do.

Proof : Since Doi is a subset of Do, we just need to show that any distribution in Do is

also in Doi . Let p(oh) be the limit distribution of an arbitrary linear FDN with parameters

woh, rh, and ro. We will show there exists a new linear FDN, with limit distribution

p(o′h′) and parameters w′oh, r′h, and r′o, such that Cov(H ′) = I and p(o′) = p(o).

First we take the eigenvalue decomposition

I − r−1/2
h wTohr

−1
o wohr

−1/2
h = QΛQT (III.24)

where Q is a unitary matrix and Λ is diagonal.

Equation III.24 can be rewritten

wTohr
−1
o woh = rh − r

1/2
h QΛQT r1/2

h . (III.25)

†Independent hidden units correspond to Cov(H) merely being diagonal, but it turns out that requir-
ing Cov(H) = I is no more restrictive.
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It follows from Equation III.22 that the left hand side of Equation III.24 is positive

definite, so all the terms in Λ will be positive. This enables us to define

r′h = Λ−1 (III.26)

w′oh = wohr
−1/2
h QΛ−1/2 (III.27)

r′o = ro . (III.28)

By Equation III.22, we find that

Cov(H ′) =
(
r′h − (w′oh)T r−1

o w′oh
)−1

=
(
Λ−1 − Λ−1/2QT r

−1/2
h [wTohr

−1
o woh]r−1/2

h QΛ−1/2
)−1

= I, (III.29)

where the last step follows from Equation III.25. By Equation III.23, we find that

Cov(O′) =
(
ro − w′oh(r′h)−1(w′oh)T

)−1

= (ro − wohr−1
h wToh)−1 (III.30)

= Cov(O).

Theorem 1 will help to elucidate the relationship between factor analysis and linear

FDNs. In the next section, we will show that the class of distributions over observable

variables that can be generated by factor analysis models with nh hidden sources, is the

same as the class of distributions over observable units that can be generated by linear

FDNs with nh hidden units.

III.5 Factor analysis and linear diffusions

In this section, we examine the relationship between feedforward factor analysis

models and feedback diffusion networks. Let Fo represent the class of probability distri-

butions over observable units that can be generated by factor analysis models with nh

hidden units. In Theorem 2 we will show that this class of distributions is equivalent

to Do, the class of distributions generated by linear FDNs with nh hidden units. To do

so, we first need to prove a lemma regarding the subclass of factor analysis models for

which the lower right block of the matrix in Equation III.20, I + cTΨ−1c, is diagonal.
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We define Foi as the class of probability distributions on Rno that can be generated by

such factorial factor analysis models.

Lemma : Foi = Fo.

Proof : Since Foi is a subset of Fo, we just need to show that any distribution in Fo is

also in Foi . Let p(õh̃) be the distribution generated by an arbitrary factor analysis model

with parameters c and Ψ. We will show that there exists a new factor analysis model,

with joint distribution p(o′h̃) and parameters c′ and Ψ, such that p(o′) = p(õ) and such

that I + (c′)TΨ−1c′ is diagonal.

First we take the eigenvalue decomposition

cTΨ−1c = SDST (III.31)

where S is a unitary matrix and the eigenvalue matrix D is diagonal. S defines a rotation:

c′ = cS. (III.32)

Then

(c′)TΨ−1c′ = D (III.33)

which is diagonal. Thus I + (c′)TΨ−1c′ is diagonal. Furthermore, from the equation

O′ = c′H̃ + Z̃ we can derive:

Cov(O′) = c′(c′)T + Ψ = ccT + Ψ = Cov(Õ).

Factor Analyzers are Equivalent to Linear FDNs Now we are ready to prove the

main result of this chapter: that factor analysis models are equivalent to linear factorial

diffusion networks.

Theorem 2 : Do = Fo.

Proof :

[⇒] : Fo ⊂ Do. Let p(õ) be the distribution over observable units generated

by any factor analysis model. By the Lemma, there exists a factor analysis model

with distribution p(x̃T ) = p(õT , h̃T ) and parameters c and Ψ such that its marginal

distribution over the observable units equals the given distribution p(õ) and for which

I + cTΨ−1c is diagonal.
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Let p(xT ) = p(oT , hT ) be the limit distribution of the linear diffusion network

whose parameters, {woh, ro, rh} are obtained by setting the diffusion network connec-

tion matrix of Equation III.21 equal to the factor analysis inverse covariance matrix of

Equation III.20:

a = (Cov(X̃))−1. (III.34)

Then ro = Ψ−1 and rh = I+cTΨ−1c are both diagonal, so this linear diffusion network is

a linear FDN. By Equation III.13, the limit distribution of X is Gaussian with covariance

Cov(X) = a−1, from which it follows that Cov(X) = Cov(X̃), i.e., the covariance matrix

of the diffusion network equals the covariance matrix of the factor analyzer. In particular,

Cov(O) = Cov(Õ). Thus, p(õ) = p(o) is the limit distribution of a linear FDN.

[⇐] : Do ⊂ Fo. Let p(o) be the limit distribution over observable units of any

linear FDN. By Theorem 1, there exists a linear FDN with distribution p(xT ) = p(oT , hT )

and parameters {woh, ro, rh} such that its marginal distribution over the observable units

equals the given distribution p(o) and for which Cov(H) = I. Now consider the factor

analysis model with parameters

Ψ = r−1
o and c = r−1

o woh . (III.35)

Using reasoning similar to that used in the first part of this proof, one can verify that

this factor analysis model generates a distribution over observable units that is equal

to p(o).

Corollary: Factor analysis models are Products of Experts (i.e, they factorize in Hin-

ton’s sense). They also factorize in Morton’s sense.

This corollary is an immediate consequence of the equivalence of factor analysis

(FA) and linear FDNs. Anm-factor FA model is a product ofm 1-factor FA experts. This

is surprising, as it seems at first to run counter to a result about products of probabilistic

principal component analysis models [Williams et al., 2002]. We have shown that any

m-factor FA model can be expressed as a product of m 1-factor FA experts, but the

relationship between the entire m-factor model and the individual 1-factor experts is

not trivial. The factor loading matrix, c, of the entire m-factor model is not a simple

concatenation of the factor loading matrices of the 1-factor FA experts. Also, the sensor
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noise variances, Ψ, of the outputs of the entire m-factor model are not equal to the sensor

noise variances of the 1-factor FA experts.

We have just shown how to express FA as a diffusion network that is an energy-

based factorial model. Hinton et al. [2001] showed that independent component analysis

(ICA) can be expressed as an energy-based POE model. By using his approach in com-

bination with our results, one can also obtain a diffusion net representation of principal

component analysis, as we show in Section III.6 below.

III.6 A diffusion network model for PCA

We now show how to obtain a diffusion network model for principal component

analysis (PCA) by modifying the diffusion network model for factor analysis (FA). We

consider PCA as the limit of FA in which spherically symmetric sensor noise goes to

zero while staying equal for all components. Beginning with the FA model (Equations

III.18, III.19, and III.20) we require the sensor noise to be symmetric: Ψ = 1
λI. From

Equation III.20, we see that the inverse covariance of the model is given by:

(Cov(X))−1 =

 λI −λc

−λcT I + λcT c

 . (III.36)

To find the parameters for the corresponding linear FDN, we set the linear FDN’s con-

nection matrix a (III.21) equal to this factor analyzer’s inverse covariance matrix (III.36):

a (Cov(X))−1 ro −woh

−wToh rh

 =

 λI −λc

−λcT I + λcT c

 (III.37)

Substituting this connection matrix, a, into the stochastic differential equation for the

diffusion network (III.15) yields a stochastic differential equation that can be considered

separately for observable units and hidden units.

The equation for the observable units is:

dO(t) = λ[cH(t)−O(t)]dt+ σdB(t) . (III.38)
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Multiplying both terms on the right hand side by a positive constant does not change

the limit distribution, so we can multiply by k
λ , where k is any positive number, to get

dO(t) = k[cH(t)−O(t)]dt+
k

λ
σdB(t) . (III.39)

Taking the zero-sensor-noise limit, lim
λ→∞

, this simplifies to:

dO(t) = k[cH(t)−O(t)]dt . (III.40)

Notice that the noise term has vanished. Since k was arbitrary, we may choose a very

large value for k. The result is to enforce the following linear relationship between O

and H:

O = cH . (III.41)

The equation for the hidden units is:

dH(t) = lim
λ→∞

λ

[
cTO(t)−

(
1
λ
I + cT c

)
H(t)

]
dt+ σdB(t) . (III.42)

Substituting in from Equation III.41, this becomes

dH(t) = lim
λ→∞

λ

[
− 1
λ
H(t)

]
dt+ σdB(t) (III.43)

which simplifies to

dH(t) = −H(t)dt+ σdB . (III.44)

This stochastic differential equation leads to an equilibrium distribution in which all of

the hidden variables have independent standard normal distributions:

H ∼ N(0, I) . (III.45)

The diffusion network thus has a limit distribution over the hidden and observ-

able variables given by (III.41) and (III.45), which is precisely Hinton’s energy-based

formulation of ICA [Hinton et al., 2001], in the special case in which the priors (the

distributions of the hidden variables) are Gaussian.
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III.7 Training Factorial Diffusions

Since FDNs factorize in Morton’s sense, training such networks guarantees the

development of factorial representations that are consistent with Morton’s model of per-

ception. Like restricted Boltzmann machines, FDNs are products of experts (POEs).

Also like restricted Boltzmann machines, FDNs can be trained by minimizing contrastive

divergence [Hinton, 2002]. In this chapter we explore this approach for training linear

FDNs.

We cannot learn the parameters of the FDN by simple minimization of contrastive

divergence, because we must restrict the connection matrix a to be positive definite. In

this section, we first explain how one would naively apply contrastive divergence learning

to train a linear FDN, then (in Section III.7.4) explain how to modify the learning rules

to restrict the connection matrix to be positive definite.

We have chosen to train linear FDNs (rather than nonlinear FDNs) in this chapter

because we wanted to evaluate contrastive divergence learning as a tool for training

factorial diffusion networks. Because of the equivalence between factor analyzers and

linear FDNs proven in previous sections, we know what the ideal performance of linear

FDNs should be. The simulations in Section III.8 below demonstrate that contrastive

divergence learning is highly effective for training linear FDNs. With these results, the

groundwork is now in place for using contrastive divergence learning to train nonlinear

FDNs.

III.7.1 Contrastive Divergence

Consider an ergodic Markov chain with state vector X(t), parameter vector λ,

and a Boltzmann equilibrium distribution

lim
t→∞

P
(
X(t) = x

)
∝ e−φ(x,λ) (III.46)

We start the observable variables of this chain at some desired distribution, P 0, and let

the chain converge to an equilibrium distribution, P∞. Since the network is ergodic, its

equilibrium distribution is independent of the initial distribution. Our goal is for the

equilibrium distribution to equal P 0. To do so, we formulate a contrastive divergence
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cost function:

CD = KL
(
P 0, P∞

)
−KL

(
P t, P∞

)
(III.47)

where KL() is the Kullback-Leibler divergence between two distributions, and P t is

the distribution of observable variables at a finite time t > 0. If CD = 0, it follows

that P 0 = P∞, and thus we have learned the desired distribution. The gradient of the

contrastive divergence with respect to the parameter λ is as follows [Hinton et al., 2001]:

∂CD

∂λ
=
〈
∂φ

∂λ

〉
P 0

−
〈
∂φ

∂λ

〉
P t

−
∂KL

(
P t, P∞

)
∂P t

∂P t

∂λ
(III.48)

In practice, the last term in the equation above can be ignored [Hinton, 2002; Hinton

et al., 2001] and we get the following learning rule:

∆λ = −ε
[〈

∂φ(X)
∂λ

〉
P 0

−
〈
∂φ(X)
∂λ

〉
P t

]
(III.49)

or equivalently,

∆λ = −ε

 ∑
data dk

∂φ(dk)
∂λ

−
∑

samples sk

∂φ(sk)
∂λ

 . (III.50)

The constant parameter ε controls the learning rate, dk are the data vectors, and sk are

the vectors that result from running the Markov chain up to time t starting from the

data vectors dk.

Markov chain Monte Carlo methods Training a diffusion network by minimizing

contrastive divergence requires a Markov chain whose equilibrium distribution (III.46)

is the same as the equilibrium distribution of the diffusion network. The most intuitive

approach would be to use Euler’s method on Equation III.16. However, this method is

only guaranteed to converge to the correct distribution in the limit as the time constant

∆t goes to zero. It can be shown that Euler’s method on Equation III.16 is equivalent

to Langevin dynamics [Neal, 1996] on the energy function (III.12). A related Markov

chain Monte Carlo (MCMC) technique, known as Langevin Monte Carlo, is guaranteed

to converge to the correct equilibrium distribution even with finite time constant ∆t.

A more sophisticated MCMC technique known as hybrid Monte Carlo converges to the
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same limit distribution as Langevin Monte Carlo, but it often does so more quickly [Neal,

1996].

We have used both hybrid Monte Carlo and alternating Gibbs sampling for our

simulations of linear FDNs, and the training results of these two MCMC methods are

comparable. This is consistent with the simulation results in [Hinton et al., 2001]. Al-

ternating Gibbs sampling is much faster than hybrid Monte Carlo, reaching conditional

equilibrium in just one step. In addition, Gibbs sampling has the advantage that it

gives the sufficient statistics of the conditional distribution at every step, whereas hy-

brid Monte Carlo only gives a single sample at a time, and many such samples must be

collected to approximate a distribution. Thus Gibbs sampling is faster when we can use

it.

For the nonlinear cases that we will consider in the future, though, Gibbs sampling

will not always be an option, because the full conditional distributions that are necessary

for Gibbs sampling may be intractable. However, we will still be able to use the hybrid

Monte Carlo method, because we will be able to compute the energy function up to

a constant factor. It is thus important to ensure that both methods are successful at

training linear diffusions, because we will need to use both methods in the future to train

nonlinear diffusion networks.

III.7.2 Application to linear FDNs

We would like to derive contrastive divergence learning rules for a linear FDN. In

this case the parameter λ consists of the connection matrix woh, as well as the diagonal

matrices ro and rh. The energy function, φ, that determines the equilibrium distribution

of a linear FDN is given by Equations III.12 and III.21:

φ(x) =
1
2
xTax =

1
2
[
oT hT

]  ro −woh

−wToh rh

o
h

 (III.51)

Letting wij represent the element in the ith row, jth column of woh, we can take the

partial derivative of Equation III.51:

∂φ(x)
∂wij

= −oihj , (III.52)
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where oi and hj represent the ith element of the vector o and the jth element of the

vector h, repectively. In other words, oi is the activation of the ith observable unit, and

hj is the activation of the jth hidden unit.

Substituting this result into Equation III.49 yields the following update rule for

learning each element wij of the matrix of connection weights woh:

∆wij = −ε
[〈

∂φ(X)
∂wij

〉
P 0
−
〈
∂φ(X)
∂wij

〉
P t

]

= ε
[
〈OiHj〉P 0 − 〈OiHj〉P t

]
.

(III.53)

The update rule for the entire matrix woh is thus

∆woh = ε
[〈
OHT

〉
P 0 −

〈
OHT

〉
P t

]
. (III.54)

As expected, this has the same form as the learning rules for equilibrium diffusions

[Movellan, 1998], with the advantage that the relevant statistics are now collected at finite

time t, rather than at equilibrium. The basic update rules for learning the self-connection

matrices ro and rh are also derived by partial differentiation of Equation III.51. The

update rules are:

∆ro = diag
(
−ε · 1

2

(
〈O ◦O〉P 0 − 〈O ◦O〉P t

))
(III.55)

∆rh = diag
(
−ε · 1

2

(
〈H ◦H〉P 0 − 〈H ◦H〉P t

))
. (III.56)

where ◦ is the Hadamard (elementwise) product (corresponding to the .* operator in

Matlab), and diag(x) is the diagonal matrix whose diagonal is populated by the elements

of the vector x.

III.7.3 Constraining the diagonals to be positive

The learning rules for ro and rh in Equations III.55 and III.56 could lead some

of the learned elements of ro and rh to be negative, which is not permitted. In order to

avoid assigning negative values to the elements of ro and rh, we use the parameterization

rii = eαi and rjj = eβj (III.57)

where rii represents the ith element on the diagonal of ro, and rjj represents the jth

element on the diagonal of rh.
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By the chain rule,

∂φ(x)
∂αi

=
drii
dαi

∂φ(x)
∂rii

= rii
∂φ(x)
∂rii

(III.58)

and after some derivations, we get the contrastive divergence update rule for αi:

∆αi = −ε · rii
2
[〈
O2
i

〉
P 0 −

〈
O2
i

〉
P t

]
(III.59)

The column vector α that contains all of the αi can be updated all at once using the

vector equation

∆α = −ε · ro
2

[〈O ◦O〉P 0 − 〈O ◦O〉P t ] . (III.60)

The update rule for β is very similar:

∆β = −ε · rh
2

[〈H ◦H〉P 0 − 〈H ◦H〉P t ] . (III.61)

III.7.4 Positive definite update rules

If a connection matrix a is not positive definite, then the diffusion network defined

by a does not have an equilibrium distribution. Unfortunately, the update rules in

Equations III.54, III.60, and III.61 can lead to matrices that are not positive definite.‡

The problem of optimizing a function of a matrix that is constrained to be positive

definite is known as positive definite programming [Vandenberghe and Boyd, 1994], and

it is not a trivial problem.

In order to solve the particular positive definite programming problem posed

by the linear FDN, we reparameterize the problem so that every update step leads

to a positive definite a. In each update step, woh and ro are updated using contrastive

divergence learning rules (derived below), and rh is determined analytically as a function

of woh and ro. During learning, rh is not restricted to be diagonal. The diagonality of

rh is only imposed after all the steps of the learning are complete (see Section III.7.4.3

below).

‡It is possible that the positive definite update rules derived in this section are only necessary for
the beginning of the training process. Once the learning process has found its way to a good region
of parameter space, the special positive definite update rules may no longer be needed. Small gains in
efficiency could be achieved by using the positive definite update rules at the beginning of training and
the more basic update rules later in the learning process.
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III.7.4.1 The parameter rh as a function of woh and ro

Before deriving the positive definite update rules for woh and ro, we will describe

how rh is determined after each update of woh and ro. In every step, rh is chosen to

make the hidden units independent:

Cov(H) = I, (III.62)

where I is the identity matrix whose rank is the number of hidden units (I has the same

dimensions as rh). This is accomplished using the formula

rh = I + wTohr
−1
o woh . (III.63)

Then the matrix a, as defined by Equation III.21, will be positive definite. To see this,

notice that a can be decomposed as a = mTm, where m is defined by

m =

r1/2
o −r−1/2

o woh

0 I

 . (III.64)

Because ro is a diagonal matrix with all positive real elements, the matrices r1/2
o and

r
−1/2
o are also diagonal matrices with all positive real elements.

To see that rh as defined in Equation III.63 will result in an equilibrium distri-

bution that has Cov(H) = I, recall that for any linear diffusion network defined by

Equation III.21, Cov(H) is given by Equation III.22. Substituting the expression for rh

from Equation III.63 into equation III.22 immediately yields the desired result (Equa-

tion III.62).

III.7.4.2 The update rules for ro and woh

We are now ready to derive the positive definite update rules for ro and woh. Let

rii represent the ith element of the diagonal matrix ro. We now have that

∂φ(x)
∂rii

=
1
2
o2
i + sum

(
∂φ(x)
∂rh

◦ ∂rh
∂rii

)
(III.65)

where sum( ) denotes the sum of all of the elements of a matrix§.

§The expression sum(a ◦ b) is more formally written as trace(aT b). We choose the former notation,
however, as it directly suggests the more efficient implementation.
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Partial differentiation of Equation III.51 gives:

∂φ(x)
∂rh

=
∂

∂rh

(
1
2
hT rhh

)
=

1
2
hhT . (III.66)

Differentiation of Equation III.63 gives:

∂rh
∂rii

=
∂

∂rii

(
wTohr

−1
o woh

)
= − 1

r2
ii

wTi•wi• . (III.67)

Then

sum
(
∂φ(x)
∂rh

◦ ∂rh
∂rii

)
= − 1

2r2
ii

sum
(
hhT ◦ wTi•wi•

)
= − 1

2r2
ii

sum
([
h ◦ wTi•

] [
hT ◦ wi•

])
(III.68)

= − 1
2r2
ii

(wi• h)2 .

Substituting into Equation III.65, we get

∂φ(x)
∂rii

=
1
2
o2
i −

1
2r2
ii

(wi• h)2 . (III.69)

Using Equations III.49 and III.58, we get

∆α = −ε
(ro

2
[〈O ◦O〉P 0 − 〈O ◦O〉P t ]

(III.70)
−r
−1
o

2
[〈wohH ◦ wohH〉P 0 − 〈wohH ◦ wohH〉P t ]

)
.

To derive the update rule for wij , we need to add some new terms to Equa-

tion III.52:
∂φ(x)
∂wij

= −oihj + sum
(
∂φ(x)
∂rh

◦ ∂rh
∂wij

)
. (III.71)

Differentiating Equation III.63, we get

∂rh
∂wij

=
∂

∂wij

(
wTohr

−1
o woh

)
= A+AT , (III.72)

where

A = wTohr
−1
o

∂woh
∂wij

. (III.73)

Combining this with Equation III.66,

sum
(
∂φ(x)
∂rh

◦ ∂rh
∂wij

)
= sum

(
1
2
hhT ◦

(
A+AT

))
= sum

(
hhT ◦A

)
(III.74)
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which can be simplified to

sum
(
∂φ(x)
∂rh

◦ ∂rh
∂wij

)
=

1
rii

(wi• h) hj . (III.75)

Substituting this into Equation III.71 gives:

∂φ(x)
∂wij

= −oihj +
1
rii

(wi• h)hj (III.76)

or in matrix form,
∂φ(x)
∂woh

= −ohT + r−1
o wohhh

T . (III.77)

Hence by Equation III.49, the update rule for the entire matrix woh is:

∆woh = ε
(〈
ÔHT

〉
P 0
−
〈
ÔHT

〉
P t

)
(III.78)

where

Ô = O − r−1
o wohH . (III.79)

Note that the only difference between the standard weight update rule (III.54) and the

positive definite weight update rule (III.78) is the correction factor r−1
o wohH.

III.7.4.3 Diagonalizing rh

After contrastive divergence learning using the positive definite update rules, the

result is a linear diffusion network, but it may not be a linear factorial diffusion network:

rh may not be diagonal. We need to transform the learned diffusion network, which has

parameters {woh, ro, rh}, into a new diffusion network with parameters {w′oh, r′o, r′h} such

that r′o is diagonal, Cov(O′) = Cov(O), and Cov(H ′) = Cov(H) = I. The transformation

is described below.

First, take the eigenvalue decomposition

wTohr
−1
o woh = MΓMT . (III.80)

The matrix M defines a rotation, and Γ is diagonal. The transformed parameters are:

w′oh = wohM (III.81)

r′o = ro (III.82)

r′h = I + Γ . (III.83)

The proof that the transformed parameters satisfy the required conditions is similar to

the proof of the Lemma (in Section III.5), and is omitted.
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III.8 Simulations

Inference in diffusion networks uses the same machinery (the same algorithms)

as generation. This is the reason behind the ease of inference in FDNs, which is one of

these models’ major strengths. The examples of inference given in this section are all

for the linear Gaussian case (linear FDNs). Unlike inference in other linear Gaussian

unsupervised learning techniques, however, inference in linear FDNs extends trivially

to inference in nonlinear and non-Gaussian cases. In every FDN, whether it is linear,

Gaussian, or neither, inference is simply a matter of clamping the known values and then

letting the network settle to its equilibrium distribution.

In this section, we use diffusion networks to develop a factorial representation of

a database of 3D human face models. This involves learning a linear model of 3D face

space based on 3D biometric data. Then in Section III.9, we use diffusion networks to

solve a harder problem: learning a 3D morphable model of the deformable structure of

a human face, based only on 2D data.

III.8.1 Learning the structure of 3D face space

Using the contrastive divergence learning rules derived in Section III.7.4, we

trained linear FDNs in an unsupervised manner on a database of 50 three-dimensional

human faces [Blanz and Vetter, 1999, USF Human ID 3D database]. The face data,

which were obtained using a laser scanner, contain structure (3D coordinates) and tex-

ture (24-bit RGB color) information for each point on the surface. An optic flow-based

correspondence algorithm was performed on the data so that for every face, each point

on the face surface corresponds to a unique point on every other face [Blanz and Vetter,

1999]. For example, if the 934th point in one face is at the tip of the nose, then the

934th point in every one of the 50 faces is at the tip of the nose.

We downsampled the data, maintaining this point-to-point correspondence across

faces. Each face surface then consisted of structure and texture information for 1340

points (vertices), each of which had 3 dimensions of structure data (3D coordinates) and

3 dimensions of texture data (RGB values). The mean face was determined as follows:

for a given vertex number (e.g., the 934th vertex), the location and texture of that vertex

on the mean face is simply the mean of the locations and textures of that vertex on all 50
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faces. Figure III.2 shows the mean face and three of the data faces in the downsampled

database. The faces were rendered by connecting the vertices with a triangular mesh,

and interpolating the texture on each triangle from the vertex colors.

Figure III.2: The mean face (left) and three example faces from the 3D face database
[Blanz and Vetter, 1999, USF Human ID 3D database] after downsampling. Every one
of the 1340 points on each face has 3 dimensions of structure data (3D coordinates) and
3 dimensions of texture data (RGB color values).

Since FDNs have continuous states rather than binary states, they are able to

represent pixel intensities in a more natural manner than restricted Boltzmann machines

(RBMs). We used the contrastive divergence learning rules derived in Section III.7.4 to

train linear FDNs on the 3D face data. One linear FDN with 4020 observable units

(the x, y, and z coordinates of 1340 vertices) and 10 hidden units was trained on the

mean-subtracted structure data, and another linear FDN with 4020 observable units (the

R, G, and B color values of 1340 vertices) was trained on the mean-subtracted texture

data. Each expert in the product of experts consists of one hidden unit and the learned

connection weights between that hidden unit and all of the observable units. These

learned connection weights can be thought of as the receptive field of that hidden unit.

Figure III.3 shows the connection weights from each hidden unit to all of the

observable units of the linear FDN that was trained on the texture data. These texture

receptive fields are all rendered using the 3D structure of the mean face. Figure III.4

illustrates the connection weights from 5 of the 10 hidden units of the linear FDN that

was trained on the structure data. In order to illustrate the connection weights from a

particular hidden unit, the 3D location of each vertex in the figure is the 3D location of

the vertex in the mean face structure, plus/minus 25 times the connection weights from
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the hidden unit to the 3 observable units corresponding to that vertex.

Figure III.3: Receptive fields of all 10 hidden units of a linear FDN that was trained on
the texture data. All of the textures are rendered using the structure of the mean face.

Applying principal component analysis separately to the texture and structure

parts of the 3D face database yields a low-dimensional representation of these high-

dimensional data [Blanz and Vetter, 1999]. The principal components derived from a

two-dimensional face database (the eigenvectors of the pixelwise covariance matrix) are

known as eigenfaces [Turk and Pentland, 1991]; in a similar vein, we call the principal

components of the 3D structure and texture data eigenstructures and eigentextures,

respectively.

Although the learning rules derived in Section III.7 are elegant in theory, that

does not necessarily imply that they will work well in practice. Rather than beginning

by training a nonlinear, non-Gaussian FDN, we have chosen to focus on linear FDNs in

this chapter. This is partly because for the linear Gaussian case, we know what type of

representation the diffusion network should learn.

Because of the correspondence between linear FDNs and factor analysis that

was proven in previous sections, the receptive field of a hidden unit in the linear FDN

corresponds to a column of the factor loading matrix c in Equation III.18 (after the

column is normalized by premultiplying by Ψ−1, the inverse of the variance of the noise

in each observable dimension). Furthermore, because of the relationship between factor
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Figure III.4: Hidden unit receptive fields for structure. Receptive fields of 5 of the 10
hidden units of the linear FDN that was trained on the structure data. In each column,
both faces illustrate the receptive field of the same hidden unit. The location of each
vertex is the location of the vertex in the mean face structure, plus (top) or minus
(bottom) 25 times the connection weights from the hidden unit to the 3 observable units
(x, y, and z) corresponding to that vertex.

analysis and principal component analysis (see Section III.6), one would expect that if the

diffusion network has learned the data well, the receptive fields of the hidden units of the

linear FDN should resemble the eigentextures and eigenstructures of the same database.

In fact, the hidden unit receptive fields in Figures III.3 and III.4 so strongly resemble

the eigentextures and eigenstructures from the same database, that we do not even show

the eigentextures and eigenstructures here. At the resolution of this dissertation, they

would appear to be almost identical.

Now that we have established that minimizing contrastive divergence is an effec-

tive way to train a linear FDN on real data, the contrastive divergence learning techniques

that we used can be extended to training nonlinear FDNs.

III.8.2 Inferring missing 3D structure and texture data

Because of factorial diffusion networks’ facility with inference, we are applying

them to an important inference problem from facial expression analysis. Braathen et al.

[2002] introduced a system for the automatic recognition of spontaneous facial actions
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(FACS) from video. Previous methods for automatic facial expression recognition as-

sumed images were collected in controlled environments in which the subjects deliber-

ately faced the camera. Since people often nod or turn their heads, automatic recognition

of spontaneous facial behavior requires methods for handling out-of-image-plane head ro-

tations.

Dealing with out-of-plane rotations is one of the most important and difficult

technical challenges in the field of face processing. While in principle 2D methods may

be able to learn the invariances underlying out-of-plane rotations, in practice the amount

of data needed to learn such invariances could be prohibitive. Instead, Braathen et al.

[2002] factored out this source of variability by using 3D models.

This system can be improved by taking advantage of the ease of inference in

factorial diffusion networks (FDNs). First, we can use FDNs to infer the texture (color

information) of parts of the face that are missing from the video, due either to out-of-

plane rotations of the head or to visual obstacles such as a hand moving across the face.

Second, we can use FDNs to infer the 3D structure (face geometry) of the entire face

from the 3D locations of a small number of key points. We tested the performance of

linear FDNs on these two types of inference tasks, using a database containing precise 3D

structure and texture information taken from biometric scans of 50 human faces [Blanz

and Vetter, 1999, USF Human ID 3D database].

Reconstructing missing information corresponds to splitting the observable units

O of an FDN into those with known values, Ok, and those with unknown values, Ou.

Given a face with known values ok, reconstructing the values of the unknown units in-

volves finding the posterior distribution p(ou | ok). The feedback architecture of diffusion

networks provides a natural way to find such a posterior distribution: clamp the known

observable units to the values ok, and let the network settle to equilibrium. The equi-

librium distribution of the unknown units in the clamped network will be the desired

posterior distribution p(ou | ok).

III.8.2.1 Inferring the texture of occluded points

The top two rows of Figure III.5 simulate the type of occlusions that occur when

a face is rotated out of the image plane. The bottom row of the figure simulates the
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type of occlusions that occur when the camera’s view of a face is blocked by a visual

obstruction. The left image in each row shows the entire test face, which is one of the

50 faces from the 3D data set. In the center image, the test face is shown with the

occluded texture information omitted. A linear FDN with 25 hidden units was trained

on 49 of the 50 faces (the test face was left out of the training set). The image on the

right shows the reconstructed texture, which is the mean of the posterior distribution

over the texture values of the occluded (unknown) vertices, given the texture values of

the known vertices.

III.8.2.2 Determining face structure from key points

Figure III.6 illustrates the use of FDNs to reconstruct the entire 3D structure of

two faces (the 3D positions of all 1340 points), beginning with the 3D positions of only 22

key points. For each half of Figure III.6 (the left half and the right half), A linear FDN

with 25 hidden units was trained on 49 of the 50 faces in the dataset. The structure

of the remaining face, used as a test face, is shown from two different viewpoints in

Column (a). The 22 key points whose locations were known are indicated with white

circles. Knowing the locations of these key points corresponds to knowing the values

of 66 (= 22 · 3) observable units of the linear FDN. The values of the remaining 3954

observable units are unknown. If these 66 observable units are clamped to their known

values and the rest of the units in the network are allowed to run free, the equilibrium

distribution is the posterior probability of all of the unknown unit values given the known

(clamped) values. Column (b) shows the mean of this posterior distribution.

Because the face structures were reconstructed from so few known values, the

inferred face surface did not pass through some of the known points. In order to smooth

out these small bumps at the key points, we used the following procedure. Given the

known positions of the key points and the inferred positions of the other vertices, we

found the mean of the posterior distribution over the hidden units. The final smoothed

surface is the mean of the posterior distribution over all of the observable units (they

are all allowed to run free for this step), given this distribution over the hidden units. It

is this final smoothed surface that is shown in Column (b) in Figure III.6.

We believe there are three main reasons for the inaccuries that are visible in the
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Figure III.5: Reconstruction of two occluded textures. The top two rows show one face
from two angles; the bottom row shows a different face. Left: Texture of the test face.
A linear FDN with 25 hidden units was trained on the textures of every face in the
database except for the test face. Center: The observable units corresponding to the
texture of the visible pixels were clamped, while the observable units corresponding to
the texture of the missing pixels were allowed to run free. Right: The reconstructed
texture shown is the mean of the equilibrium distribution over the observable units.
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Figure III.6: Inferring the face structure from key points. (Each column shows two
different views of the same 3D object.) (a) The test structure (which was left out of the
training set for the linear FDN) is shown, with 22 key points indicated. From only the
3D positions of these key points, we used a linear FDN to infer the approximate structure
of the entire face. (b) The structure shown is the mean of the posterior distribution of
all of the other vertex locations given the locations of the 22 key points.
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inferred structures. First, we used only a small number of key points to reconstruct a

great many vertex locations. The greater the number of key points, the more accurate

the performance. Second, our training set (49 faces) may not be large enough to contain

all of the major directions of variation in face space. Finally, we suspect that a Gaussian

distribution on a linear manifold is not the best possible approximation to the geometry

of face space. Nonlinear FDNs may be able to capture the types of variation in the

dataset more accurately.

III.8.3 Advantages over other inference methods

The main advantage of using factorial diffusion networks for inference is that

the inference technique we have illustrated for the linear Gaussian case (linear FDNs)

extends trivially to nonlinear and non-Gaussian FDN models. In contrast, the problem

of inferring missing values can be difficult or intractable in other non-Gaussian models

(such as independent component analysis).

In fact, even in the linear Gaussian case, linear FDNs are more robust than

some other standard inference techniques. One intuitive method, called the SVDimpute

algorithm by Troyanskaya et al. [2001], uses iterative application of a principal component

analysis model (for another application of this method, see Ormoneit et al. [2001]).

Below, we explain the SVDimpute algorithm in the context of the inference problem of

Section III.8.2.2: inferring the 3D structure of a face from the locations of a few key

points.

I. PCA is performed on the known data (the 49 faces in the training set). The

mean face is calculated, and the principle components (the eigenvectors of the

data covariance matrix) with the largest eigenvalues are chosen as a basis for the

data.

II. The initial approximation to the test face, o(1), is created by first assigning the

known values to each of the key points on the face. In o(1), the position assigned

to each unknown vertex is simply the position of that vertex in the mean face.

III. The eigenvectors from Step I are used to perform the principal component de-

composition of o(1), and the resulting principal component coefficients are used
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to reconstruct the positions of all of the vertices of the face (both known and

unknown). This PCA-reconstructed structure is o′(1).

IV. The next approximation of the face structure, o(2), is created as follows. The key

points are assigned their known positions. The positions of all of the other vertices

are taken from the PCA-reconstructed structure, o′(1).

V. Iterate Steps III and IV repeatedly to get the sequence of approximations o′(3), o
′
(4),

o′(5), . . . . Continue iterating until the root-mean-squared difference between suc-

cessive approximations is smaller than some prespecified, empirically determined

value.

When we used this iterative method on the 3D face structures, it was sometimes

inefficient, converging extremely slowly. The key-points error difference, between the

known locations of the key points and the reconstructed locations of the key points in

o′(n), always decreased from each iteration to the next. Surprisingly, however, that did

not always imply that the successive approximations of the face continued to improve.

In some cases the error difference of the entire face structure, between all of the points

in o′(n) and the actual structure of the test face, actually increased consistently while

the key points error decreased. The middle column of Figure III.7 shows an SVDimpute

reconstruction using 14 key points in which the error difference of the entire face struc-

ture continued to increase with successive approximations, even as the key points error

decreased. In short, the SVDimpute algorithm was not robust enough for this difficult

inference task. It is possible, if not likely, that this type of poor fit also happens in other

applications of this intuitive PCA-based iterative algorithm, but that its users do not

notice the problem because the data are not so inherently spatial or because a faulty

reconstruction does not have the same grotesque impact. Our linear FDN reconstruction

algorithm did not suffer from the problems that plagued SVDimpute. The linear FDN

reconstructions converged relatively quickly for all of the faces. In addition, unlike in

SVDimpute, the quality of the linear FDN reconstructions of the entire face structure

never decreased with successive iterations. The right column of Figure III.7 demon-

strates the robustness of the linear FDN reconstruction, which in this case is a much

better approximation of the entire face structure than the SVDimpute reconstruction.
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Figure III.7: The SVDimpute algorithm [Troyanskaya et al., 2001] is not robust for re-
constructing structure from key points. Left: The test face, an original face from the
database, along with the 14 key points whose locations were provided to the reconstruc-
tion algorithms. Center: PCA was performed on the entire database minus the test
face, and the iterative SVDimpute algorithm soon began to result in greater error for
the face overall with each iteration, even as the error in the key point positions contin-
ued to decrease. Right: The linear FDN reconstruction did not suffer from the same
shortcomings.

III.9 Learning a 3D morphable model from 2D data using

linear FDNs

In this section, we show how linear FDNs can be used to learn a model of the

human face that includes nonrigid motion (e.g, facial expressions). The model of face

space in Section III.8.1 was a linear model created from data of 3D vertex locations from

50 different people’s faces, all exhibiting a neutral facial expression. In contrast, this

section assumes a database of the 2D vertex locations from several frames of a single

person’s face, in which each of these key frames exhibits a different facial expression. In

both cases, we are computing the exact same type of 3D morphable model, in which the

entire space of faces (in the first case) or of facial deformations (in the second case) is

expressible as a linear combination of 3D basis shapes (morph bases).

In this section, as we did in Section III.8.1, we assume that the data faces are

rigidly aligned in 3D (here we assume that they have the same rotation, translation, and

scale). The main difference between the two cases is that in Section III.8.1, we worked

directly with the 3D data, whereas in the current case, we are only given a 2D projection
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of the 3D face data. This does not significantly change the solution from Section III.8.1.

If we incorporate the fixed scale into our model, then weak perspective projection reduces

to orthographic projection, expressible as multiplication by the simple projection matrix

g =
[

1 0 0
0 1 0

]
.

In other words, the 2D vertex data that we are given can be thought of as 3D

vertex data in which only the first two coordinates are known. We can thus use the

exact same architecture and learning procedure that we used for learning the structure

of 3D face space in Section III.8.1, except treat the z-coordinates of all of the vertices as

unknowns to be inferred during the learning process.

III.10 Future directions

The top row of Figure III.8 summarizes the relationship between factorial diffusion

networks (FDNs) and the unsupervised models factor analysis (FA), principal component

analysis (PCA), and independent component analysis (ICA). As we showed earlier, linear

FDNs model the exact same class of observable distributions as factor analysis. By

viewing PCA as the no-sensor-noise limit of FA, we derived a diffusion net representation

for PCA in Section III.6. We observed that the limit distribution produced by this

diffusion network for PCA is a special case of the energy-based model for ICA [Hinton

et al., 2001] in which the prior distribution over the hidden variables, p(h), is Gaussian.

This suggests one potential method for generalizing linear FDNs to the non-Gaussian

case. By modifying (III.45) and working backwards, one could derive a diffusion network

that models ICA with other prior distributions over the hidden variables. This is the

route currently followed by Hinton et al. [2001] in their energy-based model for ICA.

Another alternative is to work with diffusion networks that have nonlinear activa-

tion functions. The lower part of Figure III.8 illustrates our approach. If the FDN has a

linear activation function, g(x) = x, then it is a linear FDN, which (as we proved earlier)

is equivalent to FA and thus has a Gaussian limit distribution. However, if we use a

nonlinear activation function g(x), then the limit distribution will not be Gaussian. The

resulting FDN will factorize in Hinton’s sense and in Morton’s sense. However, unlike in

ICA, the observable variables will no longer be a simple linear combination of the hidden

variables.
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Figure III.8: Two routes to non-Gaussian extensions of the linear FDN. Top row: Linear
factorial diffusion networks (linear FDNs) are equivalent to factor analysis models. Tak-
ing the no-sensor-noise limit of a linear FDN thus yields a linear FDN for PCA, which
is a special case of the energy-based ICA model of Hinton et al. The FDN for PCA can
be modified to create an FDN for ICA, but it loses its neural network interpretation.
Bottom box: Choosing a nonlinear activation function for an FDN yields a non-Gaussian
model that preserves the neural network interpretation.
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We intend to take the latter route to non-Gaussian extensions of linear FDNs:

we will investigate diffusion networks that have nonlinear activation functions. The

first architecture that we plan to investigate is a factorial diffusion network in which

the observable units’ activation functions are linear, but the hidden units’ activation

functions are step functions. If we consider the outputs of the units, this architecture

is basically equivalent to a bipartite graph with Bernoulli hidden units and Gaussian

observable units. The data distributions that can be represented by this architecture can

be viewed as a mixture of 2n Gaussians (where n is the number of hidden units) for which

the number of parameters to be trained is only linear in n, rather than exponential in n.

This will provide an extremely efficient method for training a mixture of 2n Gaussians.

III.11 Summary and Conclusions

We presented three different types of factorial codes, which had been previously

proposed by Barlow [1994], Morton, and Hinton [2002]. We used diffusion models to

analyze how such codes could be implemented on stochastic feedback network architec-

tures. Networks with no direct lateral connections between observable units produce

distributions that factorize in Morton’s sense. Networks with no direct lateral connec-

tions between hidden units produce distributions that factorize in Hinton’s sense, i.e.,

they are products of experts (POEs). Networks with no direct connections between ob-

servable units and no direct connections between hidden units factorize both in Hinton’s

sense and in Morton’s sense. We call such models factorial diffusion networks (FDNs).

In this chapter we focused on linear FDNs and showed that they span the same class

of distributions as factor analysis models. It follows that in addition to being factorable

in Barlow’s sense, factor analysis models are also factorable in Morton’s sense and in

Hinton’s sense, i.e., they are products of experts. We derived the contrastive divergence

learning rules for linear FDNs and showed that they are based on local, Hebbian-like

statistics.

An advantage of feedback networks such as diffusion networks over feedforward

models, is that one can elegantly solve inference problems. One simply clamps the units

whose values are known and lets the other units settle. At stochastic equilibrium, the

posterior distribution of the missing values given the observed values is obtained. We
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illustrated the approach on two inference problems in 3D face processing.

Another advantage of diffusion networks is their ability to be simulated efficiently

in analog hardware. Diffusion networks are ideally suited to analog hardware, and Chen

and Murray [2002] are currently working on analog VLSI implementations.

Most importantly, our work opens new avenues for the development of factorial

nonlinear and non-Gaussian codes based on nonlinear feedback architectures rather than

feedforward architectures. Since the brain is itself a feedback network with noisy com-

ponents, this may also provide us with clues about the neural bases of perceptual codes

and about the learning algorithms underlying the development and tuning of such codes.

In particular, in Section III.9 we showed that using a local learning rule similar

to Hebbian learning, the neurally plausible architecture of diffusion networks can learn

models of 3D deformable objects from 2D optic flow data (a type of data that we know

the visual system computes). This demonstrates how the brain could learn the type

of models used in all state-of-the-art computer vision systems for face tracking (see

Chapter II), which opens the door to the possibility that the human brain might itself

use 3D deformable models for face processing.
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