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We present a Monte Carlo approach for training partially observable dif-
fusion processes. We apply the approach to diffusion networks, a stochas-
tic version of continuous recurrent neural networks. The approach is
aimed at learning probability distributions of continuous paths, not just
expected values. Interestingly, the relevant activation statistics used by
the learning rule presented here are inner products in the Hilbert space of
square integrable functions. These inner products can be computed using
Hebbian operations and do not require backpropagation of error signals.
Moreover, standard kernel methods could potentially be applied to com-
pute such inner products. We propose that the main reason that recurrent
neural networks have not worked well in engineering applications (e.g.,
speech recognition) is that they implicitly rely on a very simplistic like-
lihood model. The diffusion network approach proposed here is much
richer and may open new avenues for applications of recurrent neural net-
works. We present some analysis and simulations to support this view.
Very encouraging results were obtained on a visual speech recognition
task in which neural networks outperformed hidden Markov models.

1 Introduction

Since Hopfield’s seminal work (Hopfield, 1984), continuous deterministic
neural networks and discrete stochastic neural networks have been thor-
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oughly studied by the neural network community (Pearlmutter, 1995; Ack-
ley, Hinton, & Sejnowski, 1985). However, the continuous stochastic case
has been conspicuously ignored. This is surprising considering the success
of continuous stochastic models in other fields (Oksendal, 1998).

In this article, we focus on the continuous stochastic case and present
a Monte Carlo expectation-maximization (EM) approach for training con-
tinuous-time, continuous-state, stochastic recurrent neural network models.
The goal is to learn probability distributions of continuous paths, not just
equilibrium points. This is important for problems involving sequences,
such as speech recognition and object tracking. The approach proposed
here potentially opens new avenues for applications of recurrent neural
networks showing results comparable to, if not better than, those obtained
with hidden Markov models. In addition, the maximum likelihood learn-
ing rules used to train these networks are based on inner products that
are computable using local Hebbian statistics. This is an aspect of potential
value for neurally plausible learning models and for potential generaliza-
tions of kernel methods (Aizerman, Braverman, & Rozoner, 1964; Burges,
1998).

Continuous-time, continuous-state recurrent neural networks (hereafter
referred to simply as recurrent neural networks) are dynamical systems con-
sisting of n point neurons coupled by synaptic connections. The strength of
these connections is represented by an n × n real-valued matrix w, and
the network dynamics are governed by the following differential equa-
tions,

dxj(t)
dt
= µj(x(t), λ), for t ∈ [0,T], j = 1, . . . ,n, (1.1)

where

µj(x(t), λ) = κj

(
−ρjxj(t)+ ξj +

n∑
i=1

ϕ(xi(t))wij

)
, (1.2)

xj is the soma potential of neuron j, 1/ρj > 0 is the transmembrane resist-
ance,1 1/κj > 0 is the input capacitance, ξj is a bias current, wij is the conduc-
tance (synaptic weight) from unit i to unit j, and ϕ is a nonlinear activation
function, typically a scaled version of the logistic function

ϕ(v) = θ1 + θ2
1

1+ e−θ3v , for v ∈ R, (1.3)

1 We allow 1/ρj or 1/κj to be+∞, corresponding to situations in which ρj = 0 or κj = 0,
respectively.



A Monte Carlo EM Approach 1509

where θ = (θ1, θ2, θ3) ∈ R3 are fixed scale and gain parameters. Here, λ ∈ Rp

represents the w, ξ , κ , and ρ terms, whose values are typically varied in
accordance with some learning rules.

1.1 Hidden Units. A variety of algorithms have been developed to train
these networks, and are commonly known as recurrent neural network algo-
rithms (Pearlmutter, 1995). An important achievement of these algorithms
is that they can train networks with hidden units. Hidden units allow these
networks to develop time-delayed representations and feature conjunctions.
For this reason, recurrent neural networks were expected to become a stan-
dard tool for problems involving continuous sequences (e.g., speech recog-
nition) in the same way that backpropagation networks became a standard
tool for problems involving static patterns.

Recurrent network learning algorithms have proved useful in some
fields. In particular, they have been useful for understanding the role of
neurons in the brain. For example, when these networks are trained on
simple sequences used in controlled experiments with animal subjects, the
hidden units act as “memory” neurons similar to those found in neural
recordings (Zipser, Kehoe, Littlewort, & Fuster, 1993). While these results
have been useful to help understand the brain, recurrent neural networks
have yielded disappointing results when applied to engineering problems
such as speech recognition or object tracking. In such domains, probabilis-
tic approaches, such as hidden Markov models and Kalman filters, have
proved to be superior.

1.2 Diffusion Networks. We believe that the main reason that recurrent
neural networks have provided disappointing results in some engineering
applications (e.g., speech recognition) is due to the fact that they implic-
itly rely on a very simplistic likelihood model that does not capture the
kind of variability found in natural signals. We will elaborate on this point
in section 8.1. To overcome this deficiency, we propose adding noise to
the standard recurrent neural networks dynamics, as would be done in the
stochastic filtering and systems identification literature (Lewis, 1986; Ljung,
1999). Mathematically, this results in a diffusion process, and thus we call
these models diffusion neural networks, or diffusion networks for short (Movel-
lan & McClelland, 1993). While recurrent neural networks are defined by
ordinary differential equations (ODEs), diffusion networks are described
by stochastic differential equations (SDEs). Stochastic differential equations
provide a rich language for expressing probabilistic temporal dynamics and
have proved useful in formulating continuous-time inference problems, as,
for example, in the continuous Kalman-Bucy filter (Kalman & Bucy, 1961;
Oksendal, 1998).

Diffusion networks can be interpreted as a low-power version of recur-
rent networks, in which the thermal noise component is nonnegligible. The
temporal evolution of a diffusion network with vector parameter λ defines
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an n-dimensional stochastic process Xλ that satisfies the following SDE:2

dXλ
(t) = µ(Xλ(t), λ)dt+ σdB(t), t ∈ [0,T], (1.4)

Xλ(0) ∼ ν. (1.5)

Here µ = (µ1, . . . , µn)
′ is called the drift vector. We use the same drift as

recurrent neural networks, but the learning algorithm presented here is gen-
eral and can be applied to other drift functions; B is a standard n-dimensional
Brownian motion (see section 2), which provides the random driving noise
for the dynamics; σ > 0 is a fixed positive constant called the dispersion,
which governs the amplitude of the noise; T > 0 is the length of the time
interval over which the model is used; and ν is the probability distribution
of the initial state Xλ(0). We regard T > 0 and ν as fixed henceforth.

1.3 Relationship to Other Models. Figure 1 shows the relationship be-
tween diffusion networks and other approaches in the neural network and
stochastic filtering literature. Diffusion networks belong to the category
of partially observable Markov models (Campillo & Le Gland, 1989), a
category that includes standard hidden Markov models and Kalman fil-
ters as special cases. Standard hidden Markov models are defined in dis-
crete time, and their internal states are discrete. Diffusion networks can be
viewed as hidden Markov models with continuous-valued hidden states
and continuous-time dynamics. The continuous-time nature of the net-
works is convenient for data with dropouts or variable sample rates, since
continuous-time models define all of the finite dimensional distributions.
The continuous-state representation (see Figure 2) is well suited for prob-
lems involving inference about continuous unobservable quantities, such
as object tracking tasks, and modeling of cognitive processes (McClelland,
1993; Movellan & McClelland, 2001).

If the logistic activation function ϕ is replaced by a linear function, the
weights between the observable units and from the observable to the hid-
den units are set to zero, the ρ parameters are set to zero, and the prob-
ability distribution of the initial states is constrained to be gaussian, dif-
fusion networks have the same dynamics underlying the continuous-time
Kalman-Bucy filter (Kalman & Bucy, 1961). If, on the other hand, the weight
matrix w is symmetric, at stochastic equilibrium, diffusion networks behave
like continuous-time, continuous-state Boltzmann machines (Ackley et al.,

2 We use Xλ to make explicit the dependence of the solution process on the parameter
λ. The following assumptions are sufficient for existence and uniqueness in distribution
of solutions to equations 1.4 and 1.5; ν has bounded support, µ(·, λ) is continuous and
satisfies a linear growth condition |µ(u, λ)| ≤ Kλ(1+ |u|), for some Kλ > 0 and all u ∈ Rn,
where | · | denotes the Euclidean norm (see e.g., proposition 5.3.6 in Karatzas & Shreve,
1991). These assumptions are satisfied by the recurrent neural network drift function.



A Monte Carlo EM Approach 1511

Figure 1: Relationship between diffusion networks and other approaches in the
neural network and stochastic filtering literature.

Figure 2: In stochastic differential equations (left), the states are continuous and
the dynamics are probabilistic. Given a state at time t, there is a distribution of
possible states at time t+dt. In ordinary differential equations (center), the states
are continuous, and the dynamics are deterministic. In hidden Markov models
(right) the hidden states are discrete and probabilistic. This is represented in the
figure by partitioning a continuous state-space into four discrete regions and
assigning equal transition probability to states within the same region.

1985). Finally, if the dispersion constant σ is set to zero, the network becomes
a standard deterministic recurrent neural network (Pearlmutter, 1995).

In the past, algorithms have been proposed to train expected values and
equilibrium points of diffusion networks (Movellan, 1994, 1998). Here, we
present a powerful and general algorithm to learn distributions of trajec-
tories. The algorithm can be used to train diffusion networks with hidden
units, thus maintaining the versatility of the recurrent neural network ap-
proach. As we will illustrate, the algorithm is sufficiently fast to train net-
works with thousands of parameters using current computers and fares well
when compared to other probabilistic approaches, such as hidden Markov
models.
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2 Mathematical Preliminaries

2.1 Brownian Motion and Stochastic Differential Equations. Brown-
ian motion is a stochastic process originally designed to model the behav-
ior of pollen grains subject to random collisions with molecules of water.
A stochastic process B = {B(t), t ∈ [0,∞)} is a standard one-dimensional
Brownian motion under a probability measure P if (1) it starts at 0 with P-
probability one; (2) for any t ∈ [0,∞),1t > 0, the increment B(t+1t)−B(t)
is a gaussian random variable under P with zero mean and variance 1t;
and (3) for all l ∈ N, and 0 ≤ t0 < t1 · · · < tl < ∞, the increments
B(tk)−B(tk−1), k = 1, · · · , l are independent random variables under P. An n-
dimensional Brownian motion consists of n independent one-dimensional
Brownian motion processes. One can always choose a realization of Brow-
nian motion that has continuous paths.3 However, these paths are nowhere
differentiable with probability one (Karatzas & Shreve, 1991). Brownian mo-
tion can be realized as the limit in distribution as 1t → 0 of the processes
obtained by the following iterative scheme:

B(0) = 0, (2.1)

B(tk+1) = B(tk)+
√
1tZ(tk), (2.2)

B(s) = B(tk), for s ∈ [tk, tk+1), (2.3)

where tk = k1t, k = 0, 1, · · · , and the Z(tk) terms are independent gaussian
random variables with zero mean and unit variance.

It is common in the engineering literature to represent stochastic differ-
ential equations as ordinary differential equations with an additive white
noise component,

dX(t)
dt
= µ(X(t))+ σW(t), (2.4)

where W represents white noise, a stochastic process that is required to have
the following properties: (1) W is a zero-mean stationary gaussian process;
(2) for all t, t′, the covariance between W(t′) and W(t) is a Dirac delta function
of t− t′.

While white noise does not exist as a proper stochastic process, equa-
tion 2.4 can be given mathematical meaning by thinking of it as defining a
process of the form

X(t) = X(0)+
∫ t

0
µ(X(s)) ds+ σ

∫ t

0
W(s) ds, (2.5)

3 A Brownian motion for which P(for all t ≥ 0, lims→t Xs = Xt) = 1.
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where
∫ t

0 W(s) ds is now a stochastic process required to have continuous
paths and zero-mean, independent stationary increments. It turns out that
Brownian motion is the only process with these properties. Thus, in stochas-
tic calculus, equation 2.4 is seen just as a symbolic pointer to the following
integral equation,

X(t) = X(0)+
∫ t

0
µ(X(s)) ds+ σB(t), (2.6)

where B is Brownian motion. Moreover, if it existed, the white noise W(t)
would be the temporal derivative of Brownian motion, dB(t)/dt. Since Brow-
nian paths are nowhere differentiable with probability one, in the mathe-
matical literature, the following symbolic form is preferred to equation 2.4,
and it is the one adopted in this article:

dX(t) = µ(X(t))dt+ σdB(t). (2.7)

Intuitive understanding of the solution to this equation can be gained by
thinking of it as the limit as1t→ 0 of the processes defined by the following
iterative scheme,

X(tk+1) = X(tk)+ µ(X(tk))1t+ σ
√
1tZ(tk), (2.8)

X(s) = X(tk) for s ∈ [tk, tk+1), (2.9)

where tk = k1t, k = 0, 1, . . .. Under mild assumptions on µ and the initial
distribution of X, the processes obtained by this scheme converge in distri-
bution to the solution of equation 2.7 (Kloeden & Platen, 1992). Under the
assumptions in this article, the solution of equation 2.7 is unique only in
distribution, and thus it is called a distributional (also known as a weak or
statistical) solution.4

2.2 Probability Measures and Densities. We think of a random exper-
iment as a single run of a diffusion network in the time interval [0,T]. The
outcome of an experiment is a continuous n-dimensional path x: [0,T]→ Rn

describing the state of the n units of a diffusion network throughout time.
We letÄ denote the set of continuous functions defined on [0,T] taking val-
ues in Rn. This contains all possible outcomes. We are generally interested
in measuring probabilities of sets of outcomes. We call these sets events,
and we let F represent the set of events.5

4 For an explanation of the notion of weak solutions of stochastic differential equations,
see section 5.3 of Karatzas and Shreve (1991).

5 In this article, the set of events F is the smallest sigma algebra containing the open
sets of Ä. A set A of Ä is open if for every x ∈ A there exists a δ > 0 such that the set
B(x, δ) = {ω ∈ Ä: maxt∈[0,T] |x(t)− ω(t)| < δ} is a subset of A.
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A probability measure Q is a function Q: F → [0, 1] that assigns probabil-
ities to events in accordance with the standard probability axioms (Billings-
ley, 1995). A random variable Y is a function Y: Ä→ R such that for each
open set A in R, the inverse image of A under Y is an event.

We represent expected values using integral notation. For example, the
expected value of the random variable Y with respect to the probability
measure Q is represented as follows:

EQ(Y) =
∫
Ä

Y(x) dQ(x). (2.10)

Probability densities of continuous paths are defined as follows. Let P and
Q be probability measures on (Ä,F). If it exists, the density of P with re-
spect to Q is a nonnegative random variable L that satisfies the following
relationship,

EP(Y) =
∫
Ä

Y(x) dP(x) =
∫
Ä

Y(x)L(x) dQ(x) = EQ(YL), (2.11)

for any random variable Y with finite expected value under P. The function
L is called the Radon-Nikodym derivative or Radon-Nikodym density of P
with respect to Q and is commonly represented as dP/dQ. Conditions for the
existence of these derivatives can be found in any measure theory textbook
(Billingsley, 1995). Intuitively, (dP/dQ)(x) represents how many times the
path x is likely to occur under P relative to the number of times it is likely
to occur under Q.

In this article, we concentrate on the probability distributions on the space
Ä of continuous paths associated with diffusion networks, and thus we
need to consider distributional solutions of SDEs. We let the n-dimensional
random process Xλ represent a solution of equations 1.4 and 1.5. We regard
the first d components of Xλ as observable and denote them by Oλ. The last
n−d components of Xλ are denoted by Hλ and are regarded as unobservable
or hidden.

We define the observable and hidden outcome spaces Äo and Äh with
associated event spacesFo andFh by replacing n by d and n−d, respectively,
in the definitions of Ä and F provided previously. The observable and
hidden components Oλ and Hλ of a solution Xλ = (Oλ,Hλ) of equations 1.4
and 1.5 take values in Äo and Äh, respectively. Note that Ä = Äo ×Äh and
F is generated by sets of the form Ao ×Ah where Ao ∈ Fo and Ah ∈ Fh. For
each path x ∈ Ä, we write x = (xo, xh), where xo ∈ Äo and xh ∈ Äh.

The process Xλ induces a unique probability distribution Qλ on the mea-
surable space (Ä,F). Intuitively, Qλ(A) represents the probability that a
diffusion network with parameter λ produces paths in the set A. Since our
goal is to learn a probability distribution of observable paths, we need the
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probability measure Qλ
o associated with the observable components alone.

If there are no hidden units, d = n and Qλ
o = Qλ. If there are hidden units,

d < n, and we must marginalize Qλ over the unobservable components:

Qλ
o (Ao) = Qλ(Ao ×Äh) for all Ao ∈ Fo. (2.12)

We will also need to work with the marginal probability measure of the
hidden components:

Qλ
h(Ah) = Qλ(Äo × Ah) for all Ah ∈ Fh. (2.13)

Intuitively, Qλ
o (Ao) is the probability that a diffusion network with parameter

λ generates observable paths in the set Ao, and Qλ
h(Ah) is the probability that

the hidden paths are in the set Ah.
Finally, we set Q = {Qλ: λ ∈ Rp} and Qo = {Qλ

o : λ ∈ Rp}, referring to
the entire family of probability measures parameterized by λ and defined
on (Ä,F) and (Äo,Fo), respectively.

3 Density of Observable Paths

Our goal is to select a value of λ on the basis of training data, such that Qλ
o

best approximates a desired distribution. To describe a maximum likelihood
or a Bayesian estimation approach, we need to define probability densities
Lλo of continuous observable paths. In discrete time systems, like hidden
Markov models, the Lebesgue measure6 is used as the standard reference
with respect to which probability densities are defined. Unfortunately, for
continuous-time systems, the Lebesgue measure is no longer valid. Instead,
our reference measure R will be the probability measure induced by a dif-
fusion network with dispersion σ , initial distribution ν but with no drift,7

so that R(A) represents the probability that such a network generates paths
lying in the set A.

An important theorem in stochastic calculus, known as Girsanov’s theo-
rem,8 tells us how to compute the relative density of processes with the same
diffusion term and different drifts (see Oksendal, 1998). Using Girsanov’s

6 The Lebesgue measure of an interval (a, b) is b− a, the length of that interval.
7 More formally, for each A ∈ F , R(A) =

∫
Rn Ru(A) dν(u) where for each u ∈ Rn the

measure Ru on (Ä,F) is such that under it, the process B = {B(t, x) = (x(t)− x(0))/σ : t ∈
[0,T], x ∈ Ä} is a standard n-dimensional Brownian motion and Ru(x(0) = u) = 1.

8 The conditions on µ mentioned in the introduction are sufficient for Girsanov’s the-
orem to hold.
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theorem, it can be shown that

Lλ(x) = dQλ

dR
(x) = exp

{
1
σ 2

∫ T

0
µ(x(t), λ) · dx(t)

− 1
2σ 2

∫ T

0
|µ(x(t), λ)|2 dt

}
(3.1)

= exp

 n∑
j=1

(
1
σ 2

∫ T

0
µj(x(t), λ) dxj(t)

− 1
2σ 2

∫ T

0
(µj(x(t), λ))2 dt

) , (3.2)

for x ∈ Ä. The integral
∫ T

0 µj(x(t), λ) dxj(t) is an Itô stochastic integral (see
Oksendal, 1998). Intuitively, we can think of it as the (mean square) limit,
as 1t → 0 of the sum:

∑l−1
k=0 µj(x(tk), λ)(xj(tk+1) − xj(tk)), where 0 = t0 <

t1 · · · < tl = T are the sampling times and tk+1 = tk +1t, and 1t > 0 is the
sampling period. The term Lλ is a Radon-Nikodym derivative. Intuitively, it
represents the likelihood of a diffusion network with parameterλgenerating
the path x relative to the likelihood for the reference diffusion network with
no drift. For a fixed path x ∈ Ä, the term Lλ(x) can be treated as a likelihood
function9 of λ.

If there are no hidden units, d = n, Qλ = Qλ
o , and thus we can take Ro = R

and Lλo = Lλ. If there are hidden units, more work is required. For the con-
struction here, we impose the condition that the initial probability measure
ν is a product measure ν = νo× νh, where νo, νh are probability measures on
Rd and Rn−d, respectively.10 It then follows from the independence of the
components of Brownian motion that

R(Ao × Ah) = Ro(Ao)Rh(Ah), (3.3)

for all Ao ∈ Fo,Ah ∈ Fh, where

Ro(Ao) = R(Ao ×Äh), (3.4)

Rh(Ah) = R(Äo × Ah). (3.5)

9 Unfortunately, since R depends on σ , Lλ cannot be treated as a likelihood function
of σ . For this reason, estimation of σ needs to be treated differently from estimation of λ
for continuous-time problems. We leave the issue of continuous-time estimation of σ for
future work.

10 Here,Rd andRn−d are endowed with their Borel sigma algebras, which are generated
by the open sets in these spaces.
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To find an appropriate density for Qλ
o , note that for Ao ∈ Fo,

Qλ
o (Ao) = Qλ(Ao ×Äh) (3.6)

=
∫
Ao

∫
Äh

Lλ(xo, xh) dRh(xh) dRo(xo), (3.7)

and therefore the density of Qλ
o with respect to Ro is

Lλo (xo) = dQλ
o

dRo
(xo) =

∫
Äh

Lλ(xo, xh) dRh(xh), for xo ∈ Äo. (3.8)

Similarly, the density of Qλ
h with respect to Rh is as follows:

Lλh(xh) = dQλ
h

dRh
(xh) =

∫
Äo

Lλ(xo, xh) dRo(xo), for xh ∈ Äh. (3.9)

4 Log-Likelihood Gradients

Let Po represent a probability measure on (Äo,Fo) that we wish to approxi-
mate (e.g., a distribution of paths determined by the environment). Our goal
is to find a probability measure from the family Qo that best matches Po.
The hope is that this will provide an approximate model of Po, the environ-
ment, that could be used for tasks such as sequence recognition, sequence
generation, or stochastic filtering. We approach this modeling problem by
defining a Kullback-Leibler distance (White, 1996) between Po and Qλ

o :

EPo

(
log

3o

Lλo

)
, (4.1)

where EPo is an expected value with respect to Po and 3o = dPo/dRo is
the density of the desired probability measure.11 We seek values of λ that
minimize equation 4.1. In practice, we estimate such values by obtaining ñ
fair sample paths12 {xi

o}ñi=1 from Po and seeking values of λ that maximize
the following function:

8(λ) = 1
ñ

(
ñ∑

i=1

log Lλo (x
i
o)

)
−9(λ). (4.2)

11 We are assuming that the expectation in equation 4.1 is well defined and finite and
in particular3o exists, which is also an implicit assumption in finite dimensional density
estimation approaches.

12 Fair samples are samples obtained in an independent and identically distributed
manner.
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This function is a combination of the empirical log-likelihood and a regu-
larizer 9: Rp → R that encodes prior knowledge about desirable values of
λ (Bishop, 1995). To simplify the notation, hereafter we present results for
ñ = 1 and 9(λ) = 0 for all λ ∈ Rp. Generalizing the analysis to ñ > 1 and
interesting regularizers is easy but obscures the presentation.

The gradient of the log density of the observable paths with respect to λ is
of interest to apply optimization techniques such as gradient ascent and the
EM algorithm. If there are no hidden units, equation 3.1 gives the density
of the observable measure, and differentiation yields13

∂

∂λi
log Lλ(x) = 1

σ 2

n∑
j=1

(∫ T

0

∂µj(x(t), λ)
∂λi

dxj(t)

−
∫ T

0

∂µj(x(t), λ)
∂λi

µj(x(t), λ) dt

)
(4.3)

= 1
σ 2

n∑
j=1

∫ T

0

∂µj(x(t), λ)
∂λi

dIλj (x, t), for x ∈ Ä, (4.4)

where σ−1Iλ is a (joint) innovation process (Poor, 1994):

Iλ(x, t) = x(t)− x(0)−
∫ t

0
µ(x(s), λ) ds. (4.5)

Such a process is a standard n-dimensional Brownian motion under Qλ.

5 Stochastic Teacher Forcing

If there are no hidden units, the likelihood and log-likelihood gradient of
paths can be obtained directly via equations 3.1 and 4.4. If there are hidden
units, we need to take expected values over hidden paths:

Lλo (xo) =
∫
Äh

Lλ(xo, xh) dRh(xh) = ERh(Lλ(xo, ·)). (5.1)

13 Conditions that are sufficient to justify the differentiation leading to equation 4.4
are that the first and second partial derivatives of µ(u, λ) with respect to λ exist and
together with µ are continuous in (u, λ) and satisfy a linear growth condition of the form
|µ(u, λ)| ≤ Kλ(1+|u|),where Kλ can be chosen independent ofλwheneverλ is restricted to
a compact set inRp (Levanony, Shwartz, & Zeitouni, 1990; Protter, 1990). These conditions
are satisfied by the neural network drift (see equation 1.2).
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In this article, we propose estimates of this likelihood obtained by adapt-
ing a technique known as Monte Carlo importance sampling (Fishman,
1996). Instead of averaging with respect to Rh, we average with respect
to another distribution Sh and multiply the variables being averaged by a
correction factor known as the importance function. This correction factor
guarantees that the new Monte Carlo estimates will remain unbiased. How-
ever, by using an appropriate sampling distribution Sh, the estimates may
be more efficient than if we just sample from Rh (they may require fewer
samples to obtain a desired level of precision). Following equation 2.11,
we have that

Lλo (xo) =
∫
Äh

Lλ(xo, xh)
dRh

dSh
(xh) dSh(xh) = ESh

(
Lλ(xo, ·)dRh

dSh
(·)
)
, (5.2)

where Sh is a fixed distribution on (Äh,Fh) for which the density dRh/dSh
exists. This density thus acts as the desired importance function. We can
obtain unbiased Monte Carlo estimates of the expected value in equa-
tion 5.2 by averaging over a set of hidden paths H = {h1, . . . , hm} sampled
from Sh:

L̂λo (xo) =
m∑

l=1

pλ(xo, hl), (5.3)

where

pλ(xo, h) =
{

1
m Lλ(xo, h) dRh

dSh
(h), for h ∈ H,

0 else.
(5.4)

We use the gradient of the log of this density estimate for training the net-
work

∇λ log L̂λo (xo) =
m∑

l=1

pλh|o(h
l | xo)∇λ log Lλ(xo, hl), (5.5)

where

pλh|o(h | xo) = pλ(xo, h)
pλo (xo)

, for h ∈ Äh, (5.6)

and

pλo (xo) = L̂λo (xo) =
m∑

l=1

pλ(xo, hl). (5.7)
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Note
∑

h∈Äh
pλh|o(h | xo) = 1, and thus we can think of pλh|o(· | xo) as a

probability mass function onÄh. Moreover,∇λ log L̂λo (xo) is the average of the
joint log-likelihood gradient ∇λ log Lλ(xo, ·) with respect to that probability
mass function.

While the results presented here are general and work for any sampling
distribution for which dRh/dSh exists, it is important to find a distribution
Sh from which we know how to sample, for which we know dRh/dSh, and
for which the Monte Carlo estimates are relatively efficient (i.e., do not
require a large number of samples to achieve a desired reliability level). An
obvious choice is to sample from Rh itself, in which case dRh/dSh = 1. In fact,
this is the approach we used in previous versions of this article (Mineiro,
Movellan, & Williams, 1998) and which was also recently proposed in Solo
(2000). The problem with sampling from Rh is that as learning progresses,
the Monte Carlo estimates become less and less reliable, and thus there is a
need for better sampling distributions that change as learning progresses.
We have obtained good results by sampling in a manner reminiscent of the
teacher forcing method from deterministic neural networks (Hertz, Krogh,
& Palmer, 1991). The idea is to obtain a sample of hidden paths from a
network whose observable units have been forced to exhibit the desired
observable path xo. Consider a diffusion network with parameter vector
λs ∈ Rp, not necessarily equal to λ. The role of this network will be to
provide sample hidden paths. For each time t ∈ [0,T], we fix the output
units of such a network to xo(t), and let the hidden units run according to
their natural dynamics,

dH(t) = µh(xo(t),H(t), λs)dt+ σdBh(t), (5.8)

H(0) ∼ νh,

where µh is the hidden component of the drift. We repeat this procedure m
times to obtain the sample of hidden paths H = {hl}ml=1. One advantage of
this sampling scheme is that we can use Girsanov’s theorem to obtain the
desired importance function,

dRh

dSh
(xh) = exp

{
− 1
σ 2

∫ T

0
µh(xo(t), xh(t), λs) · dxh(t)

+ 1
2σ 2

∫ T

0
|µh(xo(t), xh(t), λs)|2 dt

}
, (5.9)

where Sh, the sampling distribution, is now the distribution of hidden paths
induced by the network in equation 5.8 with fixed parameter λs. If we let
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λs = λ then the pλ function defined in equation 5.4 simplifies as follows:

pλ(xo, h) = 1
m

Lλ(xo, h)
dRh

dSh
(h)

= 1
m

exp

{
1
σ 2

∫ T

0
µo(xo(t), h(t), λ) · dxo(t)

− 1
2σ 2

∫ T

0
|µo(xo(t), h(t), λ)|2 dt

}
,

for h ∈ H. (5.10)

6 Monte Carlo EM learning

Given a fixed sampling distribution Sh and a fixed set of hidden paths
H = {h1, . . . , hm} sampled from Sh, our objective is to find values of λ that
maximize the estimate of the likelihood L̂λo (xo). We can search for such val-
ues using standard iterative procedures, like gradient ascent or conjugate
gradient. Another iterative approach of interest is the EM algorithm (Demp-
ster, Laird, & Rubin, 1977). On each iteration of the EM algorithm, we start
with a fixed parameter vector λ̄ and search for values of λ that optimize the
following expression:14

M(λ̄, λ, xo) =
m∑

l=1

pλ̄h|o(h
l | xo) log pλ(xo, hl). (6.1)

Note that since
∑m

l=1 pλ̄h|o(h
l | xo) = 1 and pλo (xo) = pλ(xo, hl)/pλh|o(h

l | xo),
then

log L̂λo (xo) = log pλo (xo) =
m∑

l=1

pλ̄h|o(h
l | xo) log

pλ(xo, hl)

pλh|o(h
l | xo)

(6.2)

= M(λ̄, λ, xo)−
m∑

l=1

pλ̄h|o(h
l | xo) log pλh|o(h

l | xo), (6.3)

and

log L̂λo (xo)− log L̂λ̄o (xo) = M(λ̄, λ, xo)−M(λ̄, λ̄, xo)

+ KL(pλ̄h|o(· | xo), pλh|o(· | xo)), (6.4)

14 If a regularizer is used, redefine pλ(xo, h) in equation 5.4 as Lλ(xo, h)dRh/dSh(h)
exp(−9(λ)).
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where KL stands for the Kullback-Leibler distance between the functions
pλ̄h|o(· | xo), and pλh|o(· | xo). Since KL is nonnegative, it follows that if

M(λ̄, λ, xo) > M(λ̄, λ̄, xo), then L̂λo (xo) > L̂λ̄o (xo). Since this adaptation of
the EM algorithm maximizes an estimate of the log likelihood instead of the
log likelihood itself, we refer to it as stochastic EM.

On each iteration of the stochastic EM procedure, we find a value of
λ that maximizes M(λ̄, λ, xo), and we let λ̄ take that value. The procedure
guarantees that the estimate of the likelihood of the observed path L̂λo (xo)

will increase or stay the same, at which point we have converged. Our
approach guarantees convergence only when the sampling distribution Sh
and the sample of hidden pathsH are fixed. In practice, we have found that
even with relatively small sample sizes, it is beneficial to change Sh and H
as learning progresses. For instance, in the approach proposed at the end of
section 7, we change the sampling distribution and the sample paths after
each iteration of the EM algorithm. While we have not carefully analyzed
the properties of this approach, we believe the reason that it works well is
that as learning progresses, it uses sampling distributions Sh that are better
suited for the values of λ that EM moves into.

7 The Neural Network Case

Up to now we have presented the learning algorithm in a general manner
applicable to generic SDE models. In this section, we show how the algo-
rithm applies to diffusion neural networks. Let wsr be the component of λ
representing the synaptic weight (conductance) from the sending unit s to
the receiving unit r. For the neural network drift, we have

∂µj(x(t), λ)
∂wsr

= κj
∂

∂wsr

n∑
i=1

ϕ(xi(t))wij = δjrκrϕ(xs(t)), for x ∈ Ä, (7.1)

where δ is the Kronecker delta function (δjr = 1 if j = r, 0 else) and xi stands
for the ith component of x (i.e., the activation of unit i at time t in path x).

7.1 Networks Without Hidden Units. Combining equations 4.4 and 7.1,
we get

∂ log Lλ(x)
∂wsr

= 1
σ 2

n∑
j=1

∫ T

0

∂µj(x(t), λ)
∂wsr

dIλj (x, t) (7.2)

= 1
σ 2

n∑
j=1

δjrκr

∫ T

0
ϕ(xs(t)) dIλj (x, t) (7.3)

= 1
σ 2 κr

∫ T

0
ϕ(xs(t)) dIλr (x, t), (7.4)
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where σ−1Iλr is the innovation process of the receiving unit, that is,

dIλr (x, t) = dxr(t)− µr(x(t), λ)dt (7.5)

= dxr(t)+ κrρrxr(t)dt− κrξrdt− κr

n∑
i=1

ϕ(xi(t))wirdt.

Combining equations 7.4 and 7.5, we get

∂ log Lλ(x)
∂wsr

= 1
σ 2 κ

2
r

(
bsr(x)−

n∑
i=1

asi(x)wir

)
, (7.6)

where

bsr(x) = 1
κr

∫ T

0
ϕ(xs(t)) dxr(t)+ ρr

∫ T

0
ϕ(xs(t))xr(t) dt

− ξr

∫ T

0
ϕ(xs(t)) dt, (7.7)

asi(x) =
∫ T

0
ϕ(xs(t))ϕ(xi(t)) dt. (7.8)

Let ∇w log Lλ(x) be an n× n matrix with cell i, j containing the derivative of
log Lλ(x) with respect to wij for i, j = 1, . . . ,n. It follows that

∇w log Lλ(x) = 1
σ 2 (b(x)− a(x)w)K2, (7.9)

whereK is a diagonal matrix with diagonal elements κ1, . . . , κn. Note that all
the terms involved in the computation of the gradient of the log likelihood
are Hebbian; they involve time integrals of pairwise activation products.
Also note that each cell of the matrix a is an inner product in the Hilbert space
of squared integrable functions. This may open avenues for generalizing
standard kernel methods (Aizerman et al., 1964; Burges, 1998) for learning
distributions of sequences.

The matrix a(x) is positive semidefinite. To see why, let v ∈ Rn , y(t) =∑n
j=1 vjϕ(xj(t)) for all t ∈ [0,T], and note that

∫ T

0
y(t)2 dt = v′av ≥ 0. (7.10)

Thus, if a(x) is invertible, there is a unique maximum for the log-likelihood
function. The maximum likelihood estimate of w follows:

ŵ = (a(x))−1b(x). (7.11)
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A similar procedure can be followed to find the maximum likelihood esti-
mates of the other parameters:

ξ̂r =
(xr(T)− xr(0))κ−1

r +
∫ T

0

(
ρrxr(t) −

∑n
j=1 wjrϕ(xj(t))

)
dt

T
, (7.12)

ρ̂r =
∫ T

0 xr(t)ξr dt+∑n
j=1 ϕ(xj(t))wjrxr(t)dt− κ−1

r
∫ T

0 xr(t) dxr(t)∫ T
0 x2

r (t) dt
, (7.13)

κ̂r =
∫ T

0 µ̄r(x(t), λ) dxr(t)∫ T
0 µ̄r(x(t), λ)2 dt

, for r = 1, . . . ,n, (7.14)

where µ̄r(x(t), λ) = µr(x(t), λ)/κr, which is not a function of κr. Equations
7.11 through 7.14 maximize a parameter or set of parameters assuming the
other parameters are fixed.

7.2 Networks with Hidden Units. If there are hidden units, we use the
stochastic EM approach presented in section 6. Given an observable path,
xo ∈ Äo, we obtain a fair sample of hidden pathsHm = {h1, . . . , hm} from a
sampling distribution Sh. The gradient of the log–likelihood estimate with
respect to w is as follows:

∇w log L̂λo (xo) = 1
σ 2 (b̃

λ(xo)− ãλ(xo)w)K2, (7.15)

where

b̃λ(xo) =
m∑

l=1

pλh|o(h
l | xo)b(xo, hl), (7.16)

ãλ(xo) =
m∑

l=1

pλh|o(h
l | xo)a(xo, hl), (7.17)

and a, b are given by equations 7.7 and 7.8. Note that in this case, the ã and
b̃ coefficients depend on w in a nonlinear manner in general, even if the
activation function ϕ is linear. We can find values of w for which the gra-
dient vanishes by using standard iterative procedures like gradient ascent
or conjugate gradient. The situation simplifies when the EM algorithm is
used. Let λ̄ and λ represent the parameter vectors of two n-dimensional
diffusion networks that have the same values for the ξ, κ and ρ terms. Let w̄
and w represent the connectivity matrices of these two networks. Following
the argument presented in section 6, we seek values of w that maximize
M(λ̄, λ, xo). To do so, we first find the gradient with respect to w:

∇wM(λ̄, λ, xo) = 1
σ 2 (b̃

λ̄(xo)− ãλ̄(xo)w)K2. (7.18)
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The matrix ãλ̄(xo) is an average of positive semidefinite matrices, and thus it
is also positive semidefinite. Thus, if ãλ̄ is invertible, we can directly maxi-
mize M(λ̄, λ, xo)with respect to w by setting the gradient to zero and solving
for w. The solution,

ŵ = (ãλ̄(xo))
−1b̃λ̄(xo), (7.19)

becomes the new w̄, and equation 7.19 is iterated until convergence is
achieved. Note that this procedure is iterative and guarantees convergence
only to a local maximum of the estimate of the likelihood function. A similar
procedure can be followed to train the ξ, κ , and ρ parameters.

Summary of the Stochastic EM Learning Algorithm for the Neural Net-
work Case

1. Choose an initial network with parameter λ̄ ∈ Rp including the values
of w̄, ξ̄ , κ̄ , and ρ̄. The initial connectivity matrix w̄ is commonly the
zero matrix. Hereafter, we concentrate on how to train the connectivity
matrix. Training the other parameters in λ̄ is straightforward.

2. With the observation units forced to exhibit a desired sequence xo, run
the hidden part of the network m times, starting at time 0 and ending
at time T, to obtain m different hidden paths: h1, . . . , hm.

3. Compute the weight, here represented as π(·), of each hidden path:

π(l) = exp

 1
σ 2

d∑
j=1

∫ T

0
µj(xl(t), λ̄) dxl

j(t)

− 1
2σ 2

∫ T

0
(µj(xl(t), λ̄))2 dt

}
, (7.20)

for l = 1, . . . ,m, where xl = (xo, hl) is a joint sequence consisting of
the desired sequence xo for the observation units and the sampled
sequence hl for the hidden units, and the index j = 1, . . . , d goes
over the output units. In practice, the integrals in equation 7.20 are
approximated using discrete time approximations, as described in
section 9.

4. Compute the a and b matrices of each hidden sequence:

aij(l) =
∫ T

0
ϕ(xl

i(t))ϕ(x
l
j(t)) dt, for i, j = 1, . . . ,n, (7.21)

bij(l) = 1
κj

∫ T

0
ϕ(xl

i(t)) dxl
j(t)+ ρj

∫ T

0
ϕ(xl

i(t))x
l
j(t) dt

− ξ l
j

∫ T

0
ϕ(xl

i(t)) dt, for i, j = 1, . . . ,n. (7.22)
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5. Compute the averaged matrices ã and b̃:

ã =
∑m

l=1 π(l)a(l)∑m
l=1 π(l)

, (7.23)

b̃ =
∑m

l=1 π(l)b(l)∑m
l=1 π(l)

. (7.24)

6. Update the connectivity matrix:

w̄ = ã−1b̃. (7.25)

7. Go back to step 2 using the new value of w̄.

8 Comparison to Previous Work

We use diffusion networks as a way to parameterize distributions of con-
tinuous-time varying signals. We proposed methods for finding local max-
ima of a likelihood estimate. This process is known as learning in the neural
network literature, system identification in the engineering literature, and
parameter estimation in the statistical literature. The main motivation for
the diffusion network approach is to combine the versatility of recurrent
neural networks (Pearlmutter, 1995) with the well-known advantages of
stochastic models(Oksendal, 1998). Thus, our work is closely related to the
literature on continuous-time recurrent neural networks and the literature
on stochastic filtering.

8.1 Continuous-Time Recurrent Neural Networks. We use a recurrent
neural network drift function and allow full interconnectivity between hid-
den and observable units, as is standard in neural network applications. In
recurrent neural networks, the dynamics are deterministic (σ = 0), while
in diffusion networks they are not (σ > 0). Learning algorithms for recur-
rent neural networks typically find values of the parameter vector λ that
minimize a mean squared error of the following form (Pearlmutter, 1995),

8(λ) =
∫ T

0
(o(t, λ)− r(t))2 dt, (8.1)

where r is a desired path we want the network to learn and o(·, λ) is the
unique observable path produced by a recurrent neural network with pa-
rameter vectorλ. Since the optimal properties of maximum-likelihood meth-
ods are well understood mathematically, it is of interest to find under what
conditions the solutions found by minimizing equation 8.1 are maximum-
likelihood estimates. This will give us a sense of the likelihood model implic-
itly used by standard learning algorithms for deterministic neural networks.
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For a given deterministic neural network with parameter vector λ, we de-
fine a stochastic process Oλ by adding white noise to the unique observable
path o(·, λ) produced by that network:

Oλ(t) = o(t, λ)+ σW(t). (8.2)

To obtain a mathematical interpretation of equation 8.2, we introduce

Zλ(t) =
∫ t

0
Oλ(s) ds, (8.3)

which is thus governed by the following SDE,

dZλ(t) = o(t, λ)dt+ σdB(t), (8.4)

where B is standard Brownian motion. Note that if Zλ is known, Oλ is known
and vice versa, so no information is lost by working with Zλ instead of Oλ.
To find the likelihood of a path o given a network with parameter vector λ,
we first compute the integral trajectory z:

z(t) =
∫ t

0
o(s) ds. (8.5)

Using Girsanov’s theorem, the likelihood of z given that is generated as a
realization of the SDE model in equation 8.4 can be shown to be as follows:

Lλ(z) = 1
σ 2

∫ T

0
o(t, λ) dz(t)− 1

2σ 2

∫ T

0
o(t, λ)2 dt. (8.6)

Considering that dz(t) = o(t)dt, it is easy to see that maximizing Lλ(z) with
respect to λ is equivalent to minimizing 8(λ) of equation 8.1.

Thus, standard continuous-time neural network learning algorithms can
be seen as performing maximum likelihood estimation with respect to the
stochastic process defined in equation 8.2. In other words, the generative
model underlying those algorithms consists of adding white noise to the
unique observable trajectory generated by a network with deterministic
dynamics. Note that this is an extremely poor generative model. In particu-
lar, this model cannot handle bifurcations and time warping, two common
sources of variability in natural signals.

Instead of adding white noise to a deterministic path, in diffusion net-
works, we add white noise to the activation increments; that is, the activa-
tions are governed by an SDE of the form

dXλ
(t) = µ(X(t), λ)dt+ σdB(t). (8.7)
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Figure 3: An illustration of the different effects of adding noise to the output of
a deterministic network versus adding it to the network dynamics. See the text
for an explanation.

This results in a much richer and more realistic likelihood model. Due to
the probabilistic nature of the state transitions, the approach is resistant to
time warping, for the same reason hidden Markov models are. In addition,
the approach can also handle bifurcations. Figure 3 illustrates this point
with a simple example. The figure shows a single neuron model in which
the drift is proportional to an energy function with two wells. If we let the
network start at the origin and there is no internal noise, the activation of
the neuron will be constant, since the drift at the origin is zero. Adding
white noise to this constant activation will result in a unimodal gaussian
distribution centered at the origin. However, if we add noise to the activation
dynamics, the neuron will bifurcate, sometimes moving toward the left well,
sometimes toward the right well. This will result in a bimodal distribution
of activations.

Diffusion networks were originally formulated in Movellan and McClel-
land (1993). Movellan (1994) presented an algorithm to train diffusion net-
works to approximate expected values of sequence distributions. Movellan
(1998) presented algorithms for training equilibrium probability densities.
Movellan and McClelland (2001) showed the relationship between diffusion
networks and classical psychophysical models of information integration.
Mineiro et al. (1998) presented an algorithm for sequence density estima-
tion with diffusion networks. In that article, we used a gradient-descent ap-
proach instead of the EM approach presented here, and we sampled from
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the reference distribution Rh instead of the distribution of hidden states with
clamped observations. These two modifications greatly increased learning
speed and made possible the use of diffusion networks on realistic problems
involving thousands of parameters.

8.2 Stochastic Filtering. Our work is also closely related to the liter-
ature on stochastic filtering and systems identification. As mentioned in
section 1.3, if the logistic activation function ϕ is replaced by a linear func-
tion, the weights between the observable units and from the observable to
the hidden units are set to zero, the ρ terms are set to zero, and the probabil-
ity distribution of the initial states is constrained to be gaussian, diffusion
networks have the same dynamics as the continuous-time Kalman-Bucy
filter (Kalman & Bucy, 1961). While the usefulness of the Kalman-Bucy fil-
ter is widely recognized, its limitations (due to the linear and gaussian
assumptions) have become clear. For this reason, many extensions of the
Kalman filter have been proposed (Lewis, 1986; Fahrmeir, 1992; Meinhold
& Singpurwalla, 1975; Sage & Melsa, 1971; Kitagawa, 1996). This article
contributes to that literature by proposing a new approach for training par-
tially observable SDE models. An important difference between our work
and stochastic filtering approaches is that stochastic filtering is generally
restricted to models of the following form:

dH(t) = µh(H(t))dt+ σdBh(t), (8.8)

dO(t) = µo(H(t))dt+ σdBo(t). (8.9)

In our case, this restriction would require setting to zero the coupling be-
tween observable units and the feedback coupling from observable units to
hidden units. While this restriction simplifies the mathematics of the prob-
lem, having a general algorithm that does not require it is important for the
following reasons: (1) such restriction is not commonly used in the neural
network literature; (2) when modeling biological neural networks, such re-
striction is not realistic; (3) in many physical processes, the observations are
coupled by inertia and dampening processes (e.g., bone and muscles with
large dampening properties are involved in the production of observed
motor sequences); and (4) in practice, the existence of connections between
observable units results in a much richer set of distribution models.

Iterative solutions for estimation of drift parameters of partially observ-
able SDE models are well known in the statistics and stochastic filtering
literatures. However, most current approaches are very expensive compu-
tationally, do not allow training fully coupled systems, and have been used
only for problems with very few parameters. Campillo and Le Gland (1989)
present an approach that involves numerical solution of stochastic partial
differential equations. The approach has been applied to models with only
a handful of parameters. Shumway and Stoffer (1982) present an exact EM
approach for discrete-time linear systems; however, the approach does not



1530 Javier R. Movellan, Paul Mineiro, and R. J. Williams

generalize to nonlinear systems. Ljung (1999) presents a general approach
for discrete-time systems with nonlinear drifts. However, the approach re-
quires the inversion of very large matrices (order of length of the training
sequence times number of states). Ghahramani and Roweis (1999) present
an ingenious method to learn discrete-time dynamical models with arbitrary
drifts. The approach approximates nonlinear drift functions using gaussian
radial basis functions. While promising, the approach has been shown to
work on only a single parameter problem.

Our work is closely related to Kitagawa (1996), the work by Blake and
colleagues (North & Blake, 1998; Blake, North, & Isard, 1999), and Solo
(2000). Kitagawa (1996) presents a discrete-time Monte Carlo method for
general-purpose nonlinear filtering and smoothing. While Kitagawa did
not experiment with maximum likelihood estimation of drift parameters,
he mentioned the possibility of doing so. Blake et al. (1999) independently
presented a Monte Carlo EM algorithm at about the same time we published
our earlier work on diffusion networks (Mineiro et al., 1998). The main dif-
ferences between their approach and ours are as follows: (1) they work in
discrete time while we work in continuous time; (2) they require that there
be no coupling between observation units and no feedback coupling from
observations to hidden units, whereas we do not have such requirements;
and (3) they sample from an approximation to the distribution of hidden
units given observable paths, as proposed by Kitagawa (1996). Instead, we
sample from the distribution of hidden units with clamped observations
and use corrections to obtain unbiased estimates of the likelihood gradi-
ents. Solo (2000) presents a simulation method for generating approximate
likelihood functions for partially observable SDE models and for finding
approximate maximum likelihood estimators. His approach can be seen
as a discrete-time version of the method we independently proposed in
Mineiro et al. (1998). The approach we propose here generalizes (Mineiro
et al., 1998; Solo, 2000). We incorporate the use of importance sampling
in continuous time and do not need to restrict the observation units to be
uncoupled from each other or the hidden units to be uncoupled from the
observation units.

9 Simulations

Sample source code for the simulations presented here can be found at
J. R. M.’s Web site (mplab.ucsd.edu). In practice, lacking hardware imple-
mentations of diffusion networks, we model them on digital computers
using discrete-time approximations. While more sophisticated techniques
are available for simulating SDEs in digital computers (Kloeden & Platen,
1992; Karandikar, 1995), we opted to start with simple first-order Euler ap-
proximations.
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Consider the term L̂λo (xo) in equation 5.3. It requires, among other things,
computing integrals of the form

log Lλ(x) = 1
σ 2

∫ T

0
µ(x(t), λ) · dx(t)− 1

2σ 2

∫ T

0
|µ(x(t), λ)|2 dt,

for x ∈ Ä. (9.1)

In practice, we approximate such integrals using the following sum:

1
σ 2

s−1∑
k=0

µ(x(tk), λ) · (x(tk+1)− x(tk))− 1
2σ 2

s−1∑
k=0

|µ(x(tk), λ)|21t, (9.2)

where 0 = t0 < t1 · · · < ts = T are the sampling times and tk+1 = tk + 1t,
and 1t > 0 is the sampling period.

The Monte Carlo approach proposed here requires generating sample
hidden paths {hl}ml=1 from a network with the observable units clamped to
the path xo. We obtain these sample paths by simulating a diffusion network
in discrete time as follows:

H(tk+1) = H(tk)+ µh(xo(tk),H(tk), λ)1tk + σZk
√
1tk, (9.3)

H(0) ∼ νh,

where Z1, . . . ,Zs are independent (n − d)-dimensional gaussian random
vectors with zero mean and covariance equal to the identity matrix.

9.1 Example 1: Learning to Bifurcate. This simulation illustrates the ca-
pacity of diffusion networks with nonlinear activation functions to learn bi-
furcations. This is a property important for practical applications, which al-
lows these networks to entertain multiple distinct hypotheses about the state
of the world. Standard deterministic neural networks and linear stochastic
networks like Kalman filters cannot learn bifurcations. A diffusion network
with an observable unit and a hidden unit was trained on the distribution
of paths shown in Figure 4. The top of the figure shows there were four
equally probable desired paths, organized as a double bifurcation. The net-
work was trained for 60 iterations of the EM algorithm, with 10 sample
hidden paths per iteration. The bottom row shows the distribution learned
by a standard recurrent neural network. As expected, the network learned
the average path—a constant zero output. The trajectories displayed on the
figure were produced by estimating the variance of the desired outputs from
the learned trajectory and adding gaussian noise of that estimated variance
to the output learned by the network.

The second row of Figure 4 shows 48 sample paths produced by the
diffusion network after training. While not perfect, the network learned to
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Figure 4: (Top row) The double bifurcation defines a desired path distribution
with four equally probable paths. (Second row) Observable unit sequences ob-
tained after training a diffusion network. (Third row) Hidden unit sequences of
the trained diffusion network. (Bottom row) Sequences obtained after training
a standard recurrent neural network and adding an optimal amount of noise to
the output of that network.

bifurcate twice and produced a reasonable approximation to the desired
distribution. We were surprised that this problem was learnable with a sin-
gle hidden unit, until we saw the ingenious solution learned by the network
(see Table 1). Basically the network learned to toss two binary random vari-
ables sequentially and compute their sum. The observable unit learned a
relatively small time constant and, if disconnected from the hidden unit, it
bifurcated once, with each branch taking approximately equal probability.
The hidden unit had a faster time constant and learned to bifurcate unaf-
fected by the observable unit. Thus, the hidden unit basically behaved as
a Bernoulli random bias for the observable unit. The result was a double
bifurcation of the observable unit, as desired. Figure 5 shows four example
paths for the observable and hidden units.

9.2 Example 2: Learning a Beating Heart. In this section we show the
capacity of diffusion networks to learn natural oscillations. The task was
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Figure 5: Four sample paths learned in the bifurcation problem. Solid lines
represent observable unit paths, and dashed lines represent hidden unit paths.

Table 1: Parameters Learned for the Double Bifurcation Problem.

woo = 4.339 woh = −0.008 ξo = −0.005 κo = 0.429
who = 2.303 whh = 0.5912 ξh = 0.000 κh = 1.175

Notes: All the weights and biases were initialized to zero and
the κ terms to 1. The fixed parameters were set to the following
values: θ1 = −1, θ2 = 2, θ3 = 7, σ = 0.2.

learning the expansion and contraction sequence of a beating heart. Once
a distribution of normal sequences is learned, the network can be used for
tracking sequences of moving heart images (Jacob, Noble, and Blake (1998)
or to detect the presence of irregularities.

Jacob et al. (1998) tracked the contour of a beating heart from a sequence of
ultrasound images and applied principal component analysis (PCA) to the
resulting sequence of contours. Figure 6 shows the first principal component
coefficient as a function of time for a typical sequence of contours. North
and Blake (1998) compared two discrete-time models of the heart expansion
sequence: (1) a linear model with time delays and no hidden units and (2) a
linear model with time delays and hidden units. The first model was defined
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by the following stochastic difference equation,

O(t+ 1) = O(t)+ λ1 + λ2O(t)+ λ3O(t− 1)+ σ1Z1(t), (9.4)

where O represents the observed heart expansion, Z1(1),Z1(2), . . . is a se-
quence of independent and identically distributed gaussian random vari-
ables with zero mean and unit variance, and λ1, λ2, λ3 ∈ R, σ1 > 0 are
adaptive parameters. The second model had the following form,

H(t+ 1) = H(t)+ λ1 + λ2H(t)+ λ3H(t− 1)+ σ1Z1(t), (9.5)

O(t) = H(t)+ σ2Z2(t), (9.6)

where Z2(1),Z2(2), . . . is a sequence of zero mean, unit variance, indepen-
dent gaussian random variables, and σ2 > 0 is also adaptive. The two mod-
els were trained on the heart expansion sequence displayed in Figure 6.
After training, the two models were run with σ = 0 to see the kind of
process they had learned. The two linear models learned to oscillate at the
correct frequency, but their motion was too damped (see Figure 6). It should
be noted that both models are perfectly capable of learning undampened
oscillations; they just could not learn this particular kind of oscillation.

Unfortunately, the original heart expansion data are not available. In-
stead, we recovered the data by digitizing a figure from the original article
and automatically sampling it at 872 points. We tried the two linear systems
on these data and obtained results identical to those reported in Jacob et
al. (1998), so we feel the digitization process worked well. We then trained
a diffusion network with one observation unit and one hidden unit. We
did not include time delays and instead allowed the network to develop its
own delayed representations by fully coupling the observation and hidden
units. The network was trained using 60 iterations of the stochastic EM algo-
rithm, with 10 hidden samples per iteration. Table 2 shows the parameters
learned by the network. Figure 6 shows a typical sample path produced by
the trained network. Note that the network did not exhibit the dampening
problem found with the linear models. We also tried a diffusion network
with one observation unit and one hidden unit, but with linear activation
functions instead of logistic. The result was again a very dampened process,
like the one depicted in Figure 6. It appears that the saturating nonlinearity
of diffusion networks was beneficial for learning this task.

9.3 Example 3: Learning to Read Lips. In this section, we report on the
use of diffusion networks with thousands of parameters for a sequence clas-
sification task involving a body of realistic data. We compare a diffusion net-
work approach with the best hidden Markov model approaches published
in the literature for this task. The question at hand is whether diffusion net-
works may be a viable alternative to hidden Markov models for sequence
recognition problems. The main difference between diffusion networks and



A Monte Carlo EM Approach 1535

Figure 6: (Top left) The evolution of the first PCA coefficient for a beating heart.
(Top right) The path learned by a second-order linear model with no hidden
units. (Bottom left) The path learned by a second-order linear model with hidden
units. (Bottom right) Typical path learned by a diffusion network.

Table 2: Parameters Learned for the Heart Beat Problem.

woo = 1.280 woh = 0.673 ξo = −0.143 κo = 0.709
who = −1.218 whh = 0.088 ξh = 0.001 κh = 1.087

Notes: All the weights and biases were initialized to zero and
the κ terms to 1. The fixed parameters were set to the following
values: θ1 = −1, θ2 = 2, θ3 = 7, σ = 0.2.

hidden Markov models is the nature of the hidden states: diffusion net-
works use continuous-state representations, while hidden Markov models
use discrete-state representations.15 It is possible that continuous-state rep-
resentations may be beneficial for modeling some natural sequences.

15 While HMMs can use continuous observations, the hidden states are always discrete.
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Our approach to sequence recognition using diffusion networks is similar
to the approach used in the hidden Markov model literature. First, several
diffusion networks are independently trained with samples of sequences
from each of the categories at hand. For example, if we want to discriminate
between c categories of image sequences, we would first train c different
diffusion networks. The first network would be trained with examples of
category 1, the second network with examples of category 2, and the last
network with examples of category c. This training process results in c values
of the parameter λ, each of which has been optimized to represent a different
category. We represent these values as λ∗1, . . . , λ

∗
c . Once the networks are

trained, we can classify a new observed sequence xo as follows: we compute
log L̂λ

∗
i

o (xo) for i = 1, . . . , c. These log likelihoods are combined with the log-
prior probability of each category, and the most probable category of the
sequence is chosen.

9.3.1 Training Database. We used Tulips1 (Movellan, 1995), a database
consisting of 96 movies of nine male and three female undergraduate stu-
dents from the Cognitive Science Department at the University of California,
San Diego. For each student, two sample utterances were taken for each of
the digits “one” through “four” (see Figure 7). The database is challenging
due to variability in illumination, gender, ethnicity of the subjects, and po-
sition and orientation of the lips. The database is available at J. R. M.’s Web
site.

9.3.2 Visual Processing. We used a 2×2 factorial experimental design to
explore the performance of two different image processing techniques (con-
tours and contours plus intensity) in combination with two different recog-
nition engines (hidden Markov models and diffusion networks). The image
processing was performed by Luettin, Thacker, and Beet (1996a, 1996b).
They employ point density models, where each lip contour is represented
by a set of points; in this case, both the inner and outer lip contour are
represented, corresponding to Luettin’s double contour model (see Figure
7). The dimensionality of the representation of the contours was reduced
using principal component analysis. For the work presented here, 10 prin-
cipal components were used to approximate the contour, along with a scale
parameter that measured the pixel distance between the mouth corners;
associated with each of these 11 components was a corresponding delta
component. The value of the delta component for the frame sampled at
time tk equals the value of the original component at that time minus the
value of the original component at the previous sampling time tk−1 (these
delta components are defined to be zero at t0). In this manner, 22 compo-
nents were used to represent lip contour information for each still frame.
These 22 components were represented using diffusion networks with 22
observation units, one per component.
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Figure 7: Example images from the Tulips1 database.

We also tested the performance of a representation that used intensity
information in addition to contour shape information. We obtained Luettin
et al. (1996b) representations in which gray-level values are sampled along
directions perpendicular to the lip contour. These local gray-level values
are then concatenated to form a single global intensity vector that is com-
pressed using the first 20 principal components. There were 20 associated
delta components, for a total of 40 components of intensity information per
still frame. These 40 components were concatenated with the 22 contour
components, for a total of 62 components per still frame. These 62 com-
ponents were represented using diffusion networks with 62 observation
units, one per component. Thus, the total number of weight parameters
was (62 + (n − d))2, where n − d is the number of hidden units. We tested
networks with up to 100 hidden units—26,244 parameters.

9.3.3 Training. We independently trained four diffusion networks to
approximate the distributions of lip-contour trajectories of each of the four
words to be recognized; the first network was trained with examples of
the word one and the last network with examples of the word four. Each
network had the same number of nodes, and the drift of each network was
given by equation 1.2 with κ = 1, ρ = 0, and a hyperbolic tangent activation
function—θ1 = −1, θ2 = 2, θ3 = 1 in equation 1.3. The connectivity matrix w
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and the bias parameters ξ were adaptive. The initial state of the hidden units
was set to (1, . . . , 1)′ with probability 1, and σ was set to 1 for all networks.

The diffusion network dynamics were simulated using the forward Eu-
ler technique described in previous sections. In our simulations, we set
1t = 1/30 seconds, the time between video frame samples. Each diffu-
sion network was trained with examples of one of the four digits using the
following cost function (see equation 4.2),

8(λ) =
∑

i
log L̂λo (x

i
o)−9(λ), (9.7)

where each xi
o is a movie from the Tulips1 database—a sample from the

desired empirical distribution Po, and 9(λ) = 1
2α|λ|2 for α > 0. Several

values of αwere tried, and performance is reported with the optimal values.
Here,9(λ) acts as a gaussian prior on the network parameters. Training was
done using 20 hidden sample paths per observed path. These paths were
sampled using the “teacher forcing” approach described in equations 5.8
through 5.10.

9.3.4 Results. The bank of diffusion networks was evaluated in terms of
generalization to new speakers. Since the database is small, generalization
performance was estimated using a jackknife procedure (Efron, 1982). The
four models (one for each digit) were trained with labeled data from 11
subjects, leaving a subject out for generalization testing. Percentage correct
generalization was then tested using the decision rule

D(xo) = arg max
i∈{1,2,3,4}

log L̂λ
∗
i

o (xo), (9.8)

where log L̂λ
∗
i

o is the estimate of the log likelihood of the test sequence eval-
uated at the optimal parameters λ∗i found by training on examples of digit
i. This rule corresponds to assuming equal priors for each of the four cat-
egories under consideration. The entire procedure was repeated 12 times,
each time leaving a different subject out for testing, for a total of 96 gen-
eralization trials (4 digits × 12 subjects × 2 observations per subject). This
procedure mimics that used by Luettin et al. (1996a, 1996b; Luettin, 1997) to
test hidden Markov model architectures.

We tested performance using a variety of architectures, some including
no hidden units and some with up to 100 hidden units. Best generalization
performance was obtained using four hidden units. These generalization
results are shown in Table 3. The hidden Markov model results are those re-
ported in Luettin et al. (1996a, 1996b) and Luettin (1997). The only difference
between their approach and ours is the recognition engine, which is a bank
of hidden Markov models in their case and a bank of diffusion networks
in our case. The image representations mentioned above were optimized
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Table 3: Generalization Performance on the Tulips1 Database.

Approach Correct Generalization

Best HMM, shape information only 82.3%
Best diffusion network, shape information only 85.4
Untrained human subjects 89.9
Best HMM, shape and intensity information 90.6
Best diffusion network, shape and intensity information 91.7
Trained human subjects 95.5

Notes: Shown in order are the performance of the best-performing HMM from Luettin et
al. (1996a, 1996b) and Luettin (1997) which uses only shape information; the best diffusion
network obtained using only shape information; the performance of untrained human
subjects (Movellan, 1995); the HMM from Luettin’s thesis (Luettin, 1997) which uses both
shape and intensity information; the best diffusion network obtained using both shape
and intensity information; and the performance of trained human lip readers (Movellan,
1995).

by Luettin et al. to work with hidden Markov models. They also tried a
variety of hidden Markov model architectures and reported the best results
obtained with them.

In all cases, the best diffusion networks outperformed the best hidden
Markov models reported in the literature using exactly the same visual pre-
processing. The results show that diffusion networks may outperform hid-
den Markov model approaches in sequence recognition tasks. While these
results are very promising, caution should be exercised since the database
is relatively small. More work is needed with larger databases.

10 Conclusion

We think the main reason that recurrent neural networks have not worked
well in practical applications is that they rely on a very simplistic likeli-
hood model: white noise added to a deterministic sequence. This model
cannot cope well with known issues in natural sequences like bifurcations
and dynamic time warping. We proposed adding noise to the activation dy-
namics of recurrent neural networks. The resulting models, which we called
diffusion networks, can handle bifurcations and dynamic time warping.

We presented a general framework for learning path probability den-
sities using continuous stochastic models and then applied the approach
to train diffusion neural networks. The approach allows training networks
with hidden units, nonlinear activation functions, and arbitrary connectiv-
ity. Interestingly, the gradient of the likelihood function can be computed
using Hebbian coactivation statistics and does not require backpropagation
of error signals.

Our work was inspired by the rich literature on continuous stochastic fil-
tering and recurrent neural networks. The idea was to combine the versatil-
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ity of recurrent neural networks and the well-known advantages of stochas-
tic modeling approaches. The continuous-time nature of the networks is con-
venient for data with dropouts or variable sample rates, since the models we
use define all the finite dimensional distributions. The continuous-state rep-
resentation is well suited to problems involving continuous unobservable
quantities, as in visual tracking tasks. In particular, the diffusion approach
may be advantageous for problems in which continuity and sparseness con-
straints are useful. Diffusion networks naturally enforce a sparse state tran-
sition matrix (there is an infinite number of states, and given any state, there
is a very small volume of states to move into with nonnegligible probabil-
ity). It is well known that enforcing sparseness in state transition matrices is
beneficial for many sequence recognition problems (Brand, 1998). Diffusion
networks naturally enforce continuity constraints in the observable paths,
and thus they may not have the well-known problems encountered when
hidden Markov models are used as generative models of sequences (Ra-
biner & Juang, 1993). We presented simulation results on realistic sequence
modeling and sequence recognition tasks with very encouraging results.

While the results were highly encouraging, the databases used were rel-
atively small, and thus the current results should be considered only as ex-
ploratory. It should also be noticed that there are situations in which hidden
Markov models will be preferable to diffusions. For example, it is relatively
easy to compose hierarchies of simple trainable hidden Markov models, cap-
turing acoustic, syntactic, and semantic constraints. At this point, we have
not explored how to compose trainable hierarchies of diffusion networks.
Another disadvantage of diffusion networks relative to conventional hidden
Markov models is training speed, which is significantly slower for diffusion
networks than for hidden Markov models. However, once a network was
trained, the computation of the density functions needed in recognition was
fast and could be done in real time.

Significant work remains to be done. In this article, we assume that the
data are a continuous stochastic process. However, in many applications, the
data take the form of discrete-time samples from a continuous-time process.
In this article, we approached this issue by using simple discrete-time Euler
approximations to stochastic integrals. In the future, we plan to investigate
alternative approximations that allow for path-wise convergence, such as
that in Karandikar (1995). The theoretical properties of the stochastic EM
procedure when combined with discrete-time approximations of stochas-
tic integrals remain to be investigated. In this article, we did not consider
dispersions that are a function of the state, and we have not optimized the
dispersion and the initial distribution of hidden states. Optimization of the
initial distribution of hidden states is easy but unnecessarily obscures the
presentation of the main issues in the article. Optimization of the disper-
sion is easy in discrete-time systems but presents mathematical challenges
in continuous-time systems; thus, we have deferred the issue for future
work. Theoretical issues concerning the approximating power of diffusion
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networks need to be explored. In deterministic neural networks, it is known
that with certain choices of activation function and sufficiently many hid-
den units, neural networks can approximate a large set of functions with
arbitrary accuracy (Hornik, Stinchombe, & White, 1989). An analogous re-
sult for diffusion networks stating the class of distributions that can be
approximated arbitrarily closely would be useful. It is also important to
compare the properties of the algorithm presented here with alternative
learning algorithms for partially observable stochastic processes that could
also be applied to diffusion networks (Campillo & Le Gland, 1989; Blake et
al., 1999).

Another aspect of theoretical interest is the potential connection between
diffusion networks and recent kernel-based approaches to learning. In par-
ticular, notice that the learning rule developed in this article depends on a
matrix of inner products in the Hilbert space of squared integrable functions,
as defined in equation 7.8. This may allow application of standard kernel
methods (Aizerman et al., 1964; Burges, 1998) to the problem of learning
distributions of sequences.

We are currently exploring applications of diffusion networks to real-
time stochastic filtering problems (face tracking) and sequence-generation
problems (face animation). Our work shows that diffusion networks may be
a feasible alternative to hidden Markov models for problems in which state
continuity and sparseness in the state transition distributions are advanta-
geous. The results obtained for the visual speech recognition task are en-
couraging and reinforce the possibility that diffusion networks may become
a versatile general-purpose tool for a wide variety of continuous-signal pro-
cessing tasks.
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