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Abstract—This paper explores the process of self-guided learn-
ing of realistic facial expression production by a robotic head with
31 degrees of freedom. Facial motor parameters were learned
using feedback from real-time facial expression recognition from
video. The experiments show that the mapping of servos to
expressions was learned in under one-hour of training time. We
discuss how our work may help illuminate the computational
study of how infants learn to make facial expressions.

I. INTRODUCTION

The human face is a very complex system, with more than
44 muscles whose activation can be combined in non-trivial
ways to produce thousands of different facial expressions. As
android heads approximate the level of complexity of the
human face, scientists and engineers face a difficult control
problem, not unlike the problem faced by infants: how to
send messages to the different actuators so as to produce
interpretable expressions.

Others have explored the possibility of robots learning to
control their bodies through exploration. Olsson, Nehaniv,
and Polani [1] proposed a method to learn robot body con-
figurations using vision and touch sensory feedback during
random limbs movements. The algorithm worked well on the
AIBO robots. However, AIBO has only 20 degrees of freedom
and is subject to well known rigid body physics. Here we
utilize an android head (Hanson Robotics’ Einstein Head)
that has 31 degrees of freedom and non-rigid dynamics that
map servo actuators to facial expressions in non trivial ways.
In practice, setting up the robot expressions requires many
hours of trial-and error work from people with high level of
expertise. In addition as time progresses some servos may fail
or work differently thus requiring constant recalibration of the
expressions.

One possible way to avoid the need for costly human
intervention is to develop algorithms that would allow robots
to learn to make facial expressions on their own. In develop-
mental psychology, it is believed that infants learn to control
their body through systematic exploratory movements [2]. For
example, they babble to learn to speak and wave their arms
in what appear to be a random manner as they learn to
control their body and reach for objects. This process may
involve temporal contingency feedback from proprioceptive
system and from the sensory system that registers the con-
sequences of body movements on the external physical and
social world [3]. Here we apply this same idea to the problem
of a robot learning to make realistic facial expressions: The

(a) The FACS Action Units (AUs)

(b) The A-E facial intensities defined in FACS.

Fig. 1: A face can be FACS-coded into a set of numbered
AUs (each number is a facial muscle group) along with letter-
grades denoting intensity.
Copyright c©2002 Paul Ekman. Reprinted with permission.

robot uses “expression-babbling” to progressively learn an
inverse kinematics model of its own face. The model maps
the relationship between proprioceptive feedback from the
face and the control signals to 31 servo motors that caused
that feedback. Since the Einstein robot head does not have
touch and stretch sensors, we simulated the proprioceptive
feedback using computer vision methods: An automatic facial
expression analyzer [4] was used that estimated, frame by
frame, underlying human facial muscle activations from the
observed facial images produced by the android head. Once
the inverse kinematics model is learned the robot can generate
new control signals to produce desired facial expressions. The
proposed mechanism is not unlike the body-babbling approach
hypothesized by [5] as a precursor for the development of
imitation in infants.

II. METHODS

A. Robotic Head

The robot head, “Einstein”, was developed by Hanson
Robotics. The face skin is made of a material called Frubber,
that deforms in a skin-like manner contributing to the realism
of the robot expressions. The head is actuated by 31 servo
motors, 27 of them controlling the expressions of the face
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Fig. 2: A close-up of actions units defined in FACS.

and 4 controlling the neck. Figure 4 presents a side-by-
side comparison between the location of servos in the robot
head and human facial muscles. While the robot is able to
simulate the actions of all major muscle groups in the face
and neck, there are some important differences in the way the
human muscles and the robot servo motors actuate the face.
In contrast to human muscles, these servos can both pull and
push loads and thus each motor can potentially simulate the
action of 2 individually controlled muscle groups. Moreover
in humans orbicular muscles, like the Orbicularis oculi and
the Orbicularis oris produce circular contractions whereas the
robot servos produce linear contractions that are coupled via
circular tendons.

B. Facial Action Coding System

Paul Ekman [6] developed the Facial Action Coding System
(FACS) as comprehensive language to code facial expressions
in terms of atomic muscle movements, named facial action
units (AUs). Figure 2 shows some major AUs. Given a
face image along with the neutral face of the same person,
a certified FACS coder can code the face (Figure 1a) in
terms of active with a set of activating AUs along with their
intensity measured in 5 discrete levels (Figure 1b) based on the
appearance change on the face. These active AU can be seen
as estimates of the underlying muscle activations that caused
the observed expressions.

In recent years the computer vision community has made
significant progress on the problem of automating FACS
coding from video. Cohn’s group at CMU [7] developed a
system based on the use of active appearance model that tracks
65 fiducial points on the face. AUs are recognized based on
the relative position of the tracked points. Our group at UCSD
has been pursuing an alternative approach, called CERT (short
for Computer Expression Recognition Toolbox, see Figure
3), to directly recognize expressions from appearance-based

Fig. 3: Software framework of computer expression recogni-
tion toolkit (CERT)

filters rather than from relative locations of fiducial points [4].
First the region of the face is automatically segmented. The
obtained image patch is then passed through a bank of Gabor
filters that decompose it into different spatial frequencies and
orientations. Feature selection methods, like Adaboost, are
used to select the more relevant filters. Finally, support vector
machines (SVM) are used to classify the existence of AUs
given the extracted features.

In this paper, we use CERT as a way to simulate the pro-
prioceptive system of the human face: As the robot moved its
facial servo motors CERT provided feedback about which AUs
were active. AUs approximately correspond to individual face
muscles, thus practically providing a proprioceptive (though
visually guided) system to the robot.

C. Learning: Random Movements and Feedback

The expression recognition software, CERT, can be seen as
a non-linear function F that takes a given image I and then
outputs a vector F (I) ∈ Rm of detected intensities of m AUs.
Let S be the collection of servos used in the experiment. We
denote j-th random configuration encountered during motor
babbling as sj ∈ R|S|, and the corresponding face images as
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(a) (Upper face) muscular anatomy∗ (b) Facial action units associated with facial
muscles∗

(c) Servo layout on the robotic face

(d) The relation between servos and AUs

Fig. 4: A comparison between human (a) facial muscles, (b) FACS AUs , and (c) robotic servo layouts on Einstein. and (d)
the learned connections between the AUs and servos learned in our experiment.
∗ Copyright c©2002 Paul Ekman. Reprinted with permission.

Isj
. Further, let n denote the number of random movements

collected.
In order to produce a given expression, Einstein must learn

an inverse kinematics model that maps desired proprioceptive
signals to servo motor activations that can generate the desired
proprioceptions. In this document we use a linear inverse
kinematics model. For each servo i we train a linear regression
model to minimize the following objective function:

min
ci,bi

n∑
j=1

||(F (Isj
)T ci + bi)− (sj)i||2, (1)

where bi is a constant bias term. Thus the problem of learning
the inverse kinematics model of the face reduces to a linear

least squares problem with respect to the parameters (ci, bi) ∈
Rm+1.

Once the model parameters are learned, we can use the
model to generate new servo movements {s′i}, i ∈ S for any
desired AU configurations a according to the linear mapping

s′i = aT ci + bi. (2)

Efficient analytical and iterative solutions exists for this
problem. Thus the advantage of using linear models is that they
are simple, fast, and easy to train. The obvious disadvantage
is that if underlying mapping between servo actuations and
expressions is not linear, the model will not work well. It was
thus unclear whether the proposed approach would work in
practice.
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Fig. 5: Asymmetric random facial movements.

III. EXPERIMENTS

The real-time expression recognition was done using CERT
version 4.4.1 running on a Dual Core Intel Based Mac Mini.
The CERT software recognizes 12 AUs (see Figure 4d for
a list). The output of CERT is a real-valued vector for each
video frame indicating the estimated intensity of each facial
action. The output is roughly base-lined at zero, with outputs
above zero indicating the AU was present. However, the actual
baseline of neutral expression is subject dependent. Therefore,
we collect the baseline for Einstein aN , which will be used
in expression synthesis stage.

Communication with the ROBOT hardware was handled
using RUBIOS2.0 a Java based open source communications
API for Social Robots [8]. RUBIOS 2.0 is built on top of
QuickServer, an open source Java library for multi-threaded,
multi-client TCP server applications.

A. Learning

In order to collect data for learning a mapping between
facial expressions and servo movements, Einstein generated a
series of random servo movements (see Figure 5). The position
of each servo was sampled uniformly and independently from
the safe operation range of each servo. This phase can be seen
as the “body-babbling” that allows learning a kinematic model
of the face.

We excluded the servos for directing the eye gaze (servo 11,
13, 30), the jaw (servo 0), and the neck (servo 14, 15, 28, 31)
since they were not related to the elementary facial muscle
movements currently recognized by CERT. Two additional
servos, 1 and 19, were also disabled after discovering that,
when random motor babbling caused pulling in opposition
to servos 4 and 1, servo burnout resulted. We are currently
developing a mechanism for the robot to automatically sense
the energy spent by the servos and therefore to automatically
avoid harmful servo configurations, possibly by adding a
fatigue term that simulates the limited capacity of human facial
muscles to contract for long periods of time. Such a change
might also lead to more realistic learned strategies for facial
expression synthesis.

We collected 500 instances of perception-production pairs.
Each instance consists of the configuration of the servos and
the outputs of the 12 facial action unit detectors produced by
CERT. Since CERT estimates activations of individual facial

TABLE I: correlation coefficient how well AU input predicts
servo movements.

face region training testing
upper 0.7868 0.7237
lower 0.5657 0.4968

muscles, here CERT could be seen as playing the role of a
human proprioceptive system, informing which facial muscles
are activated at every point in time. The 500 instances were
then used to train the linear regression model. The results are
shown in Table I. We observed very good performance for
expressions in the upper face region and moderate performance
for the lower face. We suspect that this may be due to the
facial hair on the robot (mustache) that probably reduced the
accuracy of the feedback provided by CERT. However it is
also possible that the underlying mapping between servos and
expressions, is less linear for expressions in the lower face. We
are currently investigating which of these two explanations is
more consistent with the data.

Figure 4d displays the mapping between AU and servo con-
trol signals learned by the model. The values are normalized
by the dynamic range of AU intensity and servo movements.
In each row, the figure shows the set of servos related to
the generation the AU, with dark shading indicating strong
involvement. For example, servo 6 and 23 plays the major roles
in demonstrating AU2, while servos 9, 17 and 25 also provides
minor contribution. On the other hand, each column shows
which AUs predict or explain the servo movement the best.
For example, the movement of servo 6 is mainly explained by
AU17 (chin raise, Figure 2).

B. Action Unit Synthesis

Coding of human facial action units best done in relation
to a neutral face. Here we face a similar issue in that we have
to account for the Einstein’s neutral expression and use it as
baseline to synthesize other action unit configurations. Let the
baseline AU intensities of Einstein’s neutral face be denoted
by aN = F (IN ) where IN is the neutral expression face of
Einstein when all the servos are relaxed. Then, the synthesized
AU i intensities were set to a′ = aN +ei, where ei is a vector
of zeros with the exception that the i-th element to be one.
Finally, we generated the corresponding servo movements by
s′i = a′T ci + bi.

Figure 6 shows examples of some of the synthesized AUs.
We put the neutral expression in (a) for reference. (b) is
the synthesized AU1 expression (inner eyebrow raise). For
comparison, we also put the neutral and AU1 expression
demonstrated by a human in (c) and (d). Figure (e)-(h) gives
more examples on AU2, AU4, AU5 and AU9.

IV. DISCUSSION

While Hanson Robotics made an effort to explicitly map
each servo to individual action units in the Facial Action
Coding System, we observed that the model learned to activate
multiple servos to produce each AU. Subjectively the AUs
learned by the model, which synthesized multiple servos,
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(a) Neutral (b) AU1: Inner Brow Raise (c) Human Neutral∗ (d) Human AU1: Inner Brow
Raise∗

(e) AU2: Outer Brow Raise (f) AU4: Brow Lower (g) AU5: Eye Widen (h) AU9: Nose Wrinkle

Fig. 6: Action units learned by Einstein
∗ Copyright c©2002 Paul Ekman. Reprinted with permission.

appeared more realistic than the equivalent AUs originally
shipped with the robot that had been set by hand. For example,
AU4 (eyebrow narrowing) is recognizable by changes in
appearance that occur mainly at the midpoint between the
two eyebrows. In humans the muscles that contribute to the
appearance of AU4 are the left corrugator and right corrugator.
If servos are tuned by hand, a heuristic assignment will be
moving inner eyebrow servos 7 and 24. Our model learned
this obvious connection clearly. However, as stated in FACS
manual [9], the appearance change of AU4 “push the eye cover
fold downwards and may narrow the eye aperture.” Our model
also learned to close the upper eyelid (servo 22) a bit to narrow
the eye aperture. Similar phenomena were also found in the
lower face. AU 17 “chin raise” is recognizable by the bulging
around the chin region (see Figure 2). While the robot does not
have any servos in that region of the face, the model learned to
produce the appearance of bulging using 3 lip servos (servos
10,16 27).

During the experiment, one of the servos burned out due to
misconfiguration. We therefore ran the experiment without that
servo. We discovered that the model learned to automatically
compensate for the missing servo by activating a combination
of nearby servos.

Another interesting observation is that the robot learned to
produce symmetric servo movements. This is likely due to
the fact that the database of images of facial expressions that
was used to develop the CERT software had predominately
symmetric expressions.

A. Developmental Implications

The primary goal of this work was to solve an engineering
problem: How to approximate the appearance of human facial
muscle movements with the available motors. Nevertheless
this work also speaks to learning and development of facial
expressions in humans. It is not fully understood how hu-
mans develop control of their facial muscles to produce the
complex repertoire of facial expressions used in daily social
interaction. Some aspects of facial behavior appears to be
learned, and other aspects appear to be innate. For example,
cross-cultural data [10] suggests that some basic expressions,
such as smiles, are shared universally among all the peoples
in the world, leading scientists to hypothesize that they are
innate. Moreover, congenitally blind individuals show similar
expressions of basic emotions in the appropriate contexts,
despite never having seem them [11], and even show brow
raises to emphasize speech [12].

There are two distinct brain systems that control the fa-
cial muscles [13]: a sub-cortical system that is responsible
for affect driven expressions and a cortical system that is
responsible for voluntary expressions. During development
children learn to control voluntarily their own expressions.
This transition from felt to voluntary control of the face is clear
to many parents when their children start producing smile with
a distinctly different morphology to that of spontaneous smiles
when they are posing to a camera. The mechanism proposed
here would explain how cortical systems can learn to control
the face in a voluntary manner. The sub-cortical system, for



2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 6

random movements 
on Einstein video camera CERT software

Feedback

(a) Einstein

proprioceptive systemrandom movements 
on a human 

Feedback

(b) human I

random movements 
on a human 

seeing facial 
mimicry on other 
individual around

facial expression 
neuron encoder

Feedback

(c) human II

Fig. 7: The proposed framework of learning to demonstrate
facial expression on Einstein(a) and human(b)(c).

example, can spontaneously produce expressions of emotion
(e.g., smiles) that result on memorable proprioceptive traces.
Body babbling can be used to develop an inverse model
of the face and then reproduce, in a voluntary manner, the
proprioceptive traces experienced during felt expressions of
emotions.

Our experiment demonstrates that complex facial expres-
sions may be learned through feedback of the type made
available by CERT through the framework shown in Figure 7a.
One possibility is that CERT was basically serving the role of a
proprioceptive system (Figure 7b). As such the fact that CERT
happens to use visual input is incidental. Similar feedback
to that produced by CERT could have been obtained using
proprioceptive sensors rather than visual sensors. Another
possibility is that people can actually encode the expressions
observed by others in a manner that mimics the function of
CERT (Figure 7c). There is empirical evidence that during
social interaction people tend to mimic the facial expressions
of their interlocutors [14], which implies that humans have the
capability to visually encode facial expressions and map them
onto their own muscle movements. This behavior could effec-
tively serve as a mirror that would provide information about
the effects of one’s own muscle movements onto the external
appearance of facial expressions. Blind children appear to
have problems masking expressions of negative emotions [15],
indicating that seeing others may be important for gaining
voluntary control of facial expressions .

We are currently experimenting with an active learning
mechanism to allow the robot to actively choose muscle move-
ments, “facial babbling,” so as to optimize learning efficiency.
Instead of making random movements, the brain may move
the face in more efficient ways to quickly reduce the uncer-

tainly of the internal expression-to-muscle model. Such active
exploration may employ information maximization similar to
models of human exploratory behavior in eye-movements [16].

Note that while the current system learned atomic expres-
sions of emotions, as defined in FACS, holistic expressions
of emotions such as expressions of happiness, sadness, anger,
surprise, and disgust are, in principle, combination of individ-
ual action units. We are currently investigating whether the
expressions learned this way are also currently investigating
the mechanisms for learning holistic expressions of emotion,
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