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Abstract

This paper presents a systematic analysis of Gabor filter banks
for detection of facial landmarks (pupils and philtrum). Sensitiv-
ity is assessed using the A’ statistic, a non-parametric estimate of
sensitivity independent of bias commonly used in the psychophys-
ical literature. We find that current Gabor filter bank systems are
overly complex. Performance can be greatly improved by reduc-
ing the number of frequency and orientation components in these
systems. With a single frequency band, we obtained performances
significantly better than those achievable with current systems that
use multiple frequency bands. Best performance for pupil detec-
tion was obtained with filter banks peaking at 4 iris widths per
cycle and 8 orientations. Best performance for philtrum location
was achieved with filter banks with 5.5 iris widths per circle and 8
orientations.

Gabor filter banks [4] are reasonable models of visual processing in primary visual
cortex [5, 3] and are one of the most successful approaches for processing images
of the human face [6, 1, 2, 8]. The success of the approach parallels the success
of bandpass filter banks, which approximate signal processing in the cochlea, in
speech recognition problems. While the optimal filter bank characteristics have
been extensively studied in the speech recognition literature, little work has been
done to systematically explore which frequency and orientation bands are optimal
for face processing applications. The goal of this paper is to start addressing this gap
in the literature. To evaluate performance of the different filter bank approaches,
we use a standard recognition engine (nearest neighbor) and measure sensitivity
using the A’s statistic. This is a non-parametric measure of sensitivity commonly
used in the psychophisical literature.



1 Gabor Filters

In the space domain, the impulse response of Gabor filters is a Gaussian kernel
modulated by a sinusoidal plane-wave

g(z,y) = s(z,y)w(z,y) (1)
where s(z,y) is a complex sinusoidal, known as the carrier,
s(z,y) = exp(—j(2m(uow + voy) + P)) (2)

The parameters ug and vy define the spatial frequency of the sinusoidal, in Cartesian
coordinates. This spatial frequency can also be expressed in polar coordinates as
magnitude Fy and direction wp. The function w(z,y) is a 2-D Gaussian-shaped
function, known as the enwvelope

w(z,y) = K exp(=m(a®(z = z0); + b*(y — %0)7)) 3)

where (xg,y0) is the peak of the function, a, b are scaling parameters, and the r
subscript stands for a rotation operation

(x —x9)r = (& — o) cos 6+ (y — yo) sinf (4)

and
(y = yo)r = —(z — o) sin 6 + (y — yo) cosf (5)
The 2-D Fourier transform of the Gabor function is as follows (see Figure 4)

(u — UU)T)2+( (U — UU)T)2))

g(u,v) = % exp(—j (27 (zor u+yor v)+P)) exp(—n(( - 2
(6)

Or in polar coordinates,

Magnitude(g(u, v)) = % exp(—w(((u _auo)r)2 + ((v _bUO)T)Q)) (7)

Phase(g(u,v)) = 27(zor v + yor v) + P) (8)

Thus, in the frequency domain, the impulse response is an oriented Gaussian cen-
tered at the frequency of the carrier. The iso magnitude contours are ellipsoidal. It
is convenient to characterize the impulse response via its half-magnitude contours.
This requires 8 parameters: (see Figure 1):

e [y and wyq, the polar coordinates of the peak of the envelope.
e 4 is the angle of rotation of the envelope.
e g and b are 1.06 times the lengths of the axis of the half-magnitude ellipse.

e 0 is the angle of the axis controlled by the parameter a.

Gabor filters are good models of the receptive fields found in simple cells of cat
and macaque striate cortex. The following constraints on the 8 parameters are
known to hold, to a first approximation, in striate cortex [5, 3]: (1) 8 = wo; (2)
The half-magnitude spatial frequency bandwidth is about 1.4 octaves; (3) The half-
magnitude orientation bandwidth is about 40 degrees. From these constraints it can
be derived that a is about 0.95 x Fy and b is about a/1.24. Using these constraints,
we are left with two parameters to vary independently: the frequency Fy of the
carrier plane wave, and orientation of the carrier wave and envelope w. Figures 4 and
5 show examples of different Gabor kernels that adhere to the biological constraints.
Since Gabors wavelets are localized in the frequency domain (they are bandpass
filters) a search for optimal Gabor parameters can be interpreted as a search for
spatial frequency regions that provide the greatest information for the task at hand.
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Figure 1: Parameters of the Gabor kernel as reflected in the half-magnitude elliptic
profile.

Figure 2: The Fourier transform of the Gabor filter. The peak response is at the
spatial frequency of the complex sinusoidal: u = v = 80pizels/cycle.

1.1 Database

We used the FERET face database [7], a set of images collected by the US Army
Research Laboratory to develop, test, and evaluate face recognition algorithms. A
set, of 446 frontal view images was randomly selected from this database and labeled
by hand to locate key features. In our experiments we used pupils and philtrum as
the features of interest.

2 Experimental Design

We randomly chose from each image three points from each of the features. These
points could deviate from the center of the feature by a distance no less than the



Figure 3: The real and imaginary parts of a complex Gabor. The images are
128x128 pixels. The parameters are as follows:xg = yo = 0, a = 50 pixels, b = 40
pixels, § = —45 degrees, ug = vo = 1 = 80 pixels/cycle, P = 0 degrees.

Figure 4: Gabor kernels at 4 orientations and 4 frequencies in frequency domain.

Figure 5: The corresponding Gabor kernels at 4 orientations and 4 frequencies in
space domain.

typical radius of an iris. For each image we also selected three non-feature points.
The location of these points varied randomly from image to image. Thus for each
test round there were 4284 test locations for features and non-features across all
test images. (See Figure 6).

To evaluate performance of the different image processing approaches we used a
nearest neighbor recognition engine: (1) We convolved the image with a bank of
Gabor filters; (2) We stored a set of examples of filter bank outputs at the desired
fiducial points; (3) When detecting whether a pixel in a new image contains a
desired fiducial point, we computed the Euclidean distance from the output of the
filter bank at that pixel and the output in the training database that it is closest
to (See Figure 7). A point was recognized as containing a feature if its similarity



Figure 6: For each test run, a new database of test locations is created by selecting
three points from each feature, plus a set of random locations elsewhere in the
image. These random locations vary from image to image. Thus for each test run
the hit and false alarms specifications of the system was estimated as a function of
the threshold k based on 4284 total tests.

value is below a certain threshold «.

Figure 7: The process of matching features. First, a feature is convolved with a
set of kernels to make a jet (a). Then that jet is compared with a collection of jets
taken from previous images, and the similarity value for the closest one is taken (b).

Each feature detector was tested on all test locations, both features and non-
features. P(detect feature | feature absent) and P(detect feature | feature present)
were then calculated based on the total number of test locations for feature versus



non-feature.

We measured performance of each feature detector using standard ROC curves. For
each value of the threshold parameter we plot P(detect feature | feature absent) vs.
P(detect feature | feature present). The area under the ROC curve is called A’ and
is a non-parametric measure of sensitivity commonly used in the psychophysical
literature. It can be shown that A’ represents the optimal performance achievable
by a detector on a 2-alternative forced choice task. Thus an A’ of 0.5 represents
zero sensitivity, and an A’ of 1.0 is perfect sensitivity (see Figure 8).
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Figure 8: Left: ROC curve for best performing pupil detector (34 pixels/cycle, 8
orientations, A’ = .8781). Right: ROC curve for best performing philtrum detector

(44 pixels/cycle, 8 orientations, A’ = 8.8955).

We systematically tested Gabor filter banks with different peak frequencies and
number of orientation bands. We varied Fy from 2 pixels/cycle to 50 pixels/cycle (
about 6 to .12 cycles per iris width). The number of orientations were varied from
1 to 12, evenly distributed, starting at # = 0. We tested generalization performance
using a standard cross-validation approach, training on 357 images, testing on the
remaining 89 images and repeating the procedure 5 different times, each time using
different training and generalization sets.

3 Results

Peak performance was obtained using eight orientations and carriers of 32 pix-
els/cycle (about 4 iris widths per cycle) for pupils and 44 pixels/cycle (about 5.5
iris widths per cycle) for philtrum. The best A’s were 0.8781 and 0.8664 respec-
tively (see Figure 8). This performance was significantly better than that obtained
using the architectures in [8, 1] which had in the order of 10 frequency bands and 8
orientations. Using the Gabor filter bank described in [8], the A’ was only 0.6141.

We found that as the peak frequency decreases, the optimal number of orientations
also increases. For high frequency Gabors, the optimal number of orientations was
two. As the carrier frequency was reduced, the optimal number of orientations
increased to 8 (See Tables 1 and 2).

4 Conclusions

While Gabor filter banks are an increasingly popular image processing technique
for face processing tasks, little work has been done to identify which frequency and



[pixfeyc | 6 | 10 | 14 | 18 | 22 | 28 | 34 | 38 | 44 |
A 77038 | .7607 | .8347 | .8490 | .8604 | .8536 | .8603 | 8767 | .8955
Z orient | 2 2 2 2 8 8 7 8 8

Table 1: Optimal A’ and number of orientations for each frequency for pupil detec-
tion

[pixfeyc | 6 | 10 | 14 | 18 | 22 | 28 | 34 | 38 | 44 |
X 5332 | 7132 | .7794 | .8340 | 8615 | .8650 | 8781 | .8734 | .8664
Z orient |2 2 2 2 2 2 8 8 8

Table 2: Optimal A’ and number of orientations for each frequency for philtrum
detection

orientation bands are responsible for the success of the approach. Our results show
that when the task at hand is locating facial landmarks, one of the first stages in
most face recognition systems, current filter banks specifications may be sub-optimal
and overly complex. Best performance may be achieved by concentrating a large
number of orientations (8 orientation bands) on very low frequency carriers (spatial
frequencies in the order of 5 to 8 iris widths per cycle). It should be noted that
our results are specific to the task of locating features independent of the subject’s
identity. It is likely that if the task at hand is subject identification the optimal
frequency bands may be different. However, most face identification systems tend
to use the same filter bank architecture for feature location and face recognition.
Our results suggest that better results may be obtained in the feature finding stage
by using only a few filters in the lower end of the frequency spectrum.
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