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1 Background 
 
 A major goal in machine vision is recognizing human facial expressions.  At some 
point in between locating a face and reading its expression it is necessary that we locate 
the eyes, nose and other facial features.  This information can be used to determine the 
orientation of a face, help to normalize for differences between faces and locate facial 
regions used in expression recognition.  While a wide number of systems have been 
applied to the detection of facial features most of these efforts were not systematic nor 
did they include an evaluation of the strengths and weaknesses of each system.  In this 
paper we evaluate a feature recognition system based on the Sparse Network of Winnows 
(SNoW) architecture[1].  This choice was motivated by the success reported by Yang et 
al. in the development of a SNoW based face detector [5].  Their system was reported to 
outperform a variety of other face detection methods such as naïve Bayes and support 
vector machines.  Their measure for comparison was somewhat subjective and difficult to 
generalize as they only presented the data from each method which they felt were best.  
None the less, the results were very promising. 
 In testing our detector we varied the following parameters:  (1) the degree of low 
pass filtering, (2) the size of image patches, (3) the extent of sub-sampling, and (4) the 
number of intensity levels after histogram equalization.  We measured performance of 
our feature detector using the A’ statistic, a non-parametric measure of sensitivity 
commonly used in the psychophysical literature. 
 

1.1 The FERET Database 
 

 We used the FERET face database [2], a set of images collected by the US Army 
Research Laboratory to develop, test, and evaluate face recognition algorithms.  Every 
image is 385 x 256 pixels,  grayscale (with 8 bits per pixel), and contains a single 
centered face. 
 A set of 446 frontal images was selected from this database.  Each image was 
labeled by hand to encode the location of fifteen separate features of interest (fiducial 
points.)  In our experiments we used the center of each iris and the philtrum as the 
features of interest (see Figure 1). 
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Figure 1:  The three fiducial point used by our system: the two irises and the philtrum. 

 
2 The SNoW System 
 

 The SNoW architecture has been widely applied to tasks in computational 
linguistics, the arena for which it was originally designed [1].  Its first application to the 
visual processing domain was the face detector of Yang et al. [5].  Superficially similar to 
the classic perceptron the sparse network of winnows is considerably more powerful.  A 
perceptron consists of a set of input nodes, {x1, x2, …, xn}, connected to an output unit by 
a set of weights, {w1, w2, …, wn}.  The net output of the network, y, is the summation of 
the inputs multiplied by their weights such that y = Σ wixi.  In perceptrons the relationship 
between values of xi are purely scalar and y is linear, and, so, these networks are capable 
of making only linear separations between categories.  Alternatively, SNoW networks 
connect their inputs to outputs by functions, which are learned during training, such that y 
= Σ Fj(ij).  This allows a SNoW network to learn any linearly separable problem as well 
as a wide variety of problems which can only be separated nonlinearly. 
 The means by which SNoW generates the functions connecting inputs to output is 
based on how the inputs are represented.  Rather than inputting images into the system 
simply as I(x, y), the intensity level at a given pixel, individual pixels are expanded into 
collection of input nodes [5].  Each of these collections is a Boolean representation of 
intensity at a given pixel (see Figure 2).  For an image of 16 intensity values each pixel 
would be represented by a vector of 16 elements with a single 1 in the element 
corresponding to the actual intensity and zeros everywhere else.  As a separate and 
independent weight links each intensity value of each pixel to the output, the distribution 
of weights associated with that pixel can approximate nonlinear functions of the intensity 
value.  For a 20x20 pixel image (400 total pixels) with 256 intensity values the snow 
representation is a 400x256 input matrix, but with only 400 active elements.  
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Figure 2:  SNoW’s Boolean representation of a single pixel with intensity 16. 
The row of boxes is a vector with 1 at its 16th element. 

 
 Separate networks were generated and trained for the left eye, right eye, philtrum 
and “none-of-the-above”.  Each subnetwork consisted of a set of all input nodes linked to 
a single output node.  The output indicated the presence or absence of its target feature by 
taking a value smaller or larger than the given threshold.  The links between inputs and 
output are embodied by a set of weights.  Each weight is a non-negative, real number 
whose magnitude indicates how strongly the network associates the linked input with the 
presence of its target feature.  So, wi,j,k is the weight, w, connecting pixel (i,j) with 
intensity k to the output node.  Initially the weights are set to 1.0 for any input which is 
actually present in the training set and zero otherwise.  In other words, in all training 
images if I(23, 45) is never 100 then w23,45,100 = 0.  Because weights are changed in 
multiplicative fashion inputs assigned a weight of zero will never be active in either 
training or testing.  The output for a given image is calculated simply by summing the 
weights connecting inputs active in the image.  A given facial feature is considered to be 
present if and only if y>θ for its network.  During training the threshold, θ, was set equal 
to the total number of pixels in the input image patches. 
 
2.1 Winnow 
 
 The update rule for SNoW is multiplicative [1].  There are two updating 
parameters:  a promotion parameter α>1 and a demotion parameter 0<β<1.  During 
training, if the output is less than or equal to threshold when it should be above (i.e., a 
feature is present but not detected) then all weights activated by that input are increased 
by multiplying them by α.  Alternatively, if the output exceeds threshold but no target 
feature is present then all weights associated with that input are decreased via 
multiplication by β.  In all other cases (which equate to correct predictions) the weights 
are unchanged.  Although some alternates were tried, default values [1] of α=1.5 and 
β=0.7 were used in our system. 
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3 Method 
 
3.1 Independent Variables 
 
 To investigate the potential of SNoW as a facial feature detector we focused on 
four independent variables.  The first was the degree of low pass filtering of the images.  
The filter was Gaussian, which produces a weighted average of intensity values over 
some area described by sigma, σ, its standard deviation in pixels.  Figure 3 shows 
representations of Gaussian kernels of varying sigmas.  Averages are taken across the 
extent of the kernel with brighter pixels weighted more strongly. 
 

 
Figure 3:  Gaussian kernels with standard deviations of 1/5 iris width (2 pixels), 
2/5 iris width (4 pixels) and 3/5 iris width (6 pixels.)  The size each square matrix is 
12x12 pixels, 24x24 pixels and 36x36 pixels respectively. 

 
 By varying the magnitude of sigma we could alter the amount of high frequency 
information which was filtered from the images.  One benefit of low pass filtering is the 
removal of person specific information from the image;  however, too much filtering will 
remove of useful information.  The chosen sigma values were 2, 4 and 6 pixels.  In terms 
of the faces in the database these values represent approximately one fifth of an iris 
width, two fifths of an iris width and three fifths iris width.  The results of filtering at 
these levels can be seen in Figure 4.  
 

 
Figure 4:  The same FERET image through three different low pass filters. 
From left to right the standard deviation of the Gaussian kernels are 2, 4 and 6 pixels. 
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Our second independent variable addressed the question of how much of an image the 
system needs to “see” in order to optimize its performance.  Neither entire FERET 
images nor single filtered pixels were presented as input to the detector;  rather, image 
patches of differing sizes, centered on a given pixel were extracted from the images.  
These patches were the actual inputs.  We  tested patches 40x40 pixels and 80x80 pixels 
(Figure 5).  For reference, an 80x80 patch represents about 8 iris widths per patch.  

 

 
 

Figure 5:  Examples of the patch sizes used as input:  40x40 and 80x80. 
Iris centered patches are on the left and philtrum centered patches on the right. 
 
Our third independent variable was the degree of sub-sampling.  This is a process 

of eliminating pixels from an image, in effect shrinking the image size.  One can remove 
pixels from a filtered image with no loss of information as long as the rate of sampling is 
twice the highest spatial frequency found in the image.  Sub-sampling might also focus 
the network on a limited set of regular inputs and, at the same time, reduce the 
complexity of the network.  The 80x80 pixel patches were sub-sampled to one fourth, one 
eighth and one sixteenth size.  The 40x40 pixel patches were sub-sampled to one forth 
and one eighth size.  A 40x40 pixel patch sub-sampled to one eighth size becomes a 
10x10 pixel patch. 

Our last independent variable varied the number of intensity values used to 
represent a patch represents another attempt to reduce to complexity of the input.  In fact, 
this operation performs a similar function in the intensity domain as the Gaussian filter 
performs in the spatial domain.  We performed histogram equalization using either 64, 
128 or 256 intensity values. 

 
3.2 Performance Measures 
 
 Our dependent variable was A’, a non-parametric measure of sensitivity 
commonly used in the psychophysical literature.  The A’ represents the optimal 
performance achievable by a detector on a 2-alternative forced choice task.  We calculate 
the A’ for each detector (each subnetwork trained to detect a specific feature) using 
standard receiver operating characteristic, or ROC, curves:  during testing we can 
produce a distribution of detector performance value by varying the threshold.  With a 
threshold of zero all patches tested activate the subnetwork;  the network never misses a 
true feature but it says yes to everything.  Conversely, with the threshold set arbitrarily 
high the network never activates erroneously, but it never recognizes true targets either.  
The maximum threshold could be set equal to the maximum output of the system for the 
given test set.  To complete the idea, a whole range of threshold values can be generated, 
to some arbitrary degree of accuracy, between zero and the maximum.  For each value of 
the threshold parameter we plot the probability that a feature was detected given that the 
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feature was present, P(detect feature | feature present), versus the probability that a 
feature was detected given that the feature was absent, P(detect feature | feature absent).  
The area taken by integrating under the ROC curve is the A’.  An A’ of 0.5 indicates a 
detector of zero sensitivity (chance), while an A’ of 1.0 indicates perfect sensitivity (the 
detector locates all features with no false positives.) 

We implemented and evaluated our SNoW-based feature detectors within the 
Matlab computing environment.  The inputs to the system were our selected FERET 
images.  We obtained three separate A’ measures:  one for eye recognition, one for 
philtrum recognition, and the last for the discrimination of patches which are neither eyes 
nor philtrum.  We tested generalization performance using a standard cross validation 
approach, “training” on 357 images of the total 446 and then testing on the remaining 89 
images.  This process was repeated five times, and each time the 89 test (or 
generalization) images consisted of a different fifth of the total faces.  This gave us an 
estimate of A’ for each combination of parameters based on all 446 images. 

For each test image, we first apply the Gaussian filter.  Depending on the trial the 
kernel of the Gaussian filter had a standard deviation of 1/5, 2/5, or 3/5 iris width (2, 4 or 
6 pixels.)  After filtering we randomly chose three points per feature that were within one 
seventh of the distance between eyes from the center of the eye, which typically 
encompasses the entire iris.  This produced the points for each eye (total of six) and three 
points for the philtrum.  In addition, we also randomly chose three points that were 
known not to be within any tested feature (Figure 6).  This choice of test locations made 
it easy to calculate P(detect feature | feature present) and P(detect feature | feature absent) 
and helped to expand the size of our data set. 

 

 
 

Figure 6:  To test performance, three points are chosen from each feature, plus a set 
of random points known to not fall within those same feature.  Using these points we 
estimated the hit and false alarm specifications of the system as a function of the 
threshold θ. 
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 For each point a feature patch of either 40x40 pixels or 80x80 pixels was 

extracted from the original image.  These patches were sub-sampled to one sixteenth, one 
eighth, one fourth or one half of their original size, or not at all.  The sub-sampling rate 
was not completely independent as the original size of the patch delimited the amount of 
sub-sampling possible.  For example 40x40 patches were maximally sub-sampled to an 
eighth, however, 80x80 patches were sub-sampled to as much as a sixteenth its original 
size.  Histogram equalization was the final step in preprocessing the image.  Only the 
patch, not the entire image, was histogram equalized.  Before the patches can be input 
they must be recast into the SNoW representation.  Specifically, in our system this 
representation was a matrix whose rows are individual pixels and whose columns are 
intensity levels.  A 40x40 pixel patch, sub-sampled by to one eighth its original size (so 
now it is 10x10 pixels), with only sixty-four gray levels becomes a 100x64 matrix.  An 
80x80 patch, without sub-sampling or change in number of intensity levels, becomes a 
1600x256 matrix.  Having collected inputs from the database, starting weights were then 
generated for each subnetwork.  Any weight without an active feature in the training set 
(for all images wi,j,k = 0) is set to zero and all other weights are sent to one. 

Each of the twelve patches from a given image was a positive example for the 
network for which it was the target and a negative example for all other networks.   For 
example, a patch from a philtrum is used by the eye and “none” subnetworks as negative 
examples.  If any of them output above the training threshold (Σwactive>θ) then the 
weights involved in that output are multiplied by 0.7.  For the philtrum network the 
philtrum patch is a positive example.  If it fails to output above threshold then all weights 
involved in the output are multiplied by 1.5.  Patches from opposing eyes were not used 
as either positive or negative examples for each eye subnetwork.  Weights were adjusted 
patch by patch.  A sweep refers to a pass over all of the patches of all of the images once.  
Each network was trained for a total of five sweeps.  Though this is short  compared to 
many gradient decent learning algorithms SNoW has been shown to be a highly efficient 
learner [1].  Early investigation on our system indicated that learning had plateaued by 
the fifth sweep. 
 After training was finished we tested performance on the 89 images reserved for 
testing.  These were processed in exactly the same manner as the training images.  To 
plot the ROC curves, the maximum threshold was set to the maximum output by any sub-
network during this testing session.  We divided the interval between the zero threshold 
and the maximum into 1000 evenly spaced steps.  Each individual output was compared 
against all of these thresholds, and we recorded the proportion of correct positives and of 
false positives.  The proportions at each threshold were plotted against one another with 
false positives on the horizontal axis.  A trapezoidal integrative method produced the A’ 
based on the resulting curves.  We report the mean A’ and variance boxed on the five 
cross-validation runs in Appendix A.  
 
4 Results 
 
 The most significant effects on A’ were due to the combination of patch size and 
the extent of sub-sampling.  The optimal patch size in our study was 80x80 pixels in size, 
the largest tested.  Decreasing the image sizes via sub-sampling, on the other hand, had a 
negative effect which could be seen in both patch sizes.  Averaged across filtering and 
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number of intensity levels, our maximum A’ for all features were for 80x80 patches with  
sub-sampling of ¼.  In terms of low pass filtering, a Gaussian kernel with a standard 
deviation (sigma) of 4 pixels produced slightly higher A’s than did standard deviations of 
2 or 6 pixels.  These effects were not dramatic and only held for the optimal results 
produced by the largest patches.  Finally, the system generally produced a larger A’ for 
256 intensity levels for eye recognition and philtrum recognition .  The “other” network 
showed the higher A’ at 64 intensity levels.  The differences as a function of intensity 
levels are fairly consistent across other parameters.  In the end our largest A’ was 0.9836 
for the philtrum, 0.9837 for the eyes and 0.9246 for the “other” subnetwork.  All of these 
results were achieved with an 80x80 pixel patch, sub-sampled to ¼.  The filter had a 
sigma of 4 pixels (approximately 2/5 iris width).  The patches had 128 intensity levels for 
the eye value, 256 intensity levels for the philtrum value and 64 intensity levels for the 
“none” value.  A complete table of results can be found in Appendix A. 
 
 
 

 
Figure 7:  An ROC curve produced by our most accurate system. The P(detect 
feature | feature present) is plotted on the vertical axis. The P(detect feature | feature 
absent)  is plotted on the horizontal axis. Green is philtrum, blue is eye and red is 
“other”. 
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5 Discussion 
 

Our SNoW feature detector preformed quite well in comparison to the Gabor jet 
representation used by Wiskott et al. [4].  Our maximum philtrum A’ of 0.9038 surpassed 
the 0.6141 produced by the original configuration of Wiskott et al. as well as an 
optimization of the Gabor filters used by Wiskott, which produced an A’ of  0.8664.  
Further comparisons with detection systems made from standard perceptrons are ongoing 

An important result from our evaluation of the SNoW face detector is the effects 
of patch size on A’.  For example, the system locates the philtrum by looking for the 
mouth and nose (Figure 8).  Unfortunately, this might make the system sensitive of 
occlusion;  if the area around an eye is occluded a system using larger patches will be 
more negatively effected than one using smaller patches. We’ve begun to generate A’s 
for 100x100 pixel patches and, so far, have not found a significant increase in the A’ over 
those for 80x80.  This is likely because the larger images include additional “noise” 
which negates any small gains from additional information.  The degree of filtering also 
indicates a balance between noise and information.  Little filtering allows too much 
subject specific information into the network which decrements its ability to generalize.  
On the other hand, too much filtering removes information which the system might use to 
identify its targets.  

 
Figure 8:  The size of an 80x80 pixel patch on a face. 

 
We preformed an analysis of the weights learned by each network.  As noted 

earlier, the SNoW system describes the relationship between a given pixel and an output 
by a function rather than a single weight.  The weight vector for each pixel (a row out of 
the entire weight matrix) describes the function used by the network for a particular pixel.  
Surprisingly, these functions were very noisy and difficult to interpret.  This outcome 
isn’t completely unexpected in that SNoW treats each intensity value at each pixel as 
completely independent.  This independence allows for the highly discontinuous 
functions seen in Figure 9.  It is surprising that the system is able to generalize.  Note that 
in a perceptron the function would be lines with slopes equal to the weight learned for 
that pixel.  We expected this ability to be derived from the learning of regular properties 
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in faces which might be described by a more regular function.  We are currently 
developing tools to better analyze these functions. 

 

 
Figure 9:  A plot of weight magnitudes (vertical) vs. intensity value (horizontal). 
for selected pixels from a philtrum detector. 

 
5.1 Future Research 
 

We have begun to evaluate the use of regularization procedures in order to 
improve SNoW’s performance by eliminating much of the noise in the weight functions.  
Initial results are promising, showing up to a 14% increase in A’ for some subnetworks.  
In one method currently being evaluated, detectors were trained by promoting and 
demoting not only active weights but also weights adjoining them.  For example, if 
w23,45,100 is promoted this method also promotes a small range of intensity values at this 
pixel to a lesser degree.  The regularizing used here essentially relies on a one 
dimensional Gaussian filter to distribute the weight changes to surrounding weights.  
Other forms of smoothing are possible and will be applied to our system. 

In order to further understand the relative importance of differing pixels to a given 
network’s discrimination we will begin a “lesion” study of highly effective detector 
subnetworks.  By selectively eliminating or altering weights for one or more pixels we 
should learn more about the importance of specific weights.  This might also tell us 
something about functions which possibly exist distributed among the weights.  Although 
the system currently treats each pixel and intensity value independently, they don’t 
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necessarily vary independently with respect to the images.  The networks might encode 
these relationships across its weights. 

We will soon begin to evaluate SNoW using more complex forms of image 
processing.  For example, rather than using the simple Gaussian low pass filters we will 
make use of Gabor wavelets.  Recent work in our lab [2] revealed optimum spatial 
frequency and orientation for Gabor filter methods using a “nearest neighbor” recognition 
engine.  Given the success of this work as well as previous research into Gabor filter 
banks we expect further improvement in SNoW’s A’.  Other areas of investigation might 
be the use of Haar wavelets and the inclusion of prior information in the systems 
selection process. 
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Appendix A 
 

The following table contains the cross-validated A’ values for each combination 
of parameters.  Also included is the variance of the five cross-validation sets which were 
averaged to produce the A’ values given here.  The upper left corner of each table shows 
the patch size and amount of sub-sampling;  for example, “80/8” indicates data for an 
80x80 pixel patch sub-sampled to 1/8th size. 

 
   EYE    PHIL TRUM     OTHER  

   
Intensity 
Levels     

Intensity 
Levels     

Intensity 
Levels  

 80/4 256 128 64  80/4 256 128 64  80/4 256 128 64 

sigma 1 0.9816 0.9778 0.9748  1 0.9831 0.9832 0.9829  1 0.9185 0.9244 0.9231 

 5 0.0004 0.0006 0.0008  5 0.0002 0.0003 0.0002  5 0.0024 0.0024 0.0019 

 2 0.9825 0.9837 0.9758  2 0.9836 0.9799 0.9824  2 0.9228 0.9234 0.9246 

 5 0.0004 0.0004 0.0007  5 0.0003 0.0006 0.0003  5 0.0029 0.0015 0.0019 

 3 0.9166 0.9139 0.9183  3 0.9166 0.9139 0.9183  3 0.9166 0.9139 0.9183 

 5 0.0004 0.0003 0.0007  5 0.0002 0.0006 0.0004  5 0.0026 0.0027 0.0022 
               

   
Intensity 
Levels     

Intensity 
Levels     

Intensity 
Levels  

 80/8 256 128 64  80/8 256 128 64  80/8 256 128 64 

sigma 1 0.9745 0.9693 0.9669  1 0.9799 0.9798 0.9778  1 0.8908 0.9044 0.9095 

 5 0.0005 0.0009 0.0012  5 0.0003 0.0004 0.0004  5 0.0024 0.0014 0.0016 

 2 0.9776 0.9742 0.9699  2 0.9804 0.9790 0.9775  2 0.8961 0.9080 0.9064 

 5 0.0006 0.0006 0.0009  5 0.0005 0.0005 0.0006  5 0.0018 0.0016 0.0019 

 3 0.9764 0.9745 0.9710  3 0.9775 0.9755 0.9763  3 0.8761 0.8917 0.8930 

 5 0.0006 0.0007 0.0008  5 0.0005 0.0007 0.0007  5 0.0025 0.0023 0.0022 
               

   
Intensity 
Levels     

Intensity 
Levels     

Intensity 
Levels  

 80/16 256 128 64  80/16 256 128 64  80/16 256 128 64 

sigma 1 0.9323 0.9523 0.9515  1 0.9429 0.9639 0.9691  1 0.8086 0.8603 0.8746 

 5 0.0017 0.0013 0.0012  5 0.0009 0.0008 0.0005  5 0.0025 0.0018 0.0017 

 2 0.9429 0.9581 0.9601  2 0.9445 0.9640 0.9631  2 0.8321 0.8638 0.8874 

 5 0.0011 0.0011 0.0008  5 0.0011 0.0010 0.0017  5 0.0023 0.0016 0.0019 

 3 0.9400 0.9570 0.9495  3 0.9362 0.9543 0.9526  3 0.7959 0.8490 0.8792 

 5 0.0009 0.0008 0.0013  5 0.0012 0.0010 0.0010  5 0.0010 0.0015 0.0012 
               

   
Intensity 
Levels     

Intensity 
Levels     

Intensity 
Levels  

 40/4 256 128 64  40/4 256 128 64  40/4 256 128 64 

sigma 1 0.9661 0.9650 0.9609  1 0.9622 0.9616 0.9554  1 0.9160 0.9222 0.9191 

 5 0.0003 0.0004 0.0004  5 0.0006 0.0006 0.0005  5 0.0014 0.0012 0.0010 

 2 0.9684 0.9681 0.9626  2 0.9639 0.9633 0.9601  2 0.9182 0.9181 0.9246 

 5 0.0003 0.0003 0.0006  5 0.0007 0.0007 0.0005  5 0.0011 0.0011 0.0016 

 3 0.9705 0.9685 0.9685  3 0.9598 0.9607 0.9607  3 0.9119 0.9043 0.9043 

 5 0.0003 0.0004 0.0003  5 0.0008 0.0008 0.0004  5 0.0016 0.0017 0.0012 
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Intensity 
Levels     

Intensity 
Levels     

Intensity 
Levels  

 40/8 256 128 64  40/8 256 128 64  40/8 256 128 64 

sigma 1 0.9036 0.9369 0.9394  1 0.9135 0.9422 0.9374  1 0.8425 0.8812 0.8932 

 5 0.0009 0.0003 0.0006  5 0.0010 0.0004 0.0006  5 0.0009 0.0012 0.0015 

 2 0.9159 0.9217 0.9217  2 0.9100 0.9338 0.9358  2 0.8325 0.8858 0.9102 

 5 0.0006 0.0003 0.0003  5 0.0019 0.0014 0.0003  5 0.0007 0.0008 0.0008 

 3 0.9288 0.9484 0.9388  3 0.8918 0.9247 0.9258  3 0.8260 0.8658 0.8905 

 5 0.0004 0.0003 0.0001  5 0.0017 0.0012 0.0007  5 0.0007 0.0013 0.0005 

 


