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Abstract
We proposea view of gazefollowing in which infants

actasBayesianlearnersactivelyattemptingto identifythe
operating characteristicsof the systemswith which they
interact. We presentresultsof an experimentin which 28
infants(average age 10 months)interactedfor a 3 minute
periodwith a non-humanoidrobot.For half theinfantsthe
robot simulatedcontingencystructure typically produced
by humanbeings. In particular it providedcausalinfor-
mation about the existenceof a line of regard. For the
other14 infants,therobotbehavedin a mannerwhich was
not contingentwith the environment.We foundthat a few
minutesof interactionwith thecontingentrobotwassuffi-
cientto elicit statisticallydetectablegazefollowing. There
were clear signsthat someof theseinfantswere actively
attemptingto identifywhetheror not therobotwasrespon-
siveto them.We proposethat theinfant brain is equipped
to learnandanalyzethecontingencystructureof real-time
social interactions.Contingencyis a fundamentalpercep-
tual dimensionusedbyinfantsto recognizetheoperational
propertiesof humansandto generalizeexistingbehaviors
to new socialpartners.

1 Intr oduction
By the end of the first year infants exhibit a variety

of behaviors thatreflecta rathersophisticatedunderstand-
ing of theoperatingcharacteristicsof otherhumanbeings.
Thesebehaviors,which includepointing,ritualizedreach-
ing, andfollowing theadult’s line of regard,revolutionize
the way infants interactwith their caregivers. Develop-
mentalpsychologistshave beenparticularly interestedon
theemergenceof gazefollowing asabasicindicatorof our
capacityto shareattentionand learn about the world by
meansof others. Scaifeand Bruner [9] were first to in-
vestigatethedevelopmentof gazefollowing in laboratory
conditions. Infantswere seatedin front of an adult that
interactedwith them. At predeterminedtimesthe experi-
menterturnedhis head90 degreesleft or right andstayed

therefor 7 seconds.A experimenterscoredwhetherdur-
ing the 7 secondperiodthe infant looked in the direction
pointedby theadult’sfacewithout intermediatelookselse-
where.They foundthat81% of infantsof 8 monthsof age
or olderfollowedtheline of regardon at leastonetrial. In
contrastonly 36 % of the infantsbetween2-7 monthsof
agedid so. Moore [10] recentlyreviewed currentexperi-
mentsontheemergenceof gazefollowingandsummarized
themasfollows: Undersimplifiedconditionssomeexperi-
mentsshow that3 montholdslook statisticallymoreoften
in the generaldirectionof a headturn whentherearepe-
ripheraltargetsin thevisualfield. By 6 monthsthisbehav-
ior appearsreliably. By 9 monthsinfantsfollow headturns
evenif therearenovisible targets,but they arenotparticu-
larly sensitiveto eyedirection.Sensitivity to eyedirection,
not justheadturns,is detectableatabout18monthsof age.

While theexperimentalevidenceis quitestable,thethe-
oreticalinterpretationsvarydramatically. Oneexplanation
is that infantsfollow gazebecausethey want to seewhat
other peopleare looking at. According to this interpre-
tationinfantsknow thatpeoplecanseeandthey put them-
selvesin theperspectiveof others.Thosewhofavor thisin-
terpretationpoint that it describeswell why peoplefollow
gazeandthat the knowledgerequiredto do so is unlikely
to be learned.The emergenceof gazefollowing at about
9-monthsis explainedby thematurationof highly specific
knowledgemodules. Interestingly, autisticchildren,who
begin following headturnsmuch later than typically de-
velopinginfants,alsohaveproblemsputtingthemselvesin
the perspective of others. In 1985 Baron-Cohen,Leslie,
andFrith [18] testedautisticchildrenandDown-Syndrome
children, on the now famous“Sally-Ann” versionof the
“Wimmer-Perner”falsebelieftask:Thechild is shown two
dolls, onecalledSally, andonecalledAnn. Sally placesa
marblein a coveredbasketbasketandgoesout. While she
is out, her friend Ann movesSally’s marblefrom thebas-
ket to her own box, thenshegoesout. Sally comesback
in and the child is asked “Where will Sally look for her



marble?”. 16 out of 20 autisticchildrenwith mentalages
above4 yearssaidthatSallywill look in thebox,wherethe
marblereally is, andnot in thebasket. 12/14childrenwith
Down Syndromeof lowermentalagesaidshewill look in
thebasket. Normallydevelopingchildrenabout4 yearold
arealsoknown to succeedon this task.

However, somefeel thatsimplerexplanationsaboutthe
emergenceof gazefollowing arepossiblewhichdo not re-
quire explicit knowledgethat otherpeoplecansee[2, 5].
Early forms of headturning can be explainedas reflex-
ive shifts in visual orienting causedby the headmove-
mentandfollowed by a captureof attentionby a periph-
eraltarget[10]. Themoreadvancedformsof gazefollow-
ing that appearabout9 monthsof agecan be explained
by the fact thatheadturning is a cueto theappearanceof
interestingeventsin the directionof the turn, andinfants
progressively learnto rely on that cue. Chimpanzeesare
actuallybelievedto follow gazeusingthis strategy [6, 7].
In fact learningexperimentsin which headturning of an
adult is pairedwith activation of a toy in the directionof
the turn producesignificant increasein the gazefollow-
ing behavior of 8-9 monthold infants[23]. While we as
adultsbelievethatotherpeopleseeandsometimeswe turn
our headswith an explicit intent to seewhat otherpeople
arelooking at, it is unclearto whatextent this knowledge
controlstherealtime constrainsrequiredin socialinterac-
tions. Whena quarterbacksuddenlyturnshis head,defen-
sive playershave to rapidly reactto this cue andbehave
accordingly. There is not much time for thinking. It is
likely that the mechanismsresponsiblefor learningthese
fast,real-timereactionsplay a crucial role in thedevelop-
mentof socialinteractionsfrom veryearlyon. Ratherthan
high-level knowledgeaboutotherpeople’s mindscausing
theemergenceof gaze-following, it is possiblethat learn-
ing to follow gazein real-timeinteractionsprovidesafoun-
dationfrom which themoreexplicit (andslow) knowledge
aboutothersdevelops.In favor of this view is thefact that
brainsof autistic individuals very reliably exhibit severe
abnormalitiesin thecerebellum,anorganknown to handle
real-timeinteractionswith theenvironment[4].

2 Contingencydetectionand socialdevelop-
ment

Throughouthisresearchcareerthesecondauthorof this
paperhas championeda view of infant developmentin
which contingency detectionplaysa crucial role. Accord-
ing to this view infantsareparticularlygoodat analyzing
the real-timecausaltexture of the world, andperceive it
in a mannernot unlike the way we perceive morphologi-
cal featuresof a face. Intuitively we canseethis form of
perceptionatwork whenwerecognizeanold friendby his
facialgesturesin responseto useventhoughhis facemay
be barely recognizabledueto facial hair, ageandweight

changes.Moderncomputeranimationoffersgoodoppor-
tunitiesto seethis systemat work. In somecomputeran-
imatedmoviesthecharactersareactuallydrivenby actual
humanbeingswhosefacialgesturesandbodymovements
are tracked in real time. In someoccasionsone hasthe
distinctimpressionof recognizingtheactorbehinda com-
puter charactereven thoughthe characterhasvery little
physicalresemblancewith theactoranimatingit. Theview
of contingency asa fundamentalperceptualpropertyorig-
inatedfrom anearlylearningexperimentconductedby the
secondauthorof thisdocument[24] in which2-month-old
infantslearnedto kick their legsto activateamobileabove
their cribs. After 4 daysof exposureto this controllable
mobile,infantsexhibitedsocialsmiles,positiveaffect,and
cooingwhenthemobilewaspresent.Thesesocialbehav-
iorsdid notappearin acontrolgroupfor which themobile
movedin a non-contingentmanner. Watsonproposedthat
contingency wasa perceptualpropertyusedby infantsto
identify other humansand that in fact it was more pow-
erful thanothermorphologicalpropertiesof humanfaces
(like thepresenceof eyes).

Thereis someevidenceto supportthe ideathat the in-
fants’ capacityto analyzecontingency is quite sophisti-
catedand that it is usedto identify other humans. By
about4 monthsof ageinfantspreferto interactwith objects
whichareresponsivebut notperfectlycontrollable[16, 25]
suggesting,at least qualitatively, a preferencefor levels
of responsivenesstypical of social interactions. Bigelow
[3] found that 4-5 month infantsproducedmore contin-
gent vocalizationand social responsestowardsstrangers
whichbestapproximatedthelevel of responsivenessfound
in mother-infantinteraction.Strangersthatweremorere-
sponsiveor lessresponsivethanmomwerelesspreferred.

3 BayesianSystemsIdentification
In statistics“systemsidentification” refersto theprob-

lem of making inferencesaboutthe structureof a system
by observinghow it respondsto inputs[12]. The goal is
to form a model of the systemthat can be usedfor pre-
diction andcontrol. Suchmodelsarespecifiedin theform
of a parameterizedsetof conditionalprobability distribu-
tions. Bayesianapproachesto systemidentificationem-
phasizethe useof prior knowledge, i.e. a prior proba-
bility distribution over the setof possiblesystemparam-
eters. Recentlythe first authorof this paperproposedan
active learningapproachfor systemsidentification.In this
approachthe learnerprobesthe systemwith thoseinputs
that areexpectedto provide maximuminformationvalue
[14, 13]. Theapproachdescribedwell how peopleidenti-
fied conceptsthat otherpeoplewerethinking about. Fig-
ure 1 shows an interestingexample. The goal of subjects
wasto identify which numberconcepta personwasthink-
ing about. On the trial displayedin this figure, they were



told that the numbers16, 23, 19, and 20 whererandom
examplesfrom thatconcept.Subjectscouldthenchosean
integerfrom1 to 100andaskwhetherthatintegerbelonged
to the conceptthey where trying to identify. The fig-
ureshows theBayesianinformationvalue1 in bits of each
question(continuousline) andtheproportionof timessub-
jectsaskedeachquestion(dots). Notehow peopletended
to askquestionswith highinformationvalue,asonewould
expectfrom activeBayesianlearners.

Figure 1: Examplefigure from Nelson,Tenenbaumand
Movellan(2001)studyon activeBayesianlearning.

4 Bayesianfunctionalism
In this paperwe promotea view of infantsas active

Bayesianlearnerswhosegoal is to identify the operating
characteristicsof the objectsthey interactwith. We do so
in the spirit of what the first authorof this paperrecently
named“Bayesianfunctionalism”[11] which is closelyre-
latedto theideasin therationalmovementin cognitivesci-
ence[15]. While structuralapproachesemphasizethede-
velopmentof specificinformationprocessingmodelsthat
canexhibit observedbehaviors, in functionalanalysisthe
goal is to understandobservedbehaviors by showing that
they arereasonablesolutionsto specificproblems.Thefo-
cus hereis on specifyingthoseproblemsandon provid-
ing methodsto evaluatethegoodnessof theobservedsolu-
tions.Bayesiantheoryis ausefulmathematicalframework
for formalizing this approach,thus the name“Bayesian
functionalism”.

5 Roboticsand Development
Robotspresentan ideal opportunityto studycognitive

andsocialdevelopmentin infants[21, 22, 2, 5]. It is pos-
sible to createrobotsthat do not look particularlyhuman

1Informationvalueof questionswasexplicitly measuredin numberof
bitswith respectto amodelof prior beliefsrecentlydevelopedby Tenen-
baum[1].

andto programthemto exhibit preciselycontrolledcontin-
gency structures.By observinghow infantsinteractwith
theserobotswe may gain an understandingof the strate-
giesthey useto identify theoperatingcharacteristicsof the
objectswith which they interact.

In this paperwe presentresultsfrom one of the first
studieson infant-robotinteractionwe are aware of. We
conductedtheexperimentin 1986but dueto historicalrea-
sonsthework wasonly publishedasa shortabstract[17].
Becauseof therecentintereston theuseof robotsto study
development,wefelt it is importantto documenttheexper-
iment in moredetail, including our views regardingwhat
theexperimenttellsusaboutthedevelopmentof sharedat-
tention. The issuewe addressedin this experimentwas
whetherinfants’ sensitivity to the line of regard of oth-
ersmaybeunderstoodasa system’s identificationprocess
whichreliesprimarily oncontingency information,notjust
thepresence/absenceof specifichumanoidfeatures.

6 Methods
Participants: 28 infantsfrom a pool of volunteerfam-

ilies from theSanFranciscoBay Areawererandomlyas-
signedto oneof two groups.Theexperimentalgroupcon-
sistedof 7 femalesand7 males(meanage=10.5months;
sd=1.0). The control group consistedof (6 females,8
males;meanage=10.6months,sd=0.9).

Procedure: Infantswere seatedon their mother’s laps,
1.5 metersin front of a robot head(

���������	���
�
cm).

Themotherswerewearingdarkglassesandcouldnot see
the robot. Eachof the sidesof the robot’s headwasdis-
tinguishedby an abstractpattern. In particularoneof the
sides(which playedtherole of therobot’s face)wassym-
metricwhile theotherswerenot(SeeFigure2). Ninetyde-
greesleft andright of therobotthereweretwo smallboxes
( � � � �
� cm)eachof whichhadasmallloud-speakerand
acoloredlight. An IBM PCJr. with 64KB of memorycon-
trolled thebehavior of therobotandof thesideboxesvia a
serialport interface.Thecomputercouldrotatetherobot’s
headto “f ace” right or left, flash lights on its surface,or
make sounds.It could alsocontrol the soundsandlights
producedby the sideboxes. The behavior of the system
was programmedusing a MSBasic interpreter. The first
authorof this documentactedasa “sensor”informing the
robot, via a joystick, that the infant hadproducedan in-
terestingbehavior (vocalizationsor suddenmovementsof
armsor legs). Otherthanthis, the systemwasfully auto-
matic.

IndependentVariable: For theinfantsin theexperimen-
tal grouptherobotwasprogrammedto respondto theenvi-
ronmentin a mannerthatsimulatedthecontingency prop-
ertiesof humanbeings: The robot was only responsive



to visual eventsin front of one of its sides;thesevisual
eventsincludedbehaviors from the infant and flashesof
lightsproducedby thebox to theright sideof therobot. In
additionwhenobjectsin the environment(the infant and
the box at the left sideof the robot) producedinteresting
sounds,the robot’s headrotatedto ”f ace” thoseobjects.
Thus this robot provided information that while it could
respondto soundsfrom objectsarbitrarily locatedin the
room,it couldonly respondto visualeventsfacingoneof
its sides.Eachinfant in thecontrolgroupwasmatchedto
an infant in theexperimentalgroupandwaspresentedthe
sametemporaldistribution of lights, soundsand turnsof
the centralrobot as was experiencedby his/hermatched
participant.He/shealsoreceivedthesamenumberof stim-
uli from the sideboxesbut randomlydistributedover the
experimentalsession.Thusin thecontrolgrouptherobot
behavedin a mannerthatwasnot predictablefrom the in-
fant’s behavior or from the sideboxes. After 3.5 minutes
of the robot interactingwith the infant andwith the box
locatedat its left, all infantsweretestedfor sensitivity to
directionalattention.Therewere4 testtrialseachof which
startedwith the robot producingintermittentlight flashes
andsoundsuntil theinfantfixatedit. Immediatelytherobot
turnedits ”f ace”to onesidemaintainingit therefor 7 sec-
onds. In 2 of thetrials therobot’s headrotatedto facethe
box to its left, in the other 2 trials it rotatedto facethe
box to its right. Theorderof therotationswasrandomized
acrossparticipants.On testtrials thesideboxesproduced
no lightsor sounds.

Figure 2: Schematicof the headof the centerrobot and
sideboxes.

DependentVariables: The subjects’line of regardwas
codedas: looking towardsthe centerrobot, the right side
robot,theleft siderobot,or looking away (e.g.up,down).
Interactivebehaviors (vocalizationsandsuddenarmor leg

movementswhile lookingatany of thethreeobjects)were
also recorded. Reliabilities acrosstwo different coders
rangedfrom �����
����� to �����
� � .
7 Results
Contingency detection: Therewasvery clearevidence
thatinfantsbehaveddifferentlyin responseto thetwo con-
tingency schedules.Infantsin theexperimentalgroupex-
hibited about5 timesmorevocalizationsandsuddenarm
or leg movementsduring the 3.5 minutetraining period(
ExperimentalGroup =10.33bpm, Control Group = 1.84
bpm2, ����� ��� � , onetail).

Emergenceof shared attention: We found evidence
that theinfantsweresensitive to thedirectionalproperties
of the robot’s behavior. First we measuredthe percent-
ageof timesthe subjectslooked to the left andright side
boxesvs anywhereelse.Thesameresponsemeasuredur-
ing training wasusedascovariate. The experimentaland
controlgroupsweresignificantlydifferent( Looking rate:
Experimentalgroup=6.38lpm3 , Controlgroup=3.23lpm,
����� ��� � , onetail, Percentage:Experimentalgroup=61.2
%, Controlgroup=38.2%, ����� � � , onetail ).

In additionwe assessedthe proportionof testingtrials
in whichtheinfantslookedin thedirectionspecifiedby the
robotvs anywhereelse.Infantsin theexperimentalgroup
looked proportionallymore in the direction specifiedby
the robot’s rotation(Experimentalgroup=32.29%, Con-
trol group=18.35%, ����� �� , onetail4).

Finally, wealsofoundevidencethatinfantsfollowedthe
line of regardwhenthe robot turnedtowardsthe box that
hadnotbeenactiveduringthetrainingperiod,i.e., looking
to the box at the robot’s right sidewhenthe robot turned
towardsthat box (Experimentalgroup =1.8 lpm, Control
group=0.6lpm, ����� � � , onetail, usingtherateof looking
left duringthetrainingphaseasacovariate).

Qualitati ve observations: Therewere two particularly
salientaspectsof our experiencerunningthis experiment.
First, a significant numberof infants in the experimen-
tal groupseemedto greatlyenjoy the interactionwith the
robot, produceda large numberof vocalizations,social
smiles,andgaveadistinctimpressionthatthey weretreat-
ing the robot as if it werea conversationalpartner. One
of the infantsin particularlaughedand“conversed”with
the robot so loudly that a staff memberenteredthe lab
worried that somethingwaswrong with this infant. Con-
trary to this, all the infantsin the control groupappeared

2bmp= behaviors perminute.
3lmp= looksperminute.
4After residualanalysis[8] onecontrol subjectandthe matchedex-

perimentalsubjectweredeleted(studentizedresidual=3.97,Weisberg’s t
for residuals=6.53,!#"�$ %'& ).



ratherboredafter a few momentsof interactionwith the
robot. Second,someinfantsrecognizedwhethertherobot
was responsive to themvery quickly, in a matterof sec-
onds. Theseinfants showed clear qualitative signs that
they wereactively assessingtheoperationalcharacteristics
of the robot5. For example,infantswould spontaneously
vocalize. If suchvocalizationwas followed by a robot’s
response,infantswould intensively look at the robot and
stopmoving andvocalizingfor a periodof about10 sec-
onds,followedby anothervocalizationandanobservation
period.As learningprogressedtheobservationperiodsbe-
cameshorterand shorter. To provide a senseof the ac-
tive natureof the infant’s explorationwe put an example
video at http://mplab.ucsd.edufollowing links to demos
and infant-robotinteraction. At the time, the first author
foundit difficult to reconcilethis behavior with theclassic
views on conditioningandthenew associationistlearning
rules that were appearingin the connectionistliterature.
Only now, 16 yearsafter the experimentwasconducted,
we feel we have a goodformal framework to understand
thesebehaviors from thepoint of view of active Bayesian
systemsidentification.

Figure3: Exampleof infant following the robot’s line of
regard.Thereflectionof therobotthrougha mirror canbe
seento theright of eachimage.

8 Discussion
Learning to interact efficiently with others is, at its

roots,a systems-identificationproblem,for which human
infantsaretypically well equipped.Our experimentsug-
geststhatby theendof the first yearinfantscanusecon-
tingency information to ascertainin a matterof seconds
whethera new objectis responsive to themandto identify
in a matterof minutesimportantgeneralaspectsof its op-
eratingcharacteristics(e.g.,thefactthatthey havea line of
regard).

Theseresultscastsomedoubton theoriesof gazefol-
lowing which explain its emergencevia specializedin-
natemodulesspecificallydesignedto trackmorphological
structuresof thehumanface[20]. Infantsappearperfectly

5WearecurrentlydevelopingaBayesianmodelof activesamplingfor
this taskto assesthispointmoreformally.

capableof following the line of regardof systemsthatdo
not have eyes. We also found informal evidencethat in-
steadof slow associativelearners,10-monthold infantsbe-
have in a mannerreminiscentof thenew Bayesianmodels
of active learningthat have beenrecentlyinvestigatedby
thefirst authorof thisarticle[13, 14].

Inspired by our experiment, Johnson,Slaughterand
Carey [19] conducteda study in which eighty-three12
monthold infantsfacedanactiveobject.After oneminute
of interactionwith theinfant,theobjectturned45 degrees
left or right. Their experimentaldesignincludedthepres-
enceor absenceof humanoidfeaturesandthepresenceof
absenceof contingency. Oneimportantdifferencebetween
our studyandtheirsis that they did not modeledtherobot
turning to the sideandfinding somethinginterestinghap-
peningthere.Their resultsreplicatedourmainfinding that
a few minutesof experiencewith a contingentobjectwith
no humanoidfeaturescould elicit gazefollowing. Their
interpretationof the resultswas perhapsless friendly to
learningapproachesthanwe wish to be. In their view in-
fantsfollow the line of regardbecausethey areattributing
intentionsto the robot and contingency happensto be a
marker for anearlyconceptof “intentionalbeing”. Instead
we ratherthink of infantsasusingthe dimensionof con-
tingency to generalizeappropriatebehaviors abouthow to
interactwith other objects. For examplebasedon inter-
actionwith humanbeginsandotherobjects,unsupervised
learningalgorithmscould createclustersof contingency
structures. Prominentclusterwould likely include some
humanbeings,but the compositionof theseclustersmay
be impossibleto describewith words. For exampleone
suchclustermay include a subsetof humanbeings,ani-
malsandtoys,while excludingotherhumanbeings.When
a robot exhibits contingency structurescharacteristicof a
cluster, behaviors usedto interactwith membersof that
clustergeneralizeto therobot.

At aqualitativelevelof analysistheinfantsin ourexper-
imentappearedto have a rathersophisticatedprior knowl-
edgeaboutthespaceof possibilitiesfor theoperatingchar-
acteristicsof therobot. While theresultsdo not inform us
abouthow this knowledgewasacquired,the rejectionof
learningasplausibleexplanationis notunlikethedismissal
of mutationandnaturalselectionasaplausibleexplanation
for evolution. Our mainmessagehereis thatcontingency
structure,not just morphologicalstructureshouldplay a
critical role in whicheverlearningalgorithmsareproposed.

Thinking of early socialdevelopmentasa problemof
real-timesystemsidentificationandcontrol,bringsabouta
changein prioritiesfor futureresearch.Critical is thegath-
ering of databasesand statisticalanalysisto characterize
the causalpropertiesof adult behavior in responseto in-
fants(includingtimeconstants,andcontingency statistics).



Critical is thedevelopmentof formaloptimalitymodelsfor
systemsidentificationandcontrolof socialobjects.Criti-
cal is the studyof the different trade-offs involved when
endowing brainswith differentformsof prior knowledge.
Ideally a functionalapproachmayhelpusunderstandtyp-
ical and atypical developmentas alternative solutionsto
thesedifferenttrade-offs.
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