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Dealing with Pose

• Multiple cameras.

• 3D Morphable models.

• Ensemble of pose specific detectors.
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3D Morphable models

Bartlett, Braathen, Littlewort, Smith, Movellan (2001)
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Results FRVT02
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Results FRVT02
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3D Tracking: Current Approaches

• Optic Flow Approaches: Given two images yt and yt+1 and

the position of the object at time t estimate the position of the

object at time t + 1.

? Few assumptions about appearance of object.

? Good knowledge about location of object. Tendency to drift.
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• Template Based Approaches: Given a template of the object

appearance find it on the image plane.

? Few assumptions about location of object.

? Good knowledge of object appearance: Difficult to handle realistic

sources of variation.
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• Template Based Approaches: Given a template of the object

appearance find it on the image plane.

? Few assumptions about location of object.

? Good knowledge of object appearance: Difficult to handle realistic

sources of variation.

In practice people use heuristic combinations of template and flow:

Brand & Bhotika (2001)

Torresani, Yang, Alexander & Bregler (2001)

La Cascia & Sclaroff (2000)

Xiao, Kanade & Kohn (2002)
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GFlow:
A generative model for tracking morphable objects.

• Principled (Optimal Inference).

• Fast.

• Template and flow based approaches emerge as special cases.

• Uses foreground and background information.

• Easy to connect to other generative models (e.g. ICA.).
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Non-Linear Filtering Problem

• Extended Kalman Filter (unimodal).

• Stochastic Partial Differential Equations.

• Discretizing hypothesis space (see dumbicles).

• Sampling (Particle Filters).
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p̂(ut−1 | y1:t−1)
Filtering distribution at t-1
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The Needle in a Haystack Problem
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Problem gets worse with more parameters

u(3)
t−1

u(1)
t−1

u(2)
t−1

p(yt | ut)
Equal Likelihood  

Contours for
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Conditionally Gaussian Problem

Ut ∼ p(Ut |Ut−1) 3D pose and expression

Vt = Vt−1 + Zv
t Object texture

Bt = Bt−1 + Zb
t Background texture

Yt = c(Ut)
(

Vt

Bt

)
+ Wt Image

If we knew u1:t problem would be linear.
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Bt Vt

Ut

Yt

c(Ut)
Assigns texels 

to pixels
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Expert Filtering

Sum Expert Credibility × Expert Opinion

p(utvtbt | y1:t) =
∫

p(utvtbt | u1:t−1y1:t)p(u1:t−1 | y1:t)du1:t−1

Credibility of expert centered at ut−1

Opinion of expert centered at ut−1
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Note Opinion and Credibility Use yt
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Opinion Equations

Factorize the opinion of expert u1:t−1, into the product of

the opinion about pose Ut times the opinion about

texture Vt, Bt given pose.

p(utvtbt |u1:t−1y1:t) = p(vtbt |u1:ty1:t)p(ut |u1:t−1y1:t)

Opinion = Texture Opinion × Pose Opinion
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Texture opinions: The distribution of VtBt given u1:ty1:t is

Gaussian with a mean and covariance that can be obtained using

time dependent Kalman filter equations

Pcs(VtBt |u1:ty1:t) = Pcs(VtBt |u1:t−1y1:t−1) + c(ut)′Ψwc(ut)

E(VtBt |u1:ty1:t) =

Pcs(VtBt |u1:t−1y1:t−1)E(VtBt |u1:t−1y1:t−1) + c(ut−1)′Ψwyt−1

Pcs(VtBt |u1:t−1y1:t−1) + c(ut)′Ψwc(ut)

Note E(VtBt |u1:ty1:t) contains texture maps for object and

background. V ar(VtBt |u1:ty1:t) keeps the uncertainty about these

maps.
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Pose opinions: No analytical solution to distribution of ut.

However we can find most probable opinion ut and approximate

distribution using a Gaussian bump about that point. Note

p(ut |u1:t−1y1:t) ∝ p(ut |ut−1)p(yt |u1:ty1:t−1)

where

p(yt |u1:ty1:t−1) =
∫

p(vtbt |u1:t−1y1:t−1)p(yt |utvtbt)dvtdbt
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ût(u1:t−1) = argmax
ut

p(ut |u1:t−1y1:t) = argmax
ut

L(ut, u1:t−1)

L(ut, u1:t−1) =

− 1
2

∑
i∈O(ut)

(
(yt(i)− µv(u1:t, i))2

σv(u1:t, i) + σw
− (yt(i)− µb(u1:t, i))2

σb(u1:t, i) + σw

)
+ log p(ut |ut−1)
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ût(u1:t−1) can be found very quickly using a Gauss-Newton method.

The inverse Hessian σ̂t(u1:t−1) also falls out easily from the

Gauss-Newton method. The posterior distribution can then be

approximated as a Gaussian φ(· | ût(u1:t−1), σ̂t(u1:t−1)) centered at

ût(u1:t−1) and with covariance σ̂t(u1:t−1).

We can do importance sampling with φ(· | ût(u1:t−1), ασ̂t(u1:t−1))

where α > 0. As α → 0 same as picking the maximum.
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Optic Flow as a Special Case: Suppose p(ut |ut+1) is

uninformative, the background is a white noise process,

i.e. σb(ut, i) →∞ for all t, i and by time t− 2 we are

completely uncertain about the object texture, i.e.

V ar(Vt−1 |u1:t−2y1:t−2) →∞

It follows that

E(Vt |u1:t−1y1:t−1) = av(ut−1)yt−1
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Thus

argmax
ut

p(ut |ut−1y1:t) =

= argmin
ut

∑
i∈O(ut)

(yt(i)− av(ut−1)yt−1(i))
2

σv(ut, i) + σw

The most probable ut is that which minimizes the mismatch

between the image pixels rendered by the object at time t− 1 and

the image at yt shifted according to ut. The Lucas-Kanade optic

flow algorithm is simply the Newton-Gauss method as applied to

minimize this error function.
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Template matching as a Special Case: If p(ut |ut−1) is

uninformative, the background is a white noise process

and by time t− 2 we are certain about the object texture

map, i.e., V ar(Vt−1 |u1:t−2y1:t−2) = 0, then

E(Vt |u1:t−1y1:t−1) = E(Vt |u1:t−2y1:t−2)

argmax
ut

p(ut |ut−1y1:t) = argmin
ut

∑
i∈O(ut)

(yt(i)− µv(ut, i))
2

σw

where µv(ut, i) is the fixed object template, shifted by ut.
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Filter Distribution = Sum Expert Opinion × Expert

Credibility
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Credibility Equations

p(u1:t−1 | y1:t) ∝ p(u1:t−1 | y1:t−1)p(yt |u1:t−1y1:t−1)

where

p(yt |u1:t−1y1:t−1) =
∫

p(ytut |u1:t−1y1:t−1)dut

=
∫

p(yt |u1:ty1:t−1)p(ut |ut−1)dut

≈
s∑

i=1

wt(u1:t−1, i)

If α → 0 simply get exp(L(ût, u1:t−1)).
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ut−1

Image at time t-1: yt−1    

p(ut−1|y1 · · · yt−1)
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ut−1

Image at time t-1: yt−1    

Image at time t:   yt

p(ut−1|y1 · · · yt−1)
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ut−1

P (ut|ut−1y1 · · · yt)

Particle's Opinion: Optic flow for 
pose, Kalman filter for texture

Image at time t-1: yt−1    

Image at time t:   yt

p(ut−1|y1 · · · yt−1)
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ut−1

P (ut|ut−1y1 · · · yt)

Particle's Opinion: Optic flow for 
pose, Kalman filter for texture

Image at time t-1: yt−1    

Image at time t:   yt

p(ut−1|y1 · · · yt−1)



37

P (ut−1|y1 · · · yt)

ut−1

P (ut|ut−1y1 · · · yt)

Particle's Opinion: Optic flow for 
pose, Kalman filter for texture

Particle's Credibility

Image at time t-1: yt−1    

Image at time t:   yt

p(ut−1|y1 · · · yt−1)
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P (ut−1|y1 · · · yt)
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P (ut−1|y1 · · · yt)
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P (ut−1|y1 · · · yt)
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Example

http://mplab.ucsd.edu/videos/Gflow.mp4
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Conclusions

• 3D Tracking can be casted as a Conditionally Gaussian Filtering

Problem.

• Optic-Flow-Like algorithm provides most probable pose at time t

given the images up to time t and the poses up to time t− 1.

• This avoids needle-in-haystack problem.

• Object and Background texture distribution is learned via Kalman

filters.
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• Optic-Flow and template matches emerge as special cases of opti-

mal inference under some conditions.

• In practice optimal inference behaves as a combination of motion-

like and template-like tracking.
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MENU


