
G-Flow: A Generative Model for Fast Tracking Using 3D Deformable
Models

Javier R. Movellan, John Hershey, Tim K. Marks, Cooper Roddey
(MPLab TR 2003.03 v2)

Machine Perception Laboratory Institute for Neural Computation
University of California San Diego

La Jolla, CA 92093-0515

Abstract

We present a generative model (G-flow) and infer-
ence algorithm for simultaneous tracking of 3D pose,
non-rigid motion, object texture and background tex-
ture. Under this model optimal inference about pose
and texture can be performed efficiently using a bank
of Kalman filters for texture whose parameters are
updated by an optic-flow-like algorithm. The infer-
ence algorithm unifies optic flow-based and texture-
based tracking methods, dynamically adjusting the rela-
tive importance of each component in a principled man-
ner. Classic optic flow and template-based algorithms
emerge as special cases, and the conditions under which
they are optimal are elucidated by the model. For in-
stance, the Lucas-Kanade optic-flow algorithm is a spe-
cial case that is optimal under certain conditions (com-
plete certainty of the current location of the object in
each frame, and knowledge of its texture only via its
current location).

1 Introduction

Many approaches have been proposed in the computer
vision literature to solve the object tracking problem.
In general these can be divided into motion-based and
template-based approaches. Motion-based approaches
compute local estimates of optic flow, typically using
a variation of the Lucas-Kanade optic-flow algorithm
[5], then combine these estimates using global object
constraints [2]. The advantage of a motion-based ap-
proach is that it makes few assumptions about the ap-
pearance of the object being tracked. When given two
images yt, yt+1 at two consecutive time steps, and the
position of the object at time t, the approach gives us
an estimate of the position of the object at time t + 1.
This method implicitly assumes good knowledge about
the location of the object at each time step, and thus
it has a tendency to drift as errors accumulate. Ini-
tialization and recovery from drift are open issues in
motion-based approaches, and they are typically han-
dled using heuristic methods.

At the other end of the spectrum template ap-
proaches assume good knowledge about the appearance
of the object of interest. The advantage of these ap-
proaches is that they require little knowledge about the

current location of the object, provided the template
is correct. Local or global search methods are then
used to find the pose that best fits the image plane.
A known problem with template-based approaches is
dealing with realistic sources of variation (pose, illu-
mination, identity, expression, etc). Template-based
methods typically rely on heuristics that allow for
dynamic updating of the templates and periodic re-
registration.

In practice, the issues of model initialization, dy-
namic update of templates, error detection, and re-
initialization are still unsolved. Finding principled so-
lutions to these problems is arguably the most impor-
tant impediment to the widespread application of com-
puter vision technology in daily life.

In this paper, we present a generative model (G-
flow) for video sequences. The model, while relatively
simple, provides a rich framework for analyzing the
problem of how to dynamically combine motion-based
and texture-based information in an optimal manner.
A contribution of the model is that classic optic flow
and template-based algorithms emerge as special cases
of optimal inference under limited conditions. Optic
flow is optimal when the location of the object is known
and its appearance is unknown. Template-based algo-
rithms are optimal in the opposite case. In practice
optimal inference under G-flow comprises a combina-
tion of motion and template-based information that is
dynamically re-weighted as new images are presented.
Standard approximations can be used to solve the in-
ference problem very quickly, allowing for on line, real
time 3D pose and expression tracking, geometry esti-
mation, and texture recovery.

2 Video generation model

Unless otherwise stated capital letters represent ran-
dom variables, small letters represent specific values
taken by random variables, and Greek letters repre-
sent fixed model parameters. When possible we use
informal shorthand notation and identify probability
functions by their arguments. We also drop commas
between arguments in probability functions. For ex-
ample, p(xy) is shorthand for the probability (or prob-
ability density) that the random variable X takes the
specific value x and the random variable Y takes the

1

3D Object
Pose and Morph

3D Object
Texture

2D Background

Observed 2D Image

 U0

 Y0

 V0

 B0
Ψw

Ψw

 Ut

 Yt

 Vt

 Bt Ψw

Ψw

 Ut+1

 Yt+1

 Vt+1

Bt+1 Ψw

Ψw

Ψu

Ψv

Ψb

Image Sequence

Figure 1: The G-flow video generation model: The pose
and texture of the object live in 3D are projected onto 2D
and then combined with the background to generate the ob-
served video sequence. The model parameters include the
initial distributions πu, πv, πb, the texture transition cer-
tainties ΨvΨb, the rendering noise parameter Ψw and the
pose transition probabilities p(ut |ut−1). Except for the pose
transition probabilities, the distributions controlled by these
parameters are assumed Gaussian. The goal is to make
inferences about (Ut, Vt, Bt) based on the observed video se-
quence Y1 · · · Yt.

value y. We use subscripted columns to indicate se-
quences. For example X1:t = X1 · · ·Xt. The term
Ip stands for a p × p unit matrix. E stands for ex-
pected value, V ar for covariance matrix and Pcs for
precision matrix, the inverse of the covariance matrix.
An ⊗ Ac refers to the set of r × c matrices whose cells
are elements of A. The following terms will be used
throughout the paper:

• yt ∈ Rp, the vectorized version of an image with p
pixels.

• ut ∈ R2n a vector containing the position of n
points on the image plane. These n points are
thought to belong to the same object, the rest of
the points on the image plane belong to the back-
ground.

• vt ∈ Rn, bt ∈ Rp vectors with the texture map of
the object and background respectively. We refer
to each element of vt and bt as a texel.

• av : Rn → {0, 1}p⊗{0, 1}n, a function whose input
is the position of the object points on the image
plane and whose output is a p×n matrix of zeroes
and ones. If there is a one at row i, column j it
means that the jth object point projects on pixel
i. There should be a total of n ones and at most
a one per row.

• ab : Rn → {0, 1}p ⊗ {0, 1}p is a function whose
input is the position of the object points on the
image plane and whose output is a p × p diago-
nal matrix. If there is a one at row j, column j
it means that the background texel j projects on
pixel j on the image plane. We put the constraint

that if avij = 1 then abjj = 0, i.e., if a pixel i is
rendered by the object, it is not rendered by the
background.

The functions av, ab encapsulate the projection model
and filtering effects of the imaging device.

Example: Suppose we have a 4-pixel image plane,
p = 4, and a 2-point object n = 2. Suppose the object
can only take 2 locations in 3D: q1 = (−1, 0, 1) q2 =
(1, 0, 1). When at q1 the object projects onto the two
pixels on the left. When at q2 it projects on the two
pixels on the right.

av(q1) =

 1 0
0 1
0 0
0 0

 av(q2) =

 0 0
0 0
1 0
0 1

ab(q1) =

 0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ab(q2) =

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

Model Specification: G-flow models the video se-
quence as a stochastic process governed by a partially
observable difference equation (see Figure 1 and 2).
There are three hidden processes: A background pro-
cess B, an object motion process U , and an object
texture process V . They generate images as follows:
The object pose, Ut determines which pixels the ob-
ject and background project on, which we formulate
using the projection function c(Ut) =

(
av(Ut), ab(Ut)

)
.

The object and background textures Vt and Bt then
project to the image Yt via c(Ut) with additive noise
as formulated below:

Yt = c(Ut)
(

Vt
Bt

)
+ Wt, for t = 1, · · · (1)

The system dynamics are as follows:

Ut ∼ p(ut | ut−1) for t = 2, · · ·
Vt = Vt−1 + Zv

t−1 for t = 2, · · ·
Bt = Bt−1 + Zb

t−1 for t = 2, · · ·

p(ut | ut−1) is the pose transition distribution,
Zv, Zb,W are sequences of zero mean, Gaussian pro-
cesses independent of each other and of the initial
conditions. Their respective precision matrices are
Ψv,Ψb,Ψw. The form of the pose distribution is left
unspecified for the sake of generality. Because the im-
age generation process is nonlinear as a function of
pose, our methods must accommodate this nonlinear-
ity anyway, and hence we need not restrict the motion
dynamics to a Gaussian form.

The model is specified by the following terms: (1)
Initial conditions, which consist of a distribution for the
object position U1, and Gaussian distribution of object
and background texture, V1 and B1, all of which are
independent of each other. In addition we assume the

2

Bt Vt

Ut

Yt

c(Ut)
Assigns texels

to pixels

Figure 2: c(Ut) determines which texel is responsible for
rendering each pixel on the image plane. Some of these will
be rendered by object texels, some by background texels.

variance of V1 is diagonal and the variance of B1 is
a scalar times a unit matrix. (2) The precision ma-
trices for the state transitions, Ψv,Ψb. (3) The pose
transition distribution p(ut | ut−1). (4) The precision
matrix for the image rendering noise is of the form
Ψw = Ipσ

−1
w , where σw is a scalar. The imaging model

(e.g., perspective projection) determines the functions
av and ab.

Structure of the Inference Problem: Inference
requires computing the distribution of pose and tex-
ture given an observed sequence of images. The main
difficulty in solving this problem centers around the
motion posterior Ut. Since the object and background
textures are not a linear function of the position of
the pixel, then the observed images Yt will in general
not be a linear function of Ut. However, if U1:t were
known then the object and background texture pro-
cesses Vt, Bt would be linear and Gaussian and thus
could be solved using Kalman filter equations with time
variant parameters, as determined by U1:t. This sug-
gests the following scheme: Use approximate methods
to obtain highly probable samples, of U1:t, then use
Kalman filtering equations to determine the distribu-
tion of V1:tB1:t for each sample. Another important
aspect of the problem, that we want to use to our
advantage, is that the observed images have a strong
spatio-temporal structure.

3 Filtering Distribution

Our goal is to find an expression for the filtering dis-
tribution p(utvtbt | y1:t), for t = 0, · · · . Using the law

of total probability we have that

p(utvtbt | y1:t) =
∫

p(utvtbtu1:t−1 | y1:t)du1:t−1 (2)

=
∫

p(utvtbt | u1:t−1y1:t)p(u1:t−1 | y1:t)du1:t−1 (3)

We can think of the first term p(utvtbt | u1:t−1y1:t) as
the opinion about ut, vt, bt of an expert that believes
in the past the object was at u1:t−1. The second term
of the equation p(u1:t−1 | y1:t) is the credibility of that
expert.

3.1 The Opinion Equations

We decompose the opinion of expert u1:t−1, into the
product of the opinion about pose Ut times the opinion
about texture Vt, Bt given pose.

p(utvtbt | u1:t−1y1:t) = p(vtbt | u1:ty1:t)p(ut | u1:t−1y1:t)
(4)

Texture opinions: Because V1, B1 are Gaussian, the
distribution of VtBt given u1:t−1y1:t−1 is also Gaussian
with a mean and covariance that can be obtained using
time dependent Kalman estimation equations (a.k.a.
the correction equations)

Pcs(VtBt | u1:ty1:t) =
Pcs(VtBt | u1:t−1y1:t−1)
+ c(ut)′Ψwc(ut) (5)
E(VtBt | u1:ty1:t) =
V ar(VtBt | u1:ty1:t) (6)
[Pcs(VtBt | u1:t−1y1:t−1)
E(VtBt | u1:t−1y1:t−1)

+c(ut−1)′Ψwyt−1] (7)

This requires the distribution of VtBt given
u1:t−1y1:t−1, which can be obtained using the
Kalman prediction equations

E(VtBt | u1:t−1y1:t−1) = E(Vt−1Bt−1 | u1:t−1y1:t−1)
V ar(VtBt | u1:t−1y1:t−1) = V ar(Vt−1Bt−1 | u1:t−1y1:t−1)

+
(

Ψ−1
v 0
0 Ψ−1

b

)
(8)

Note the expected value E(VtBt |u1:ty1:t) contains tex-
ture maps (templates) for the object and background.
V ar(VtBt | u1:ty1:t) keeps the degree of uncertainty
about the object and background templates. Due to
the fact that pixels cannot be simultaneously rendered
by the object and background, i.e., avij(ut) = 1 →
abjj(ut) = 0, and av is a permutation matrix, and ab is
diagonal, it can be shown that V ar(VtBt | u1:ty1:t) has
the same structure as V ar(V0B0), i.e., it is diagonal,
and the variances of all the Bt elements given u1:ty1:t
are equal.

3

Pose Opinions: The projection function c(ut) deter-
mines how the object and background templates ren-
der the image plane, i.e., which pixels are rendered by
the object and which are rendered by the background.
Since the effect of ut on the likelihood function is non-
linear, we will not attempt to find an analytical solution
for the pose opinion equations. Instead we will find the
most probable value of ut, given u1:t−1y1:t for each ex-
pert and approximate the distribution as a Gaussian
bump about that point. Note

p(ut | u1:t−1y1:t) =
p(y1:t−1 | u1:t−1)
p(y1:t | u1:t−1)

p(ut | ut−1)

p(yt | u1:ty1:t−1) (9)

where

p(yt | u1:ty1:t−1) =∫
p(vtbt | u1:t−1y1:t−1)p(yt | utvtbt)dvtdbt (10)

using the fact that Vt, Bt are independent of Ut given
u1:t−1y1:t−1, i.e.,

p(utvtbt | u1:t−1y1:t−1) =
∫

p(vt−1bt−1 | u1:t−1y1:t−1)

p(utvtbt | u1:t−1vt−1bt−1)dvt−1dbt−1

=
∫

p(vt−1bt−1 | u1:t−1y1:t−1)p(ut | ut−1)

p(vtbt | vt−1bt−1)dvt−1dbt−1

= p(ut | u1:t−1y1:t−1)
∫

p(vt−1bt−1 | u1:t−1y1:t−1)

p(vtbt | vt−1bt−1u1:t−1y1:t−1)dvt−1dbt−1

= p(ut | u1:t−1y1:t−1)p(vtbt | u1:t−1y1:t−1) (11)

We saw in the previous section that p(vtbt |u1:t−1y1:t−1)
is Gaussian. Since p(yt | utvtbt) is also Gaussian it fol-
lows that p(yt|u1:ty1:t−1) is Gaussian with the following
mean and variance:

E(Yt | u1:ty1:t−1) = c(ut)E(VtBt | u1:t−1y1:t−1) (12)

V ar(Yt | u1:ty1:t−1) = Ψ−1
w

+ c(ut)V ar(VtBt | u1:t−1y1:t−1)c(ut)′ (13)

Let O(ut) be an ordered set of indices to the pixels
rendered by the object according to ut. For i ∈ O(ut)
let µv(u1:t, i) be the texel from the object texture map
E(Vt | u1:t−1y1:t−1), that renders the image pixel i as
determined by ut. Let σv(u1:t, i) be the variance of that
texel. For j 6∈ O(ut) let µb(u1:t, j) be the texel from
the background texture map E(Bt | u1:t−1y1:t−1), that
renders the image pixel j as determined by ut, and let

σb(u1:t, j) the variance of that texel. It follows that

log p(yt | u1:ty1:t−1) = −1
2

log |V ar(Yt | u1:t, y1:t−1)|

− 1
2

∑
i∈O(ut)

(yt(i)− µv(u1:t, i))2

σv(u1:t, i) + σw

− 1
2

∑
j 6∈O(ut)

(yt(i)− µb(u1:t, i))2

σb(u1:t, i) + σw
(14)

Moreover ut simply permutes V ar(Yt | u1:ty1:t−1) and
E(Yt |u1:ty1:t−1). Thus |V ar(Yt |u1:ty1:t−1)| is constant
with respect to ut. Let

ût(u1:t−1) = argmax
ut

p(ut | u1:t−1y1:t) (15)

Thus

ût(u1:t−1) = argmax
ut

p(ut | ut−1)p(yt | u1:ty1:t−1)

= argmin
ut

1
2

∑
i∈O(ut)

(yt(i)− µv(u1:t, i))2

σv(u1:t, i) + σw

+
1
2

∑
j 6∈O(ut)

(yt(i)− µb(u1:t, i))2

σb(u1:t, i) + σw
− log p(ut | ut−1)

Moreover, since∑
j 6∈O(ut)

(yt(i)− µb(u1:t, i))2

σb(u1:t, i) + σw
=

∑
j

(yt(i)− µb(u1:t, i))2

σb(u1:t, i) + σw

(16)

−
∑

j∈O(ut)

(yt(i)− µb(u1:t, i))2

σb(u1:t, i) + σw

and
∑

j
(yt(i)−µb(u1:t,i))

2

σb(u1:t,i)+σw
is constant with respect to ut,

it follows that

ût(u1:t−1) = argmin
ut

1
2

∑
i∈O(ut)

(
(yt(i)− µv(u1:t, i))2

σv(u1:t, i) + σw

− (yt(i)− µb(u1:t, i))2

σb(u1:t, i) + σw

)
− log p(ut | ut−1) (17)

ût(u1:t−1) can be found very quickly using a Gauss-
Newton method. The inverse Hessian σ̂t(u1:t−1)
also falls out easily from the Gauss-Newton method.
The posterior distribution can then be approximated
as a Gaussian g(· | ût(u1:t−1), σ̂t(u1:t−1)) centered at
ût(u1:t−1) and with variance σ̂t(u1:t−1).

Optic Flow as a Special Case: Suppose p(ut |ut+1)
is uninformative, the background is a white noise pro-
cess, i.e. σb(ut, i) →∞ for all t, i and by time t− 2 we
are completely uncertain about the object texture, i.e.

V ar(Vt−1 | u1:t−2y1:t−2) →∞ (18)

4

It follows that

E(Vt | u1:t−1y1:t−1) = av(ut−1)yt−1 (19)

i.e, our object texture map at time t is determined by
the pixels from yt−1 that according to ut−1 are ren-
dered by the object. Thus

argmax
ut

p(ut | ut−1y1:t) =

= argmin
ut

∑
i∈O(ut)

(yt(i)− av(ut−1)yt−1(i))
2

σv(ut, i) + σw
(20)

The most probable ut is that which minimize the mis-
match between the image pixels rendered by the object
at time t − 1 and the image at yt shifted according to
ut. The Lucas-Kanade optic flow algorithm is simply
the Newton-Gauss method as applied to minimize this
error function.

Template matching as a Special Case: If
p(ut |ut−1) is uninformative, the background is a white
noise process and by time t−2 we are certain about the
object texture map, i.e., V ar(Vt−1 | u1:t−2y1:t−2) = 0,
then

E(Vt | u1:t−1y1:t−1) = E(Vt | u1:t−2y1:t−2) (21)

and

argmax
ut

p(ut | ut−1y1:t) =

= argmin
ut

∑
i∈O(ut)

(yt(i)− µv(ut, i))
2

σw
(22)

where µv(ut, i) is simply the fixed object template,
shifted by ut. This is the error function minimized
by standard template match algorithms.

General Case: In general minimizing (17) results in
a weighted sum of optic flow and template matching,
with the weight of each approach depending on the
certainty about the object template.

Importance Sampling: Suppose we are given a set
of pose sequences {u(i)

1:t−1 : i = 1 · · ·nt−1}. For each
of these sequences we can obtain unbiased statistics
from p(ut | u1:t−1y1:t) using importance sampling [4].
We generate a set of independent samples {u(i,j)

t :
j = 1 · · · s(i)

t } from a Gaussian distribution centered
at ût(u

(i)
1:t−1) with variance proportional to σ̂t(u

(i)
1:t−1)

and assign each sample a weight proportional to the ra-
tio between the sampling distribution and the posterior

distribution:

p̂(ut | u(i)
1:t−1y1:t) =

s
(i)
t∑

j=1

δ(ut − u
(i,j)
t)

wt(i, j)∑s
(i)
t

k=1 wt(i, k)
(23)

wt(i, j) =
p(u(i,j)

t | u(i)
t−1)p(yt | u(i)

1:t−1u
(i,j)
t y1:t−1)

g(u(i,j)
t | ût(u

(i)
1:t−1), ασ̂t(u

(i)
1:t−1))

(24)

where p̂ stands for an unbiased estimate of the cor-
responding probability term and α > 0 is a param-
eter that determines the sharpness of the sampling
distribution. As α → 0 we simply choose ût(u1:t−1),
the state that maximizes the posterior probability
p(ut | u1:t−1y1:t).

3.2 Credibility Equations

The credibility of the expert u
(i)
1:t−1 is proportional to

the product of a prior term and a likelihood term

p(u(i)
1:t−1 | y1:t) =

p(u(i)
1:t−1 | y1:t−1)p(yt | u(i)

1:t−1y1:t−1)
p(yt | y1:t−1)

(25)
In Section 3.3 we explain how to obtain running es-
timates for the prior p(u(i)

1:t−1 | y1:t−1). Regarding the
likelihood, note that

p(yt | u1:t−1y1:t−1) =
∫

p(ytut | u1:t−1y1:t−1)dut

=
∫

p(yt | u1:ty1:t−1)p(ut | ut−1)dut

(26)

We already generated a set of samples {u(i,j)
t : j =

1 · · · s(i)
t } from p(ut | u(i)

1:t−1y1:t). We can now use these
samples to obtain an unbiased estimate of the likeli-
hood

p(yt | u(i)
1:t−1y1:t−1) =

∫
p(yt | u(i)

1:t−1uty1:t−1)p(ut | u(i)
t−1)dut

=
∫

p(yt | u(i)
1:t−1uty1:t−1)g(ut | ût(u

(i)
1:t−1), σ̂t(u

(i)
1:t−1))

p(ut | u(i)
t−1)

g(ut | ût(u
(i)
1:t−1), σ̂t(u

(i)
1:t−1)

dut ≈
∑s

(i)
t

j=1 wt(i, j)

s
(i)
t

(27)

If we only sample the most probable state ût(u1:t−1)
then the likelihood is approximated by the maximum
value of the integrand.

3.3 Combining Opinion and Credibility

Opinion and credibility can be combined to obtain run-
ning estimates of the filtering distribution.

5

Initialization:

• Obtain n1 samples {u(i)
1 : i = 1 · · ·n1} from

p(u1). We refer to these samples as experts. For
each expert the initial Gaussian prior distributions
p(v1b1 | u

(i)
1) = p(v1b1) are given as part of the

model specification. The relative weight of the ith

expert, r
(i)
1 is set proportional to the probability

of the image given the expert

r
(i)
1 ∝ p(y1 | u(i)

1) (28)

and the weights are normalized to add up to one.
This provides a Monte-Carlo estimate of the filter-
ing distribution at the first time step:

p̂(u1 | y1) =
n1∑
i=1

r
(i)
t−1δ(u1 − u

(i)
1) (29)

Update:

• By time t − 1 we are given nt−1 pose experts
{u(i)

i:t−1 : i = 1 · · ·nt−1}. Each expert u
(i)
1:t−1 comes

with a relative weight r
(i)
t and with the mean and

variance of the filtering distribution for texture
given that expert, i.e., E(Vt−1Bt−1 |u(i)

1:t−1, y1:t−1),
V ar(Vt−1Bt−1 | u(i)

1:t−1, y1:t−1). The weights pro-
vide an estimate of the filtering distribution for
pose at time t − 1, which serves as the prior for
time t

p̂(u1:t−1|y1:t−1) =
nt−1∑
i=1

r
(i)
t−1δ(u1:t−1−u

(i)
1:t−1) (30)

For each expert, we compute the most probable
pose ût(u

(i)
1:t1) and estimate the uncertainty about

that pose σ̂t(u
(i)
1:t−1).

Based on the distribution of relative weights
{r(i)

t−1 : i = 1 · · ·nt−1} we assign a number of de-
scendants to each expert. This is usually known
as a resampling step in the particle filtering lit-
erature [4], which discusses the pros and cons
of different resampling rules. Suppose the re-
sampling rule assigns s

(i)
t descendants to expert

i. We then generate as many independent sam-
ples {u(i,j)

t : j = 1 · · · s(i)
t } from the distribution

g(· | ût(u
(i)
1:t−1), σ̂t(u

(i)
1:t−1)), and compute the im-

portance weight of each sample wt(i, j). This pro-
vides an estimate for the opinion

p̂(ut | u(i)
1:t−1y1:t) =

s
(i)
t∑

j=1

δ(ut − u
(i,j)
t)

wt(i, j)∑s
(i)
t

k=1 wt(i, k)
(31)

and for the likelihood of each expert

p̂(yt | u(i)
1:t−1) =

s
(i)
t∑

j=1

wt(i, j)

s
(i)
t

(32)

The likelihood times the prior gives us the credi-
bility of each expert

p̂(u(i)
1:t−1 | y1:t) ∝

r
(i)
t−1

s
(i)
t

s
(i)
t∑

j=1

wt(i, j) (33)

From this we obtain p̂(u1:t | y1:t),

p̂(u1:t | y1:t) =
∫

p̂(u1:t−1 | y1:t)

p̂(ut | u1:t−1y1:t)du1:t−1 (34)

=
nt−1∑
i=1

r
(i)
t−1

s
(i)
t

∑s
(i)
t

j=1 wt(i, j)∑nt−1
k=1

r
(k)
t−1

s
(k)
t

∑s
(k)
t

l=1 wt(k, l)
δ(u1:t−1 − u

(i)
1:t−1)

s
(i)
t∑

m=1

δ(ut − u
(i,m)
t)

wt(i,m)∑s
(i)
t

n=1 wt(i, n)

=
nt−1∑
i=1

s
(i)
t∑

j=1

δ(u1:t − u
(i)
1:tu

(i,j)
t)

r
(i)
t−1

s
(i)
t

wt(i, i)∑nt−1
k=1

∑s
(k)
t

l=1

r
(k)
t−1

s
(k)
t−1

wt(k, l)

(35)

Note this behaves a set of experts {u(i)
1:t : i =

1 · · ·nt} obtained by concatenating descendants to
all the experts that generated them and dropping
all the experts that did not generate any. The
relative weight of the new expert u

(k)
t formed by

concatenating u
(i,j)
t to u

(i)
1:t is as follows

r
(k)
t ∝

r
(i)
t−1

s
(i)
t

wt(i, j) (36)

normalized so that the weights add up to one. In
addition the texture opinions for each expert are
found using the Kalman filter equations.

4 Tracking 3D deformable ob-
jects

The spatial location of the n points on the object
varies with time due to rigid transformations (rotation,
scale, translation) and non-rigid transformations (e.g.,
changes in expression). The rigid transformations are
controlled by a rotation matrix Rt and a displacement
vector Dt. The non-rigid transformations are mod-
eled as linear combinations of a set of k 3-Dimensional

6

P (u1:t−1 | y1:t)

ut−1

P (ut | u1:t−1 y1:t)

Expert's Opinion: Optic flow for
pose, Kalman filter for texture

Expert's Credibility

Image at time t-1: : yt−1

Image at time t+1: yt+1

Image at time t: yt

P (ut−1 | y1:t−1)

Figure 3: An algorithm for solving the G-flow inference
problem.

morph keys φ(1), · · · , φ(k). Here φ(i) is an n × 3 di-
mensional matrix, containing the 3-D position of the n
object points on key-morph i. Let

φ = (φ(1), · · · , φ(k)) (37)

be an n×3k matrix containing all the morph keys. The
vector Ct ∈ Rk contains the morph coefficients of the
object at time t.

Let Xt ∈ R2n contain the 2-D coordinates of the
projection of the n object points onto an image plane,
i.e. X2i−1, X2i are the horizontal and vertical coordi-
nates of the projection of the ith point. Under weak
perspective projection we have that

Xt = βUt (38)

where

β =
1 b11(1) b12(1) · · ·
0 0 · · · · · ·
...

...
...

...
1 b11(n) b12(n) · · ·
0 0 · · · · · ·

b3k(1) 0 0 · · · · · · 0
0 1 b11(1) b12(1) · · · b3k(1)
...

...
...

...
...

...
b3k(n) 0 0 · · · · · · 0

0 1 b11(n) b12(n) · · · b3k(n)

(39)

and

Ut = (Dt(1), Rt(1, 1)Ct(1) · · ·Rt(1, 3)Ct(k), Dt(2),

Rt(2, 1)Ct(1) · · · , Rt(2, 3)Ct(k))′ (40)

The matrix β contains the set of fixed animation
morphs and the random variable Ut contains 3D pose

and expression parameters. Standard techniques exist
to recover the values of Rt and Dt once Ut is known
[2].

To apply G-flow to this problem we need to
find methods to find values for ut that maximize
p(ut | u1:t−1y1:t).

Let ȳt represent a matrix version of yt, and
v̄t a matrix version of the object texture map
Ē(V̄t | u1:t−1y1:t−1). For the case in which the
background is a white noise process, maximizing
p(ut | u1:t−1y1:t) is equivalent to minimizing

L(ut, ut−1) =
n∑

i=1

(ȳt(xi)− v̄t(βut))2 (41)

Brand [2] showed that functions of this type can be
optimized in real time using the Newton-Gauss algo-
rithm.

5 Comparison to Other Ap-
proaches

Inference in G-flow belongs to a class of non-linear
filtering problems known as “conditionally Gaussian
problems”. They can be solved using non-linear filter-
ing techniques for the non-linear part and then propa-
gate the solution to the linear part using time depen-
dent Kalman filters. In the particle filtering literature
this approach is known as Rao-Blackwelization [1].

A major problem with applications of particle filters
to video tracking is the so called “Needle in a Haystack”
problem (see Figure 4). The simplest approach to par-
ticle filtering starts with a set of samples from the filter-
ing distribution at time t−1. For each particle samples
are taken from the state transition distribution. Then
the image at time t is observed and each particle is
sample is weighted by the image likelihood function.
Unfortunately in most tracking problem the likelihood
function is highly peaked at the correct location (the
needle) and relatively flat at the incorrect locations
(the haystack). If the samples miss the peak of the
likelihood function they will provide a very inefficient
estimate of the filtering distribution. The problem gets
worse as the number of parameters increases. For ex-
ample, in 2D the likelihood function may not only be
highly peaked but it may also have a strong orienta-
tion . Samples will be wasted by random sampling at
the wrong location or with the wrong orientation (see
Figure 5). Here we reduce this problem by explicitly
computing the peak and orientation (i.e., precision ma-
trix) of the opinion distribution distribution once the
image has been observed. This is possible due to the
the fact that the observed sequence (video images) is
smooth in space and time, something that may not be
necessarily the case for filtering problems in general.

[3] used an extended Kalman filter approach for a
problem in which the 2D pose of an object and the
texture of the object were tracked simultaneously. This
limited the approach to unimodal solutions, which are
known to be risky for tracking problems. They did not
take advantage of the conditionally Gaussian nature

7

p̂(ut−1 | y1:t−1)

p̂(ut | y1:t−1)

p(yt | ut)

p̂(ut | y1:t)

Likelihood Function
Observation at time t

Filtering distribution at t-1

Sample from State
Transition Probabilities

Predictive Distribution

Filtering distribution at t

Figure 4: A 1D version of the Needle in a Haystack Prob-
lem: If the likelihood function for the image at time t is very
peaked, blind sampling approaches are likely to miss it and
provide inefficient estimates of the filtering distribution. In
G-flow this problem is reduced by explicitly computing the
peak of the distribution after the image has been observed
and sampling about that peak.

of the problem and did not incorporate background
information.

Brand [2] showed that one can combine the outputs
of optic-flow solutions computed independently at dif-
ferent image points, along with their uncertainty, to
find the rigid motion and non-rigid deformation param-
eters that best fit those flow solutions. We found that
the approach is formally equivalent to directly propa-
gating the linear constraints without intermediate com-
putation of optic flow, which is the approach we use in
our simulations. [6] presented an approach to propa-
gate general non-rigid motion constraints on top the
standard optic flow algorithm. Both [2] and [6] rely on
unimodal state distributions, and do not learn object
or background texture maps.

6 Simulations

We collected video of a person while making a variety
of facial expression on command. An additional mo-
tion capture session was used to create a 3D model of
the face and a set of 3D animation morphs. We are
currently working on a system that will automatically
find face geometry parameters based on a large dataset
of 3D faces.

Twenty particles were initialized using the first
frontal pose and propagated using the G-flow algo-
rithm. A video of the entire sequence is available at
our Web site. Figures 6 and 7 shows the distribution

u(3)
t−1

u(1)
t−1

u(2)
t−1

p(yt | ut)
Equal Likelihood

Contours for

Figure 5: A 2D version of the Needle in a Haystack Prob-
lem: The likelihood function is peaked and oriented. The

descendants of particles u
(1)
t−1 and u

(2)
t−1 distribute about low

likelihood regions due to poor location and blind sampling.

The descendants of particle u
(3)
t−1 are well located but the

sampling distribution does not have the right orientation,
thus wasting a large number of particles. In G-flow the
problem is reduced by explicitly computing the peak and ori-
entation (i.e., the precision matrix) of the opinion distribu-
tion.

of particles for 3D pose and animation coefficients as
a function of time. Note how the system can maintain
multimodal distributions when necessary.

The system can run at about 1/n real time in Mat-
lab, where n is the number of particles.

7 Conclusions

We presented a generative model (G-flow) for video
sequences. The model provides a useful framework
for studying the problem of how to dynamically com-
bine motion and appearance information in a princi-
pled manner. Current optic flow and template based
algorithms emerge in this model as optimal inference
processes under specific conditions. In more realistic
conditions optimal inference consists of a dynamically
weighted combination of motion and appearance based
information.

References

[1] C. Andrieu and A. Doucet N. de Freitas. Rao-
blackwellised particle filtering via data augmenta-
tion. In Advances in Neural Information Processing
Systems, number 13. MIT Press, Cambridge, Mas-
sachusetts, 2001.

[2] M. Brand. Flexible flow for 3D nonrigid tracking
and shape recovery. In CVPR, 2001.

[3] F. Dellaert, S. Thrun, and C. Thorpe. Jacobian
images of super-resolved texture maps for model-
based motion estimation and tracking. In Proc.
IEEE Workshop Applications of Computer Vision,
1998.

8

Figure 6: This figure displays the locations of object points
for 10 particles from an early frame (top) to a later frame
(bottom) of the video sequence. The radius of the circles is
proportional to the weight of the particles.

[4] George S. Fishman. Monte Carlo Sampling: Con-
cepts Algorithms and Applications. Sprienger-
Verlag, New York, 1996.

Figure 7: Tracking results on a video sequence. There were
6 pose parameters and 4 morph parameters. The graphs
contain the filtering distribution for 2 pose parameters using
20 particles. The continuous line connects the maximum
posterior estimates.

[5] B. Lucas and T. Kanade. An iterative image reg-
istration technique with an application to stereo
vision. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1981.

[6] L. Torresani, D. Yang, G. Alexander, and C. Bre-
gler. Tracking and modeling non-rigid objects with
rank constraints. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 2001.

9

