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Abstract

We present a systematic comparison of machine learning
methods applied to the problem of fully automatic recogni-
tion of facial expressions, including AdaBoost, support vec-
tor machines, and linear discriminant analysis. Each video-
frame is first scanned in real-time to detect upright-frontal
faces. The faces found are scaled into image patches of
equal size and sent downstream for further processing. Ga-
bor energy filters are applied at the scaled image patches
followed by a recognition engine that codes facial expres-
sions into 7 dimensions in real time: neutral, anger, dis-
gust, fear, joy, sadness, surprise. We report results on a
series of experiments comparing spatial frequency ranges,
feature selection techniques, and recognition engines. Best
results were obtained by selecting a subset of Gabor filters
using AdaBoost and then training Support Vector Machines
on the outputs of the filters selected by AdaBoost. The gen-
eralization performance to new subjects for a 7-way forced
choice was 93% and 97% correct on two publicly avail-
able datasets, the best performance reported so far on these
datasets. Surprisingly, registration of internal facial fea-
tures was not necessary, even though the face detector does
not provide precisely registered images. The outputs of the
classifier change smoothly as a function of time and thus
can be used for unobtrusive motion capture. We developed
an end-to-end system that provides facial expression codes
at 24 frames per second and animates a computer generated
character in real time.

1. Introduction
In this paper we present results on a user independent fully
automatic system for real time recognition of basic emo-
tional expressions from video. The system automatically
detects frontal faces in the video stream and codes each
frame with respect to 7 dimensions: Neutral, anger, disgust,
fear, joy, sadness, surprise. We report results on a series
of experiments comparing spatial frequency ranges, feature

selection techniques, and recognition engines. Best results
were obtained by selecting a subset of Gabor filters using
AdaBoost and then training Support Vector Machines on
the outputs of the filters selected by AdaBoost. The com-
bination of AdaBoost and SVM’s enhanced both speed and
accuracy of the system. The system presented here also dif-
fers from previous work in that it is fully automatic and op-
erates in real-time at a high level of accuracy (93% gener-
alization to new subjects on a 7-alternative forced choice).
Another distinction is that the preprocessing does not in-
clude explicit detection and alignment of internal facial fea-
tures. This provides a savings in processing time which is
important for real-time applications.

2. Facial Expression Data

The facial expression system was trained and tested on
Cohn and Kanade’s DFAT-504 dataset [5]. This dataset con-
sists of 100 university students ranging in age from 18 to
30 years. 65% were female, 15% were African-American,
and 3% were Asian or Latino. Videos were recoded in ana-
log S-video using a camera located directly in front of the
subject. Subjects were instructed by an experimenter to per-
form a series of 23 facial expressions. Subjects began and
ended each display with a neutral face. Before performing
each display, an experimenter described and modeled the
desired display. Image sequences from neutral to target dis-
play were digitized into 640 by 480 pixel arrays with 8-bit
precision for grayscale values.

For our study, we selected 313 sequences from the
dataset. The only selection criterion was that a sequence
be labeled as one of the 6 basic emotions. The sequences
came from 90 subjects, with 1 to 6 emotions per subject.
The first and last frames (neutral and peak) were used as
training images and for testing generalization to new sub-
jects, for a total of 625 examples. The trained classifiers
were later applied to the entire sequence.
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2.1 Real-time Face Detection

We developed a real-time face detection system based
on [14] that consists of a cascade of classifiers trained
by boosting techniques. The complete system, includ-
ing enhancements to [14] such as employing Gentle-
boost instead of Adaboost, smart feature search, and a
novel cascade training procedure, are described in [8].
Source code for the face detector is freely available at
http://kolmogorov.sourceforge.net. The face detector was
trained on 5000 faces and millions of non-face patches from
about 8000 images collected from the web by Compaq Re-
search Laboratories. Accuracy on the CMU-MIT dataset,
a standard public data set for benchmarking frontal face
detection systems, is 90% detections and 1/million false
alarms, which is state-of-the-art accuracy. The CMU test
set has unconstrained lighting and background. With con-
trolled lighting and background, such as the facial expres-
sion data employed here, detection accuracy is much higher.
The system presently operates at 24 frames/second on a
3ghz Pentium IV for 320x240 images.

All faces in the DFAT-504 dataset were successfully de-
tected. The automatically located faces were rescaled to
48x48 pixels. The typical distance between the centers of
the eyes was roughly 24 pixels. A comparison was also
made at double resolution (96x96). No further registration
was performed. Many other approaches to automatic fa-
cial expression recognition include explicit detection and
alignment of internal facial features. The recognition sys-
tem presented here performs well without that step, provid-
ing a considerable savings in processing time. The images
were converted into a Gabor magnitude representation, us-
ing a bank of Gabor filters at 8 orientations and 5 spatial
frequencies (4:16 pixels per cycle at 1/2 octave steps) [7].

3. Facial Expression Classification
Facial expression classification was based on support vec-
tor machines (SVM’s). SVM’s are well suited to this task
because the high dimensionality of the Gabor representation
O(10

5) does not affect training time, which depends only on
the number of training examples O(10

2). The system per-
formed a 7-way forced choice between the following emo-
tion categories: Happiness, sadness, surprise, disgust, fear,
anger, neutral.

3.1. Strategies for multiclass decisions with
SVM’s

Support vector machines make binary decisions. There are
a number of methods for making multiclass decisions with
a set of binary classifiers. (See [4] for a review). Here,
the seven-way forced choice for six emotions plus neutral
was trained in two stages. In stage I, support vector ma-

chines performed binary decision tasks. We explored three
approaches to training binary decisions: one-versus-one,
one-versus-all, and all possible partitions. Stage II converts
the representation produced by the first stage into a proba-
bility distribution over the seven expression categories.To
this effect, we have implemented and evaluated several ap-
proaches: K-nearest neighbor, a simple voting scheme, and
multinomial logistic ridge regression.

Partitioning into binary decisions. There are a number
of strategies for partitioning the classification task intobi-
nary decisions. The simplest strategy is to train 1 versus all.
Pairwise partitioning strategies have been advocated by [6]
and [11], whereas others (e.g. [1]) advocate exploring the
space of all possible partitions.

For pairwise partitioning (1:1), SVM’s were trained to
discriminate all pairs of emotions. For seven categories that
makes 21 SVM’s. In 1:1 partitioning, the number of train-
ing samples for each SVM may be relatively small. If some
subjects performed some expressions and not others, as in
this dataset, identity signals can interfere with the learning
of expression. To avoid this, we trained on identity-matched
pairs, where for example, the happy vs. surprise SVM is
trained on only those subjects who gave samples of both
happiness and surprise. An alternative to training SVM’s
to discriminate each pair of emotions was to train SVM’s
to discriminate one emotion from everything else (1:all).
This strategy employed a larger number of training exam-
ples, 626, which diluted identity effects. An extension of
the 1:all approach was to consider all possible non-trivial
binary partitions of the classes. With 7 classes, there are
seven 1:6 classifiers, twenty one 2:5 classifiers and thirty
five 3:4 classifiers.

Combining outputs of multiple binary classifiers. In
the system presented here, the SVM outputs were combined
to make a 7 alternative forced choice. The most common
way to combine SVM outputs for multiclass decisions is
by voting. This procedure counts the number of stage 1
classifiers aligned with each emotion. For example, if one
SVM indicates happiness and not surprise, happiness gets
+1 and surprise gets -1. These votes are summed over all
of the SVM’s. Softmax ensures each class is allocated a
number between 0 and 1, with unit sum over classes. We
also explored a variation on voting which uses the sum of
the classifier margins, which are typically clustered around
+1 or -1, instead of the binary outputs. This variation made
little difference, and the voting results presented here use
binary outputs. We compared voting to nearest neighbor,
and to a learned mapping based on multinomial logistic
ridge regression (MLR). In nearest neighbor, the contin-
uous SVM output (the margin) for each of the n SVM’s
gives an n-dimensional pattern vector. The test image is as-
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signed the class of the training image with the shortest Eu-
clidean distance between their pattern vectors. MLR learns
the weight matrix that maps the outputs of Stage one clas-
sifiers onto the 7 emotions. MLR is a maximum likeli-
hood approach, which is equivalent to a single layer percep-
tron with weight decay and with SoftMax competition be-
tween the outputs. The regression was implemented using
the Newton-Raphson method and a ridge term coefficient of
0.001. The advantage of this data-dependent second stage
is that it could learn common confusions and biases which
lead to errors in a direct voting situation.

Nnbr Voting MLR

linear 1:1 82.7 81.6 85.8
SVM’s 1:all 81.6 86.2 87.5

all poss. 83.0 87.2 89.4

nonlinear 1:1 83.2 82.9 86.1
SVM’s 1:all 81.4 88.0 89.8

all poss. 85.1 89.9 90.4

Table 1:Comparison of strategies for multiclass decisions using
SVM’s.

Results Generalization to novel subjects was tested using
leave-one-subject-out cross-validation. Results are given in
Table 1. Linear, polynomial, and RBF kernels with Lapla-
cian, and Gaussian basis functions were explored. Lin-
ear and RBF kernels employing a unit-width Gaussian per-
formed best, and are presented here. The soft margin ap-
proach, allowing some training examples to lie within the
margin, did not enhance performance.

For Stage I, partitioning the classification task into bi-
nary decisions, 1:all usually outperformed 1:1 partitioning,
and all possible partitions gave the best performance. Of
the Stage II strategies for combining the outputs of multiple
SVM’s into a 7-way forced choice, MLR was substantially
better than nearest neighbor (5.3 percentage points). Vot-
ing was slightly but consistently less effective than MLR,
typically 1.3 percent for 1:all and all partitions.

For the comparisons in the subsequent sections, 1:all par-
titioning followed by voting was employed due to training
speed. The optimal strategies determined in this section (all
possible partitions and MLR) will be reintroduced in the fi-
nal system.

3.2. SVM’s and Adaboost
SVM performance was next compared to Adaboost for
emotion classification. The features employed for the Ad-
aboost emotion classifier were the individual Gabor fil-

ters. The comparison was performed using 48x48 pixel im-
ages at 5 spatial scales (4:16 pixels per cycle). This gave
5x8x48x48=92,160possible features. A subset of these fea-
tures was chosen using Adaboost. On each training round,
the Gabor feature with the best expression classification per-
formance for the current boosting distribution was chosen.
The performance measure was a weighted sum of errors on
a binary classification task, where the weighting distribu-
tion (boosting) was updated at every step to reflect how well
each training vector was classified.

Adaboost training continued until the classifier output
distributions for the positive and negative samples were
completely separated by a gap proportional to the widths
of the two distributions (see Figure 1). The union of all fea-
tures selected for each of the 7 emotion classifiers resulted
in a total of 538 features.

Classification results are given in Table 2. The general-
ization performance with Adaboost was comparable to lin-
ear SVM performance. Adaboost had a substantial speed
advantage, as shown in Table 3. There was a 170-fold re-
duction in the number of Gabor filters used. The convo-
lutions were calculated in pixel space, rather than Fourier
space which reduced the advantage of feature selection, but
it nevertheless resulted in a substantial speed benefit.

a. Number of features b. Number of features

Figure 1: Stopping criteria for Adaboost training. a. Output of
one expression classifier during Adaboost training. The response
for each of the training examples is shown as a function of number
features as the classifier grows. b. Generalization error asa func-
tion of the number of features chosen by Adaboost. Generalization
error does not increase with ’overtraining’.

3.3 Combining feature selection by Adaboost
with classification by SVM’s

Adaboost is not only a fast classifier, it is also a feature
selection technique. An advantage of feature selection by
Adaboost is that features are selected contingent on the fea-
tures that have already been selected. In feature selectionby
Adaboost, each Gabor filter is a treated as a weak classifier.
Adaboost picks the best of those classifiers, and then boosts
the weights on the examples to weight the errors more. The
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Figure 2: SVM’s learn weights for the continuous outputs
of all 92160 Gabor filters. AdaBoost selects a subset of
features and learns weights for the thresholded outputs of
those filters. AdaSVM’s learn weights for the continuous
outputs of the selected filters.

next filter is selected as the one that gives the best perfor-
mance on the errors of the previous filter. At each step, the
chosen filter can be shown to be uncorrelated with the out-
put of the previous filters [3, 12].

We explored training SVM classifiers on the features
selected by Adaboost. When the SVM’s were trained on
the thresholded outputs of the selected Gabor features, they
performed no better than Adaboost. However, we trained
SVM’s on the continuous outputs of the selected filters.
We informally call these combined classifiers AdaSVM in
abbreviation of Adaptive Boosting Selected Feature repre-
sentations in Support Vector Machines. AdaSVM’s out-
performed straight Adaboost by 3.8 percent points, a dif-
ference that was statistically significant (z=1.99, p=0.02).
AdaSVM’s outperformed SVM’s by an average of 2.7 per-
cent points, an improvement that was marginally significant
(z = 1.55, p = 0.06).

ω kernel Adaboost SVM AdaSVM

4:16 Linear 87.2 86.2 88.8
4:16 RBF 88.0 90.7
2:32 Linear 90.1 88.0 93.3
2:32 RBF 89.1 93.3

Table 2: Leave-one-out generalization performance of Ad-
aboost,SVM’s and AdaSVM’s (48x48 images).ω: Gabor wave-
length range, sampled at 0.5 octave intervals.

Distribution of spatial frequencies selected by Adaboost.
The features selected by Adaboost showed no preference
for orientation, but the highest frequencies were chosen

SVM Adaboost AdaSVM
Lin RBF Lin RBF

Time t t 90t 0.01t 0.01t 0.0125t
Time t′ t 90t 0.16t 0.16t 0.2t
Memory m 90m 3m 3m 3.3m

Table 3: Processing time and memory considerations. Time t′

includes the extra time to calculate the outputs of the 538 Gabors
in pixel space for Adaboost and AdaSVM, rather than the full FFT
employed by the SVM’s.

more often. Figure 3a shows the number of chosen features
at each of the 5 wavelengths used (4:16 pixels per cycle
on 48x48 pixel images). The distribution was skewed to-
wards the high spatial frequencies. Examination of this dis-
tribution suggested that including higher spatial frequency
Gabors may improve recognition performance. Indeed,
doubling the resolution to 96x96 and adding 4 more wave-
lengths in the shorter end of the distribution improved per-
formance of the nonlinear AdaSVM to 93.1% correct. The
new frequency range was 2:32 pixels per cycle sampled at
0.5 octave steps for a total of 9 wavelengths. At this resolu-
tion, the performance advantage of AdaSVM’s over SVM’s
was statistically significant. At higher resolution, the speed
benefit of AdaSVM’s becomes even more apparent. The
full Gabor representation was 7 times larger than before,
whereas the number of Gabors selected by Adaboost only
increased by a factor of 1.7 (900 from 538).

It turned out that using a larger range of Gabor wave-
lengths in the 48x48 images was sufficient to achieve the
performance improvement. The bottom rows of Table 2
show performance for 48x48 images sampled at 9 Gabor
wavelengths, from 2 to 32 pixels per cycle. The result of
93% accuracy for a user-independent 7-alternative forced
choice was encouraging, given that previously published re-
sults on this database were 81-83% accuracy.

We then reintroduced the approaches to multiclass
SVM’s found to be optimal in Section 3.1, and applied them
to the AdaSVM system. Results for using all possible class
partitions and training an MLR matrix instead of voting are
shown in Table 4. The performance enhancement with these
approaches is small, if any. Optimal performance with the
AdaSVM was obtained with the simpler paradigm of 1:all
partitions and voting, which is a considerable savings in
training time over all possible partitions and MLR.

Number of Support Vectors We next examined the ef-
fect of feature selection by Adaboost on the number of sup-
port vectors. Smaller numbers of support vectors proffer
two advantages: (1) the classification procedure is faster,
and (2) the expected generalization error decreases as the
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Figure 3: Wavelength distribution of features selected by Ad-
aboost. With 48x48 images, the distribution of selected features
was skewed to the shorter wavelengths. Doubling the resolution
and including more Gabors in the shorter wavelengths made the
distribution more balanced. For comparison, 4 to 16 pixels per cy-
cle in 48x48 images is equivalent to 8 to 32 pixels per cycle inthe
96x96 images.

SVM AdaSVM AdaSVM AdaSVM
Partitioning 1:all 1:all all poss. all poss.
Combining vote vote vote MLR

89.8 93.1 93.8 93.5

Table 4: Performance of all possible partitions and MLR for
AdaSVM’s. Performance is shown for nonlinear SVM’s and
AdaSVM’s (with 900 features) for 96x96 images and 9 Gabor
wavelengths (2:32).

number of support vectors decreases [13]. The number of
support vectors for the linear SVM ranged from 10 to 33
percent of the total number of training vectors. Nonlinear
SVM’s employed 14 to 43 percent, despite better gener-
alization performance. Feature selection by Adaboost re-
duced the number of support vectors employed by the non-
linear SVM in the AdaSVM system, to 12 to 26 percent.

4 Comparison to Linear Discrimi-
nant Analysis

A previous successful approach to basic emotion recogni-
tion used Linear Discriminant Analysis (LDA) to classify
Gabor representations of images [9]. While LDA may be
optimal when the class distributions are Gaussian, SVM’s
may be more effective when the class distributions are
not Gaussian. Table 5 compares LDA with linear SVM’s.
The classifiers were tested on 48x48 images using the nine
wavelength Gabor representation (2:32 pix/cyc). A small
ridge term was used in LDA.

The performance results for LDA were dramatically
lower than SVMs. Performance with LDA improved by ad-
justing the decision threshold for each emotion so as to bal-

ance the number of false detects and false negatives. This
approach is labeled LDA-θ in Table 5. This form of thresh-
old adjustment is commonly employed with LDA classi-
fiers, but it uses post-hoc information, whereas the SVM
performance was without post-hoc information. Even with
the threshold adjustment, the linear SVM performed signif-
icantly better.

4.1 Feature selection using PCA

Many approaches to LDA also employ PCA to perform fea-
ture selection prior to classification. For each classifier we
searched for the number of PCA components which gave
maximum LDA performance, which was typically 40 to 70
components. The PCA step resulted in a substantial im-
provement. The combination of PCA and threshold ad-
justment gave performance accuracy of 80.7% for the 7-
alternative forced choice, which was comparable to other
LDA results in the literature [9]. Nevertheless, the lin-
ear SVM outperformed LDA even with the combination of
PCA and threshold adjustment. SVM performance on the
PCA representation was significantly reduced, indicating an
incompatibility between PCA and SVM’s for the problem.

4.2 Feature selection using Adaboost

We next examined whether feature selection by Adaboost
gave better performance with LDA than feature selection
by PCA. Adaboost was used to select 900 features from
9x8x48x48=165888 possible Gabor features which were
then classified by LDA (Table 5). Feature selection with
Adaboost gave better performance with the LDA classifier
than feature selection by PCA. Using Adaboost for feature
selection reduced the difference in performance between
LDA and SVM’s. Nevertheless, SVM’s continued to out-
perform LDA.

LDA-θ SVM (linear)
Feature selection

None 44.4 88.0
PCA 80.7 75.5

Adaboost 88.2 93.3

Table 5: Top Row: Comparing SVM performance to LDA on
48x48 pixel images. The two classifiers are compared with no fea-
ture selection, with feature selection by PCA, and feature selection
by Adaboost.

4.3 Image alignment

Another difference from previous implementations of LDA
for expression recognition was image alignment. Was LDA
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more sensitive to alignment noise than SVM’s? Expression
recognition performance using the automatically detected
face images was compared to performance using images
that were aligned using hand-labeling of internal feature
points. Six points on each face image were manually lo-
cated with a mouse (the corners of each eye, the nose tip,
and the mouth center). Eye centers were defined as the
mean of the eye corners. Images were then rotated in the
plane so that the eyes were horizontal and scaled to align
the eye centers as well as the midpoint between the mouth
and nose tip.

As shown in Table 6, the hand alignment offered no im-
provement in performance over the automatically aligned
face images for either LDA or SVM’s.

PCA-LDA-θ SVM AdaSVM

Face Finder 80.7 88.0 93.3
Hand Aligned 76.8 86.2 91.3

Table 6:Comparison of performance with automatically located
faces (top row) and hand aligned faces (lower row).

5. Generalization to other datasets
We tested the system on a second publicly available data
set, Pictures of Facial Affect (POFA) [2]. POFA contains
110 images from 14 subjects posing facial expressions. The
facial displays were guided by Ekman’s observations of the
facial expressions of basic emotion. Previous recognition
results reported for this dataset ranged from 85-88%.

Results are shown in Table 7. AdaSVM’s trained and
tested on this dataset using leave one subject out cross-
validation obtained 97.3% accuracy with a linear kernel,
and 95.5% with an RBF kernel. Feature selection by Ad-
aboost had a significant impact on performance for this
dataset. SVM’s trained on the full set of Gabors obtained
only 79.1% correct. Feature selection may be particularly
important for small datasets such as this.

Training and testing on a combined dataset consisting
of both DFAT-504 and POFA also gave strong recognition
results. Generalization performance was again tested using
leave-one-subject-out cross-validation.

Generalization across datasets was substantially lower.
A nonlinear AdaSVM trained on DFAT-504 and tested on
POFA obtained 60% correct. This highlights the need for
large training datasets of facial expressions with variations
in image conditions in order to generalize across image col-
lection environments. While the Face Finder was trained on
a large number of faces (5000 positive and millions of neg-
ative examples) with many lighting conditions and other ir-
regularities, the only condition being roughly frontal pose,

AdaSVM AdaSVM
linear RBF

POFA 97.3 95.5
DFAT-504+POFA 91.4 93.1

Train: DFAT-504 Test: POFA 56.0 60.0

Table 7: Generalization performance using leave-one-out cross-
validation on the POFA dataset alone and on the combined DFAT-
504 and POFA datasets. The bottom row gives performance for
training on DFAT-504 and testing on POFA. The AdaSVMs were
tested for 96x96 images, 9 frequencies, and 953 Adaboost fea-
tures.

the expression coder was trained on a single dataset with
a uniformly controlled environment. The result is that the
face finder is robust to real-world application, while the ex-
pression coder performs well only within a given dataset or
combination of datasets.

6 Real-time expression recognition
from video

We combined the face detection and expression recognition
into a system that operates on live digital video in real time.
Face detection operates at 24 frames/second in 320x240 im-
ages on a 3 ghz Pentium IV. The expression recognition step
operates in less than 10 msec. Figure 4 shows the output of
the expression recognizer for a test video in which the sub-
ject posed a series of facial expressions. The traces show
outputs of each of the seven emotion detectors. The output
of the sadness detector increases as he poses a sad expres-
sion, and anger increases as he poses anger. The output for
neutral increases as the subject passes through neutral in be-
tween.

Although each individual image is separately processed
and classified, the outputs change smoothly as a function of
time, particularly under illumination and background condi-
tions that are favorable for alignment. (See Figure 5). This
enables applications for measuring the magnitude and dy-
namics of facial expressions.

To demonstrate the potential of this system we developed
a real time ’emotion mirror’ which renders a 3D character in
real time that mimics the emotional expression of a person.
(See Figure 6). The emotion mirror is a prototype system
that recognizes the emotion of the user and responds in an
engaging way.

In the emotion mirror, the face-finder captures a face im-
age which is sent to the emotion classifier. For speed, the
emotion classifier employed the linear AdaSVM. The out-
puts of the 7-emotion classifier constitutes a 7-D emotion
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Figure 4: Examples of real-time emotion code traces from a test
video sequence. The top row shows frames from the sequence.
Continuous outputs of each of the 7 expression detectors is given
below.

Figure 5: Outputs of the SVM’s trained for neutral and sadness
for a full test image sequence of a subject performing sadness from
the DFAT-504 database.The SVM output is the distance to the sep-
arating hyperplane (the margin).

code. This code was sent to CU Animate, a set of soft-
ware tools for rendering 3D computer animated characters
in real time, developed at the Center for Spoken Language
Research at CU Boulder. The 7-D emotion code gave a
weighted combination of morph targets for each emotion.

We are presently exploring applications of this system
including automatic evaluation of human-robot interaction
[8], and deployment in automatic tutoring systems [10] and
social robots. We are also exploring clinical applications,
including psychiatric diagnosis and measuring response to
treatment.

7 Conclusions

We presented a systematic comparison of machine learning
methods applied to the problem of fully automatic recogni-
tion of facial expressions, including AdaBoost, support vec-
tor machines, and linear discriminant analysis. We reported
results on a series of experiments comparing methods for
multiclass decisions, spatial frequency ranges, feature se-

Figure 6:Examples of the emotion mirror. The animated charac-
ter mirrors the facial expression of the user.

lection methods, and recognition engines. Best results were
obtained by selecting a subset of Gabor filters using Ad-
aBoost and then training Support Vector Machines on the
outputs of the filters selected by AdaBoost. The combi-
nation of Adaboost and SVM’s enhanced both speed and
accuracy of the system. The generalization performance to
new subjects for a 7-way forced choice was 93.3% and 97%
correct on two publicly available datasets, the best perfor-
mance reported so far on these datasets. Surprisingly, reg-
istration of internal facial features was not necessary, even
though the face detector does not provide precisely regis-
tered images. The outputs of the classifier change smoothly
as a function of time and thus can be used for unobtrusive
motion capture.

Our results suggest that user independent fully automatic
real time coding of basic expressions is an achievable goal
with present computer power, at least for applications in
which frontal views can be assumed. The problem of clas-
sification into 7 basic expressions can be solved with high
accuracy by a simple linear system, after the images are pre-
processed by a bank of Gabor filters.
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