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Abstract—Personal robots are likely to become an important
tool for teachers in early childhood education. Robots can assist
teachers by enriching the educational and emotional support
provided to the children. Based on prior field studies that
immersed robots in early childhood education environments,
we found that a great deal of the activity of teachers in early
childhood education is dedicated to the management of classroom
moods and classroom mood transitions. One critical mood occurs
when children cry. Robots can assist in such situation by alerting
the teachers, and by providing emotional support and stimulation
so as to minimize crying. Robots can also datamine the patterns
of crying helping detect whether a child is crying more than
usual, possibly alerting teachers and parents of the perceived
changes.

Thus we identified robust cry detection in noisy everyday
environments as a key perceptual primitive for progress. We re-
cently developed a novel machine learning approach for learning
auditory moods in natural environments [1]. Here, we apply the
approach for problem of detecting crying episodes in preschool
classrooms. The resulting system achieved levels of performance
approaching that of human coders. We show that the proposed
approach significantly outperformed previous approaches to this
problem [2]. We conclude by outlining a plan for incorporating
cry detection as a perceptual primitive for robots that help
engineer positive moods in preschool environments.

I. INTRODUCTION

Humans face the daunting task of extracting salient per-
ceptual information from high bandwidth sensory channels.
From a developmental point of view it is logical that the
sensory processing system of the brain would learn to extract
perceptual information that is useful for operating in the
being’s environment [3]. This principle is not specific to
biological organisms but extends to artificial ones as well. In
the field of personal robotics, the set of perceptual primitives
must be carefully selected so as to form a minimal set useful
for social functioning.

As part of the RUBI project for the last three years we have
conducted more than 1000 hours of field studies immersing
social robots at an Early Childhood Education Center (ECEC)
at UCSD. The first perceptual primitives we identified as
critical for a teaching robot were visual ones [4], including
face detection, and facial expression recognition. We also
found that, surprisingly, other low-bandwidth channels such as
touch carried rich information. For example, Tanaka, Cicourel,
and Movellan [5] show that robots can accurately assess

the quality of its interactions in a preschool environment
using touch sensors. The auditory channel is a rich source
of information about the current classroom mood. Salient
auditory events include: laughing, playing, crying, singing, and
resting. Each of these moods has a unique acoustic signature
and requires distinct modes of operation for a teacher. It would
be inappropriate, for example for a robot to sing and dance
when the children are taking a nap, or to rest and do nothing
when the children are crying. Our experience suggests than
good teachers are experts at detecting classroom moods and
at responding to, and shaping these moods. Due to its role
in social communication [6] it is not surprising that handling
crying episodes is a critical part of the classroom life and
one for which robot assistants could be particularly useful for
human teachers.

II. PRIOR WORK

Much work has been published on behavioral studies that
analyze the cry production process as well as the nature of
crying as a means of guiding infant and caretaker interactions
[7].

Fig. 1. Two of the robots developed as part the RUBI project. Top:
RUBI-1, the first prototype was for the most part remote controlled.
Bottom: RUBI-3 (Asobo) the third prototype teaches children au-
tonomously for weeks at a time.

Of the previous work on automatic analysis of cries, the
majority has focused on the infant cry with the aim of early
diagnosis of various developmental disorders such as severe
hearing loss [8] [9]. There are important difference between
this prior work and the work presented here. In clinical settings
one can typically assume pristine, noise-free conditions, and
the focus is on learning to detect subtle difference between



cries that may be used for diagnostic purposes (e.g., to identify
babies with severe hearing loss) [8]. In contrast, here we focus
on developing perceptual primitives for social robot that need
to operate in the noisy and unpredictable conditions of daily
life. As such the focus is on robustness, i.e., spotting crying
episodes in very noisy and unpredictable environments.

The problem of extracting knowledge from an auditory
signal is sometimes known as auditory-scene analysis. Robust
real-time auditory scene analysis has been studied in a variety
of domains such as searching large audio databases [2],
automatically analyzing emotional content from speech [10]
[11], person identification, language identification, and music
genre identification. Formally all of these problems reduce to
predicting a category label for given audio samples and thus
are a prime target for modern machine learning methods.

One system that uses a machine learning approach for de-
tecting auditory phenomena in noisy environments is SOLAR
(Sound Object Localization and Recognition [2]). SOLAR
is designed to detect “sound objects”, e.g., gunshots, doors
opening and closing, laughter, in environments with high
background noise. This system uses a cascaded architecture
to create a detector with a very low false positive rate
while keeping the true positive rate as high as possible. The
motivation being that when using SOLAR as a front-end for
searching a large segment of audio for a relatively rare auditory
object, a low false positive rate is necessary to avoid the set
of returned clips from being dominated by false positives.

Recently we proposed a novel approach to auditory scene
analysis. The approach effectively converts the auditory signal
into video, and applies machine learning methods that have
been shown to work very well in the visual domain. In
the past we showed that the approach attained state of the
art performance on standard auditory emotion recognition
datasets. Unfortunately the available datasets are typically
collected in noise-free laboratory environments, and thus it
was unclear to us whether the approach would generalize well
in the difficult conditions of daily life.

III. A DATABASE OF AUDIO FROM A PRESCHOOL SETTING

We recorded a full day of audio from the preschool environ-
ment. The audio was recorded using an iPod augmented with
a microphone attachment. A typical day at ECEC is divided
into several periods (examples are free play, nap-time, and
group singing). Each activity has a distinct auditory signature.
This required the creation a database that included audio from
the complete breadth of activities at ECEC. From the six
hours of audio collected from the preschool, forty minutes
of audio were labeled by human coders. The labeled audio
contains examples of each of the major periods of activity in
the ECEC schedule. The labeling task was presented as a two
alternative forced choice task between “cry present” and “cry
not present”. The clips were labeled by two different labelers
using a non-overlapping 2 second sliding windows. In order to
determine the binary label (cry versus not cry) of long clips an
average vote is taken across all the labels of each of the coders
for the subset of 2 second chunks that fall inside the audio clip

Train-Time Algorithm
1) Compute 2-d Sonogram image from the raw audio

signals. (see Figure 3)
2) Use Gentle-Boost to choose a set of Spatio-Temporal

Box Filters to solve the binary classification problem.
Run-Time Algorithm

1) Compute 2-d Sonogram image from the raw audio
signals. signal (see Figure 3)

2) Apply bank of Spatio-Temporal Box Filters selected
during the training process.

3) Combine output of the filters to make a binary classifi-
cation decision.

Fig. 2: General Description of the Approach at Train-time and
Run-time

that is being labeled. The agreement between labelers was 94%
on the 2 second length chunks.

Various thresholds can be used to choose the binary label
of the entire clip (e.g. choose the most popular label). For
simplicity, in this experiment we simply used the majority
label. Of the forty minutes of the database that was coded by
humans approximately 25% of the data contains toddler crying
episodes.

The forty minute database of audio from the preschool
was segmented into 27 episodic chunks. These audio chunks
represent a continuous interval of audio that has been labeled
by human coders. In order to prevent over-fitting of a cry
detection system to any specific chunk of audio, a leave one
clip out cross validation scheme is recommended.

IV. OUR APPROACH TO DETECTING CRIES

Our system for detecting infant cries is inspired by recent
advances in real-time object detection in the visual domain.
Rather than using a small-set of hand crafted and domain
specific features here we use machine learning methods to
select and combine data from an ensemble of several million
simple light-weight features (see [1] for a more complete
explanation of our approach).

A. Front End: Auditory Signal Processing

We use a popular auditory processing front end, motivated
by human psychoacoustic phenomena. It converts the raw
audio-signal into a 2-dimensional Sonogram, where one di-
mension is time and the other is frequency band, and the
value for each time × frequency combination is the perceived
loudness of the sound. The first step in creating the sonogram
is to take the Short Term Fast Fourier Transform (STFT)
which converts the original 1 − d temporal signal into a
2 − d spectral-temporal representation. The energy of the
different frequencies are then integrated into 24 frequency
bands according to the Bark model [12], which uses narrow
bands in low frequency regions and broader bands in high
frequency regions. The energy values from the 24 Bark bands
are transformed into decibels, then into Phon units using the



Fletcher-Munson equal-loudness curves [12], and finally ap-
plying the standard phon-to-sone non-linearity to convert into
Sone units [12]. The main advantage of working with Sone
units is that they are directly proportional to the subjective
impression of loudness in humans [12].

The result of these transformations is a 2-d, image-like rep-
resentation of the original signal. An example of a transformed
audio signal is shown in figure 3.

B. Spatio-Temporal Box Filters

Box filters [13]–[15] are characterized by rectangular, box-
like kernels, a property that makes their implementation in
digital computers very efficient. Their main advantage over
other filtering approaches, such as those involving Fourier
Transforms, is apparent when shift-variant filtering operations
are required [15]. Box Filters [13]–[15] have recently become
one of the most popular features used in machine learning
approaches to computer vision [16] because of their efficient
computational properties along with their ability to be com-
bined using boosting methods to create very accurate classi-
fiers. In this paper system we employ a class of features, called
Spatio-temporal Box Filters (STBFs) originally proposed in
[1] that generalize the basic box filter for use in real-time
machine perception problems in the auditory domain. STBFs
are designed to capture critical properties of signals in the
auditory domain. The first is periodic sampling in time to
capture properties such as beat, rhythm, and cadence. This
is especially important in the context of detecting cries due
the highly rhythmic structure of infant crying episodes [17].
The second is the temporal integration of filter outputs via five
summary statistics: mean, min, max, standard deviation, and
quadrature pair. All but the last are self-explanatory. Quadra-
ture pairs are a popular approach in the signal processing
literature to detect modulation patterns in a phase independent
manner. In our case each STBF has a quadrature pair which
is identical to the original STBF but phase shifted by half
a period. Each of these summary statistics can be seen as a
way of converting local evidence of the auditory category to
a global estimate.

We use six types of box filter configurations (see Figure 4).
The specific configuration of the box filters explored in this
document is taken directly from the computer vision literature
[16], because they appear to compute quantities important for
describing a Sonogram. In the vision literature, the response
of the box filter to an image patch is given by the sum of the
pixel brightnesses in the white area minus the sum of the pixel
brightnesses in the black area (pixels not encompassed by the
box filter are ignored). Similarly, the response of a Box filter to
a portion of a Sonogram is the sum of the spectral energies of
the frequency / time cells that fall in the white region minus the
sum of the spectral energies of the cells fall in the black region.
In the auditory domain these filters compute partial derivatives
with respect to time or frequency band of the spectral energy.
For instance filters of type 2 compute the partial derivative of
loudness with respect to time in a particular frequency band.
Filters of type 3 compute the second partial derivative with

respect to frequency and time. Filters of type 4 compute the
the partial derivative of loudness with respect to frequency at
a specific time location. These low-level time and frequency
derivatives have been shown to be useful features in sound
classification.

Figure 3 shows one of the novel extension of our ap-
proach. In this case a simple filter is periodically applied to a
Sonogram. The total number of features used in this work is
approximately 2, 000, 000. All combinations of the 5 summary
statistics, 20 sampling intervals, and 20, 000 basic box filters
are considered.
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Fig. 4: Shown above are several examples of spatio temporal
box filters. Each of the six basic features are shown. For each
simple filter, the sum of the pixels in the black rectangle are
subtracted from the sum of the pixels in the white rectangle.
The output of each repetition of the simple filter yields a time
series that is fed into the summary statistic specific to the
particular spatio-temporal feature. This figure also appears in
[1].

C. Training

We use Gentle-Boost [18] to select and combine a subset
of all possible STBFs. At each round of boosting, an optimal
transfer function, or “tuning curve”, is constructed for each
STBF which maps feature response to a real number in
[−1, 1]. Each tuning curve is computed using non-parametric
regression methods to be the optimal tuning curve for the
corresponding STBF at this round of boosting (see [19] for
details). The feature + tuning curve that yields the best
improvement in the Gentle-Boost loss function is then added
into the ensemble, and the process repeats until performance
no longer improves on a holdout set. In this way, Gentle-Boost
simultaneously builds a classifier and selects a subset of good
STBFs.

To speed up search for the best feature to add (since brute-
force search through all 2 × 106 possible features would be
very expensive) we employ a search procedure known as
Tabu Search which tries a random sample of the full set of
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Fig. 3: Depicted above is the original 1-d temporal audio signal (left), the Sonogram (middle) and a STBF applied to a
Sonogram (right) The Sonogram feature serves as the input to the learning framework described in section IV-A.

IV. SPATIO-TEMPORAL BOX FILTERS

Box filters [26], [27], [28] are characterized by rectangular,
box-like kernels, a property that makes their implementation
in digital computers very efficient. Their main advantage over
other filtering approaches, such as those involving Fourier
Transforms, is apparent when non shift-variant filtering op-
erations are required [28]. Box Filters became popular in
the computer graphics community [26], [27], [28] and have
recently become one of the most popular features used in
machine learning approaches to computer vision [18]. In this
paper we propose a spatio-temporal generalization of Box
Filters (STBF) designed for real-time machine perception
problems in the auditory domain. STBFs are designed to
capture critical properties of signals in the auditory domain.
The first is periodic sampling in time to capture properties
such as beat, rhythm, and cadence. The second is the tem-
poral integration of filter outputs via five summary statistics:
mean, min, max, standard deviation, and quadrature pair.
All but the last are self-explanatory. Quadrature pairs are a
popular approach in the signal processing literature to detect
modulation patterns in a phase independent manner. In our
case each STBF has a quadrature pair which is identical to
the original STBF but phase shifted by half a period.

We use six types of box filter configurations (see Figure 4).
The specific configuration of the Box filters explored in
this document is taken directly from the computer vision
literature [18], because they appear to compute quantities
important for describing a Sonogram. As in the vision
literature, the response of the Box filter to a patch of the
Sonogram is given by the sum of the pixel brightnesses in
the white area minus the sum of the pixel brightnesses in the
black area. When applied to a Sonogram this corresponds
to computing partial derivatives with respect to time or
frequency band of the spectral energy. For instance filters
of type 2 compute the partial derivative of loudness with
respect to time in a particular frequency band. Filters of
type 3 compute the second partial derivative with respect
to frequency and time. Filters of type 4 compute the the
partial derivative of loudness with respect to frequency at a
specific time location. These low-level time and frequency

derivatives have been shown to be useful features in sound
classification.

Figure 3 shows one of the extensions studied in this
document, in this case a simple filter is periodically applied
to a Sonogram.
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Fig. 4: This figure depicts the various parameters that
characterize each spatio temporal filter. Each of the five basic
Viola Jones feature kernels, plus a center-surround kernel, are
shown. The filter response of each repetition of the simple
filter yields a time series that is fed into the summary statistic
specific to the particular spatio-temporal feature.

A. Training

We use Gentle-Boost [29] to construct a strong classifier
that combines a subset of all possible STBFs. Gentle-Boost
is a popular method for sequential maximum likelihood
estimation and feature selection. At each round of boosting,
a transfer function, or “tuning curve”, is constructed for each
STBF which maps feature response to a real number in
[−1, 1]. Each tuning curve is computed using non-parametric
regression methods to be the optimal tuning curve for the
corresponding STBF at this round of boosting (see [30] for
details). The feature + tuning curve that yields the best
improvement in the Gentle-Boost loss function is then added
into the ensemble, and the process repeats until performance
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Fig. 3: Depicted above is the original 1-d temporal audio signal (left), the Sonogram (middle) and a STBF applied to a
Sonogram (right) The Sonogram feature serves as the input to the learning framework described in section IV-A.

IV. SPATIO-TEMPORAL BOX FILTERS

Box filters [26], [27], [28] are characterized by rectangular,
box-like kernels, a property that makes their implementation
in digital computers very efficient. Their main advantage over
other filtering approaches, such as those involving Fourier
Transforms, is apparent when non shift-variant filtering op-
erations are required [28]. Box Filters became popular in
the computer graphics community [26], [27], [28] and have
recently become one of the most popular features used in
machine learning approaches to computer vision [18]. In this
paper we propose a spatio-temporal generalization of Box
Filters (STBF) designed for real-time machine perception
problems in the auditory domain. STBFs are designed to
capture critical properties of signals in the auditory domain.
The first is periodic sampling in time to capture properties
such as beat, rhythm, and cadence. The second is the tem-
poral integration of filter outputs via five summary statistics:
mean, min, max, standard deviation, and quadrature pair.
All but the last are self-explanatory. Quadrature pairs are a
popular approach in the signal processing literature to detect
modulation patterns in a phase independent manner. In our
case each STBF has a quadrature pair which is identical to
the original STBF but phase shifted by half a period.

We use six types of box filter configurations (see Figure 4).
The specific configuration of the Box filters explored in
this document is taken directly from the computer vision
literature [18], because they appear to compute quantities
important for describing a Sonogram. As in the vision
literature, the response of the Box filter to a patch of the
Sonogram is given by the sum of the pixel brightnesses in
the white area minus the sum of the pixel brightnesses in the
black area. When applied to a Sonogram this corresponds
to computing partial derivatives with respect to time or
frequency band of the spectral energy. For instance filters
of type 2 compute the partial derivative of loudness with
respect to time in a particular frequency band. Filters of
type 3 compute the second partial derivative with respect
to frequency and time. Filters of type 4 compute the the
partial derivative of loudness with respect to frequency at a
specific time location. These low-level time and frequency

derivatives have been shown to be useful features in sound
classification.

Figure 3 shows one of the extensions studied in this
document, in this case a simple filter is periodically applied
to a Sonogram.
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Fig. 4: This figure depicts the various parameters that
characterize each spatio temporal filter. Each of the five basic
Viola Jones feature kernels, plus a center-surround kernel, are
shown. The filter response of each repetition of the simple
filter yields a time series that is fed into the summary statistic
specific to the particular spatio-temporal feature.

A. Training

We use Gentle-Boost [29] to construct a strong classifier
that combines a subset of all possible STBFs. Gentle-Boost
is a popular method for sequential maximum likelihood
estimation and feature selection. At each round of boosting,
a transfer function, or “tuning curve”, is constructed for each
STBF which maps feature response to a real number in
[−1, 1]. Each tuning curve is computed using non-parametric
regression methods to be the optimal tuning curve for the
corresponding STBF at this round of boosting (see [30] for
details). The feature + tuning curve that yields the best
improvement in the Gentle-Boost loss function is then added
into the ensemble, and the process repeats until performance
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Fig. 3: Depicted above is the original 1-d temporal audio signal (left), the Sonogram (middle) and a STBF applied to a
Sonogram (right) The Sonogram feature serves as the input to the learning framework described in section IV-A.

IV. SPATIO-TEMPORAL BOX FILTERS

Box filters [26], [27], [28] are characterized by rectangular,
box-like kernels, a property that makes their implementation
in digital computers very efficient. Their main advantage over
other filtering approaches, such as those involving Fourier
Transforms, is apparent when non shift-variant filtering op-
erations are required [28]. Box Filters became popular in
the computer graphics community [26], [27], [28] and have
recently become one of the most popular features used in
machine learning approaches to computer vision [18]. In this
paper we propose a spatio-temporal generalization of Box
Filters (STBF) designed for real-time machine perception
problems in the auditory domain. STBFs are designed to
capture critical properties of signals in the auditory domain.
The first is periodic sampling in time to capture properties
such as beat, rhythm, and cadence. The second is the tem-
poral integration of filter outputs via five summary statistics:
mean, min, max, standard deviation, and quadrature pair.
All but the last are self-explanatory. Quadrature pairs are a
popular approach in the signal processing literature to detect
modulation patterns in a phase independent manner. In our
case each STBF has a quadrature pair which is identical to
the original STBF but phase shifted by half a period.

We use six types of box filter configurations (see Figure 4).
The specific configuration of the Box filters explored in
this document is taken directly from the computer vision
literature [18], because they appear to compute quantities
important for describing a Sonogram. As in the vision
literature, the response of the Box filter to a patch of the
Sonogram is given by the sum of the pixel brightnesses in
the white area minus the sum of the pixel brightnesses in the
black area. When applied to a Sonogram this corresponds
to computing partial derivatives with respect to time or
frequency band of the spectral energy. For instance filters
of type 2 compute the partial derivative of loudness with
respect to time in a particular frequency band. Filters of
type 3 compute the second partial derivative with respect
to frequency and time. Filters of type 4 compute the the
partial derivative of loudness with respect to frequency at a
specific time location. These low-level time and frequency

derivatives have been shown to be useful features in sound
classification.

Figure 3 shows one of the extensions studied in this
document, in this case a simple filter is periodically applied
to a Sonogram.
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characterize each spatio temporal filter. Each of the five basic
Viola Jones feature kernels, plus a center-surround kernel, are
shown. The filter response of each repetition of the simple
filter yields a time series that is fed into the summary statistic
specific to the particular spatio-temporal feature.

A. Training

We use Gentle-Boost [29] to construct a strong classifier
that combines a subset of all possible STBFs. Gentle-Boost
is a popular method for sequential maximum likelihood
estimation and feature selection. At each round of boosting,
a transfer function, or “tuning curve”, is constructed for each
STBF which maps feature response to a real number in
[−1, 1]. Each tuning curve is computed using non-parametric
regression methods to be the optimal tuning curve for the
corresponding STBF at this round of boosting (see [30] for
details). The feature + tuning curve that yields the best
improvement in the Gentle-Boost loss function is then added
into the ensemble, and the process repeats until performance
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Fig. 3: Depicted above is the original 1-d temporal audio signal (left), the Sonogram (middle) and a STBF superimposed on
a Sonogram (right). The STBF output serves as the input to the learning framework described in section IV-C (This figure is
reprinted from [1]).

features and then focuses on trying “nearby” features to the
best features from the initial set [20].

The amount of time needed to train a classifier scales
linearly with the number of examples. On a standard desktop
computer it takes approximately 1 hour to train a classifier on
the human coded subset of the database of audio from ECEC
(described in section III).

V. RESULTS

A. Results

All approaches were evaluated using leave one episode out
cross validation (see section III). Each approach was trained
to classify 4-second audio clips as containing cry or not
containing cry. The binary labelers were determined from
the human labels using the procedure outlined in section III.
Our system significantly outperforms SOLAR with an area
under the ROC of .9467 and .9093 respectively (see figure 5).
We also examined the role that the length audio used for
classification has on the overall performance of our system.
Figure 5 shows the resulting time-accuracy trade-off function.
The area under the ROC curve for 8 second clips is 0.97.

Analysis of the features learned by our system revealed that
the frequency bands that were most salient for our classifiers
aligned quite precisely with the mean fundamental frequency
of infant cries [21].

VI. CONCLUSION

We argued that automatic cry detection in natural environ-
ments is as a critical, and under-studied, problem. We collected
a database of toddler crying episodes in a very noisy, early
childhood education environment and showed that a machine
learning approach worked exceptionally well at detecting
crying episodes (97 % correct detection in 2 alternative forced
choice identification of 8 second audio clips).

We are currently exploring with internodal machine learning
algorithms, that can take advantage of one sensory modality
(e.g., audio) to train another modality (video). This could in
principle allow for robots to learn how children look like when

they cry and when they do not cry, so as to further improve
their performance.

We are also focusing on the problem of integrating this
perceptual primitive into a robot behavioral system. A promis-
ing avenue for achieving this outlined in this document is
using data from human experts to help RUBI develop a
control algorithm for shaping positive moods in the preschool
environment.
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