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1 The Temporal (1-D) Gabor Filter

Gabor filters can serve as excellent band-pass filters for unidimensional signals (e.g.,
speech). A complex Gabor filter is defined as the product of a Gaussian kernel times
a complex sinusoid, i.e.

g(t) = kejθ w(at)s(t) (1)

where

w(t) = e−πt2 (2)

s(t) = ej(2πfot) (3)

ejθs(t)ej(2πfot+θ) =
(

sin(2πfot + θ), j cos(2πfot + θ)
)

(4)

Here k, θ, fo are filter parameters. We can think of the complex Gabor filter as two
out of phase filters continently allocated in the real and complex part of a complex
function, the real part holds the filter

gr(t) = w(t) sin(2πfot + θ) (5)

and the imaginary part holds the filter

gi(t) = w(t) cos(2πfot + θ) (6)

1.1 Frequency Response

Taking the Fourier transform

ĝ(f) = kejθ

∫

∞

−∞

e−j2πftw(at)s(t) dt = kejθ

∫

∞

−∞

e−j2π(f−fo)tw(at)dt (7)

=
k

a
ejθŵ(

f − fo

a
) (8)

where

ŵ(f) = w(f) = e−πf2

(9)

1.2 Gabor Energy Filters

The real and imaginary components of a complex Gabor filter are phase sensitive,
i.e., as a consequence their response to a sinusoid is another sinusoid (see Figure
1.2). By getting the magnitude of the output (square root of the sum of squared
real and imaginary outputs) we can get a response that phase insensitive and thus
unmodulated positive response to a target sinusoid input (see Figure 1.2). In some
cases it is useful to compute the overall output of the two out of phase filters.
One common way of doing so is to add the squared output (the energy) of each
filter, equivalently we can get the magnitude. This corresponds to the magnitude
(more precisely the squared magnitude) of the complex Gabor filter output. In the
frequency domain, the magnitude of the response to a particular frequency is simply
the magnitude of the complex Fourier transform, i.e.

‖g(f)‖ =
k

a
ŵ(

f − fo

a
) (10)

Note this is a Gaussian function centered at f0 and with width proportional to a.
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Figure 1: Top: An input signal. Second: Output of Gabor filter (cosine carrier).
Third: Output of Gabor Filter in quadrature (sine carrier); Fourth: Output of
Gabor Energy Filter

1.2.1 Bandwidth and Peak Response

Thus the peak filter response is at fo. To get the half-magnitude bandwidth ∆f

note

ŵ(
f − fo

a
) = e−π f−fo

a2 = 0.5 (11)

Thus the half peak magnitude is achieved for

f − fo ±
√

a2 log 2π = 0.4697 a ≈ 0.5 a (12)

Thus the half-magnitude bandwidth is (2)(0.4697)a) which is approximately equal
to a. Thus a can be interpreted as the half-magnitude filter bandwidth.

1.3 Eliminating the DC response

Depending on the value of fo and a the filter may have a large DC response. A
popular approach to get a zero DC response is to subtract the output of a low-pass
Gaussian filter,

h(t) = g(t) − c w(bt) = kejθw(at)s(t) − c w(bt) (13)

Thus

ĥ(f) = ĝ(f) − c

b
ŵ(

f

b
) (14)



To get a zero DC response we need

c

b
ŵ(0) = ĝ(0) (15)

c = bĝ(0) = b
k

a
ejθŵ(

fo

a
) (16)

where we used the fact that ŵ(fo) = ŵ(−fo) Thus,

h(t) = g(t) − b ĝ(0) = kejθ
(

w(at)s(t) − b

a
ŵ(

fo

a
)w(bt)

)

(17)

ĥ(f) =
k

a
ejθ
(

ŵ(
f − fo

a
) − ŵ(

fo

a
) ŵ(

f

b
)
)

(18)

It is convenient, to let b = a, in which case

h(t) = kejθw(at)
(

s(t) − ŵ(
fo

a
)
)

(19)

h(f) =
k

a
ejθ
(

ŵ(
f − fo

a
) − ŵ(

fo

a
) ŵ(

f

a
)
)

(20)

2 The Spatial (2-D) Gabor Filter

Here is the formula of a complex Gabor function in space domain

g(x, y) = s(x, y) wr(x, y) (21)

where s(x, y) is a complex sinusoid, known as the carrier, and wr(x, y) is a 2-D
Gaussian-shaped function, known as the envelope.

2.1 The complex sinusoid carrier

The complex sinusoid is defined as follows,1

s(x, y) = exp (j (2π(u0 x + v0 y) + P )) (22)

where (u0, v0) and P define the spatial frequency and the phase of the sinusoid
respectively.

We can think of this sinusoid as two separate real functions, conveniently allocated
in the real and imaginary part of a complex function (see Figure 1).

1An offset constant parameter for s(x, y) will be introduced later, to compensate the
DC-component of this sinusoid. Refer to the appendix for detailed explanation.



Figure 2: The real and imaginary parts of a complex sinusoid. The images are
128 × 128 pixels. The parameters are: u0 = v0 = 1/80 cycles/pixel, P = 0 deg.

The real part and the imaginary part of this sinusoid are

Re (s(x, y)) = cos (2π(u0 x + v0 y) + P )

Im (s(x, y)) = sin (2π(u0 x + v0 y) + P )
(23)

The parameters u0 and v0 define the spatial frequency of the sinusoid in Cartesian
coordinates. This spatial frequency can also be expressed in polar coordinates as
magnitude F0 and direction ω0:

F0 =
√

u0
2 + v0

2

ω0 = tan−1

(

v0

u0

) (24)

i.e.

u0 = F0 cos ω0

v0 = F0 sin ω0

(25)

Using this representation, the complex sinusoid is

s(x, y) = exp (j (2πF0 (x cos ω0 + y sin ω0) + P )) (26)

2.2 The Gaussian envelope

The Gaussian envelope looks as follows (see Figure 2):

wr(x, y) = K exp
(

−π
(

a2 (x − x0)r
2

+ b2 (y − y0)r
2
))

(27)

where (x0, y0) is the peak of the function, a and b are scaling parameters2 of the
Gaussian, and the r subscript stands for a rotation operation3 such that

(x − x0)r = (x − x0) cos θ + (y − y0) sin θ

(y − y0)r = −(x − x0) sin θ + (y − y0) cos θ

(28)

2Note that the Gaussian gets smaller in the space domain, if a and b get larger.
3This rotation is clockwise, the inverse of the counterclockwise rotation of the ellipse.



Figure 3: A Gaussian envelope. The image is 128× 128 pixels. The parameters are
as follows: x0 = y0 = 0. a = 1/50 pixels, b = 1/40 pixels, θ = −45 deg.

2.3 The complex Gabor function

The complex Gabor function is defined by the following 9 parameters;

• K : Scales the magnitude of the Gaussian envelope.

• (a, b) : Scale the two axis of the Gaussian envelope.

• θ : Rotation angle of the Gaussian envelope.

• (x0, y0) : Location of the peak of the Gaussian envelope.

• (u0, v0) : Spatial frequencies of the sinusoid carrier in Cartesian
coordinates.
It can also be expressed in polar coordinates as (F0, ω0).

• P : Phase of the sinusoid carrier.

Each complex Gabor consists of two functions in quadrature (out of phase by 90
degrees), conveniently located in the real and imaginary parts of a complex function.



Figure 4: The real and imaginary parts of a complex Gabor function in space
domain. The images are 128×128 pixels. The parameters are as follows: x0 = y0 =
0, a = 1/50 pixels, b = 1/40 pixels, θ = −45 deg, F0 =

√
2/80 cycles/pixel, ω0 =

45 deg, P = 0 deg.

Now we have the complex Gabor function in space domain4 (see Figure 3):

g(x, y) = K exp
(

−π
(

a2 (x − x0)r
2

+ b2 (y − y0)r
2
))

exp (j (2π(u0 x + v0 y) + P ))
(29)

Or in polar coordinates,

g(x, y) = K exp
(

−π
(

a2 (x − x0)r
2

+ b2 (y − y0)r
2
))

exp (j (2πF0 (x cos ω0 + y sin ω0) + P ))
(30)

4In fact, there remains some DC component in this Gabor function. You have to
compensate it to have the admissible Gabor function. Refer to the appendix.



Figure 5: The Fourier transform of the Gabor filter. The peak response is at
the spatial frequency of the complex sinusoid: up = vp = 1/80 cycles/pixel. The
parameters are as follows: x0 = y0 = 0, a = 1/50 pixels, b = 1/40 pixels, θ =

−45 deg, F0 =
√

2/80 cycles/pixel, ω0 = 45 deg, P = 0 deg.

The 2-D Fourier transform of this Gabor5 is as follows (see Figure 4):

ĝ(u, v) =
K

ab
exp (j (−2π (x0 (u − u0) + y0 (v − v0)) + P ))

exp

(

−π

(

(u − u0)r
2

a2
+

(v − v0)r
2

b2

)) (31)

Or in polar coordinates,

Magnitude (ĝ(u, v)) =
K

ab
exp

(

−π

(

(u − u0)r
2

a2
+

(v − v0)r
2

b2

))

Phase (ĝ(u, v)) = −2π (x0 (u − u0) + y0 (v − v0)) + P

(32)

5Refer to the appendix for detailed explanation.



3 Half-magnitude profile

The region of points, in frequency domain, with magnitude equal one-half the peak
magnitude can be obtained as follows. Since the peak value is obtained for (u, v) =
(u0, v0), and the peak magnitude is K/ab, we just need to find the set of points
(u, v) with magnitude K/2ab.

1

2

K

ab
=

K

ab
exp

(

−π

(

(u − u0)r
2

a2
+

(v − v0)r
2

b2

))

(33)

or,

− log 2 = −π

(

(u − u0)r
2

a2
+

(v − v0)r
2

b2

)

(34)

or equivalently,
(

(u − u0)r

a C

)2

+

(

(v − v0)r

b C

)2

= 1

where C =

√

log 2

π
= 0.46971864 ≈ 0.5

(35)

Equation 35 is an ellipse centered at (u0, v0) rotated with an angle θ with respect
to the u axis. The main axis of the ellipse have length 2 a C ≈ a and 2 b C ≈ b
respectively.

We will use the following convention: a is the length of the axis closer to ω0, and b
is the length of the axis perpendicular to the main axis6 (See Figure 5).

(a)

(b)

Theta 

F_0

Omega_0

Figure 6: Parameters of the Gabor kernel as reflected in the half-magnitude elliptic
profile. Note that this is a figure in frequency domain.

4 Half-magnitude frequency and orientation bandwidths

Frequency and orientation bandwidths of neurons are commonly measured in terms
of the half-magnitude responses. Let u0, v0 the preferred spatial frequency of a
neuron. In polar coordinates this spatial frequency can be expressed as F0 and ω0.

6More precisely a and b are 1.06 times the length of the respective axis



To find the half-magnitude frequency bandwidth, we probe the neuron with sinusoid
images of orientation ω0 and different spatial frequency magnitudes F . We increase
F with respect to F0 until the magnitude of the response is half the magnitude
at (F0, ω0). Let’s call that value Fmax. We then decrease F with respect to F0

until the magnitude of the response is half the response at (F0, ω0). Call that Fmin.
Half-magnitude frequency bandwidth is defined as follows:

∆F1/2 = Fmax − Fmin (36)

or, when measured in octaves,7

∆F1/2 = log2 (Fmax/Fmin) (37)

Half-magnitude orientation bandwidth is obtained following the same procedure but
playing with the orientation ω instead of the frequency magnitude F .

∆ω1/2 = ωmax − ωmin (38)

In Gabor functions with θ0 ≈ ω0 the frequency bandwidth can be obtained as
follows (See Figure 6)

∆F1/2 = 2 a C ≈ a (39)

and the orientation bandwidth can be approximated as follows (see Figure 6)

∆ω1/2 ≈ 2 tan−1

(

b C

F0

)

(40)

b C

Fo

Delta F = aC

0.5 Delta W ~ arctan( b C / F o)

Figure 7: A half-magnitude profile and its relationship to the orientation and fre-
quency bandwidths.

7Octave is a unit used for shown the ratio, as an index of 2. k octaves = 2k
× 100.0%



5 Effective spread and rms spread

The rms (which stands for root mean squares) length, rms width, and rms area of
a 2-D function are defined in terms of their first and second moments:

The moments of a complex function g(x, y) are defined by converting the function
into a probability density (which must be always positive and integrates to 1.0) and
then calculating the standard first and second moments.

A common way to achieve this is as follows:

From the function g(x, y) we construct the following probability density

f(x, y) =
1

Z
|g(x, y)|2 (41)

where |g(x, y)|2 is the squared magnitude of the signal, which is always positive,
and Z guarantees that f(x, y) integrates to 1.0, i.e.

Z =

∫ +∞

−∞

∫ +∞

−∞

|g(x, y)|2dxdy (42)

Once we have defined a probability density function, the standard statistical mea-
sures of location and scale follow.

µX = EX(x) =

∫ ∫

f(x, y)xdxdy (43)

σ2
X = EX

(

(x − µX)
2
)

=

∫ ∫

f(x, y) (x − µX)
2
dxdy (44)

with similar equations for µY and σ2
Y .

µY = EY (y) =

∫ ∫

f(x, y) y dxdy (45)

σ2
Y = EY

(

(y − µY )
2
)

=

∫ ∫

f(x, y) (y − µY )
2
dxdy (46)

And,

σXY = EXY ((x − µX) (y − µY )) =

∫ ∫

f(x, y) (x − µX) (y − µY ) dxdy (47)

The rms width and length are defined as the σX and σY of a rotated version of
f(x, y) so that the covariance σXY of the rotated distribution be zero.

Let Xr, Yr represent the rotated variables for which the covariance is zero, the rms
length and width are

∆Xrms =
√

σ2
Xr

(48)

∆Yrms =
√

σ2
Yr

(49)

Similar definitions can be obtained also in the frequency domain, by working with
the Fourier transform of the original complex function.

∆Urms =
√

σ2
Ur

(50)

∆Vrms =
√

σ2
Vr

(51)



The rms area in the space and frequency domains are defined as follows:

Area (XY )rms = (∆Xrms) (∆Yrms) (52)

Area (UV )rms = (∆Urms) (∆Vrms) (53)

Some papers work with what are known as effective length, width and areas. They
are simply the rms measures multiplied by

√
2π

∆Xeff =
√

2π ∆Xrms (54)

and so on.

It can be shown that the following relationships hold on any 2D function with finite
moments

(∆Xrms) (∆Urms) ≥
1

4π
(55)

(∆Yrms) (∆Vrms) ≥
1

4π
(56)

and

Area (XY )rms Area (UV )rms ≥
1

16π2
(57)

It is easy to verify that the Gabor complex function achieves the lower limits of
the uncertainty relations. For a given area in the space domain it provides the
maximum possible resolution in the frequency domain, and vice-versa.

It can be shown that the rms width and lengths of Gabor functions are as follows:

∆Urms =
a

2
√

π
(58)

∆Vrms =
b

2
√

π
(59)

Tow see why, simply consider that the probability density associated with the Gabor

function f(x, y) =
1

Z
|g(x, y)|2 is Gaussian

|ĝ(u, v)|2 = exp(−2π(
u2

a2
+

v2

b2
)) (60)

with variances equal to ∆U2
rms and ∆V 2

rms.

Moreover, from the uncertainty relations,

∆Xrms =
1

2a
√

π
(61)

∆Yrms =
1

2b
√

π
(62)

6 Gabor functions as models of simple cell receptive fields

Jones and Palmer (1987) showed that the real part of complex Gabor functions
fit very well the receptive field weight functions found in simple cells in cat striate
cortex.

Here are some useful pieces information for designing biologically inspired Gabor
filters.



• To a first approximation the orientation of the Gaussian envelop ω0 can be
modeled as being equivalent to the orientation of the carrier.8 θ0 = ω0.
The actual absolute deviations between θ0 and ω0 have a Median of about
10 degrees (see Jones and Palmer, 1987, p. 1249).

• In macaque V1, most cells have a half magnitude spatial frequency band-
width between 1 and 1.5 octaves. The median is about 1.4 octaves (see
De Valois et al., 1982a, p. 551).

• In macaque V1, the range of half-magnitude orientation bandwidths among
cells is very large: From 8 degrees to the most narrowly tuned. At the other
end there were cells with no orientation selectivity at all. (see De Valois
et al., 1982b, p. 535 and 541) reports the following statistics for the ori-
entation bandwidth: mean = 65 degrees, median = 42 degrees, mode =
30 degrees. However they point out that others have reported significantly
larger numbers. For example () reports a 71 % from max median band-
width of 38.5 degrees. This would correspond to a median half magnitude
bandwidth of 66 degrees. The median bandwidth of simple cells in the cat
is a bit smaller than in the macaque, with a typical median half magnitude
orientation bandwidth of 30 degrees (see De Valois et al., 1982b, p. 535 and
541).

• In macaque V1 the peak frequencies range from as low as 0.5 cycles per
degree of visual angle, to as large as 15 cycles per degree of visual angle.
Mean values are 2.7 cycles per degree for cells mapping into the parafoveal
and 4.25 cycles per degree for cells mapping into the fovea.

• The spatial frequency bandwidth (in octaves) tends to be a bit larger for
cells with low peak frequency than for cells with large peak frequency. For
example, the median half magnitude bandwidth of cells tuned to frequen-
cies higher than 5 cycles/degree is 1.2 octaves, whereas the median for
cells tuned to frequencies smaller than 2 cycles/degree is 1.7 octaves. (see
De Valois et al., 1982a, p. 552).

• Orientation selective simple cells in V1 show minimum response at about
30 to 40 degrees away from the optimal orientation, not at 90 degrees away
from the optimal orientation (see De Valois et al., 1982b, p. 539).

• The spiking rate of simple cells neurons in macaque V1 is between close
to 0 Hz, at rest, to about 120 Hz, when maximally excited (see De Valois
et al., 1982a, p. 547).

• In the area mapping the fovea, there are more kernels oriented vertically
and horizontally than oriented diagonally (about 3 to 2). (see De Valois
et al., 1982b, p. 537).

• Pairs of adjacent simple cells in the visual cortex of the cat are in quadrature
(Pollen and Ronner, 1981). We can then put these two cells in the real and
imaginary parts of a complex function and treat them as a complex Gabor
receptive field.

7 Gabor functions for spatial frequency filtering

Consider a massive set of simple cell neurons with Gabor kernel functions with equal
parameters except for the location parameters (x0, y0). Let all these neurons be
distributed uniformly about the foveal field. Each point in the foveal field contains

8domain. Note that the long axis in the frequency domain becomes the short axis in
the space domain. Don’t get confused!



at least two neurons in quadrature. We can model the operation of such a set of
neurons as a convolution operation (assuming a continuous and uniform distribution
of filters in all the foveal locations). Since convolution in space domain is product in
frequency domain, the set of Gabor functions work as bandpass frequency filters of
the foveal image. The peak frequency is controlled by the spatial frequency of the
sinusoid carrier (u0, v0). The half-magnitude region is controlled by the rotation θ
and scale parameters a, b, of the Gaussian envelope.

8 Energy filtering

A quadrature pair (or a Hilbert Transform pair) is a set of two linear operators with
the same amplitude response but phase responses shifted by 90 degrees. Strictly
speaking sine and cosine Gabor operators are not quadrature pairs because cosine
phase Gabors have some DC response, whereas sine gabors do not. However, one
can have quadrature Gabor pairs that look very much like sine/cosine pairs. Thus
the sine and cosine Gabor pair is commonly refered to as a quadrature pair.

A system that sums the square of the outputs of a quadrature pair is called an energy
mechanism (Adelson and Bergen, 1985). Energy mechanisms have unmodulated
responses to drifting sinusoids.

Complex cells in V1 are commonly modeled as energy mechanisms since they are
unmodulated by drifting sinusoids. Simple cells respond to a drifting sinusoid with
a half-wave rectified analog of the signal, suggesting that the cells are linear up to
rectification. Complex cells respond to a drifting sinusoid in an unmodulated way,
as a maintained discharge. Movshon et al. (1987) showed that complex receptive
fields are composed of subunits. The subunits of model complex cells are model
simple cells with identical amplitude response. Emerson et al. (1992) have shown
that behavior of complex cell to stimuli made of pairs of bars flashed in sequence is
consist with an energy mechanism.

9 Contrast Normalization

Morrone et al. (1982) have shown that stimuli presented at orientations orthogonal
to the optimal orientation inhibit simple cells activity. (De Valois et al., 1982a) have
shown similar inhibitory effect between frequency bands. These inhibitory effects
may play a serve as a gain control (or contrast normalization) mechanism. Heeger
(1991) proposes the following model of gain control in complex cells: The amplitude
response of each energy mechanism is divided by the total energy at all orientations
and nearby spatial frequencies:

Ēi =
Ei

κ +
∑

j Ej
(63)

where κ is a positive constant to avoid zero denominators.

10 Functional Interpretations

Section in preparation:

• minimizes number of neurons needed to achieve a desired frequency resolu-
tion.

• spatially and frequency localized.



• matched to “logons” likely to occur in images.

• for natural images the Gabor representation is more sparse than the δ
(pixel) representation and than the DOG representation.

11 Constructing an idealized V1

Here we propose a way to construct a biologically inspired Gabor filter bank.

• The orientation of the complex sinusoid carrier and the Gaussian envelope
are the same: ω0 = θ. This is just an approximation. The actual median
absolute deviation between ω0 and θ is about 10 degrees.

• We will assume that the he half-magnitude frequency bandwidth, when
measured in octaves, is constant and equal to 1.4 cycles per degree for all
neurons. This is just an approximation. We know that neurons tuned to
low spatial frequencies have larger bandwidth (median 1.7) and neurons
tuned to high spatial frequencies have smaller bandwidth (median 1.2). In
addition there is a significant range in bandwidths (bulk of the neurons
have bandwidths between 1 and 1.5 octaves) that will not be addressed by
the proposed model.

• We will assume that the half-magnitude orientation bandwidth is constant
and equal to 40 degrees for all neurons (median value reported by (De Valois
et al., 1982b). This is just an approximation since the actual range observed
in simple cells is very large, going from 10 degrees to no orientation selec-
tivity at all. Given this wide range in the distribution it is not surprising
that other median bandwidth values have been reported in the literature,
ranging from a reported median of about 30 degrees to a reported median
of about 60 degrees (De Valois et al., 1982b).

• From the three constrained above, we will soon derive that all the filter
kernels shall have a aspect ratio of about 1.24, i.e., a/b ≈ 1.24.

• In addition, to facilitate the design we will design our filter bank so that
the half-magnitude contour of a frequency band coincides with the lower
contour of the next frequency band.

From these assumptions above, we can derive the relationship between the param-
eters F0, a and b.

From equations 37 and 39, we know that the frequency bandwidth in octaves is

∆F1/2 = log2

F0 + a C

F0 − a C

where C =

√

log 2

π
= 0.46971864 ≈ 0.5

(64)

Thus,

a = F0
Ka

C
(65)

where

Ka =
2∆F − 1

2∆F + 1
(66)

With respect to the orientation bandwidth, equation 40 tells us that

tan

(

1

2
∆ω

)

=
b C

F0
(67)



Thus,

b = F0
Kb

C
(68)

where

Kb = tan

(

1

2
∆ω

)

(69)

Therefore, in this model the aspect ratio of a and b is constant:

λ =
a

b
=

Ka

Kb
(70)

Moreover, from equation 39

1

2
∆F = a C = F0 Ka (71)

We can now locate our frequency peaks such that the upper half-magnitude contour
of one channel coincides with the lower half-magnitude contour of the the next
channel.

Let µi signify the peak frequency of the ith band,
We know Fmax for band i is

F i
max = µi +

1

2
∆Fi = µi + µi Ka = µi (1 + Ka) (72)

and Fmin for band i + 1 is

F i+1
max = µi+1 −

1

2
∆Fi+1 = µi+1 − µi+1 Ka = µi+1 (1 − Ka) (73)

We want these two values to coincide, therefore

µi+1 = µi
1 + Ka

1 − Ka
(74)

Thus, the peak frequencies follow a geometric series

µi = µ1R
i−1 (75)

where

R =
1 + Ka

1 − Ka
(76)

11.1 Example

If we use the standard values for simple cell median of the half magnitude band-
widths from macaque striate cortex:

• ∆F = 1.4 octaves.

• ∆ω = 40 degrees.

Then,

Ka =
2∆F − 1

2∆F + 1
= 0.45040 (77)

Kb = tan

(

1

2
∆ω

)

= 0.36397 (78)



a = µi
Ka

C
= 0.9589 µi (79)

λ =
a

b
=

Ka

Kb
= 1.23746 (80)

b =
a

λ
= 1.1866 µi (81)

R =
1 + Ka

1 − Ka
= 2.6390 (82)

Suppose we want three frequency bands and we want the F0 of the third band to
be 0.25. Then,

µ1 =
0.25

2.63902 = 0.03589 (83)

and
1

2
∆F1 = Ka µ1 = 0.01617 (84)

Thus, the half magnitude interval9 is (0.01973, 0.05207)

The second band peaks at
µ2 = µ1 R = 0.09473 (85)

and
1

2
∆F2 = Ka µ2 = 0.04267 (86)

Thus, the half magnitude interval is (0.05207, 0.1374)

Finally, the third band peaks at

µ3 = µ2 R = 0.2500 (87)

and
1

2
∆F3 = Ka µ3 = 0.1126 (88)

Thus, the half magnitude interval is (0.1374, 0.3626)

These three Gabors cover the frequency bands of (0.01973, 0.3626)

12 Appendix

12.1 Fourier transform of a Gaussian function

The Fourier transform of the simple 1-D Gaussian is
∫

∞

−∞

exp(−πx2) exp(−2πjfx) dx

=

∫

∞

−∞

exp
(

−π(x + jf)
2 − πf2

)

dx

= exp
(

−πf2
)

∫

∞

−∞

exp
(

−πx′2
)

dx′ (x′ ≡ x + jf)

= exp
(

−πf2
)

(89)

9The half magnitude interval here is the frequency coverage of that Gabor in terms of

half-magnitude profile:

„

µi −

1

2
∆Fi, µi +

1

2
∆Fi

«



In the same way, the Fourier transform of the simple 2-D Gaussian is
∫

∞

−∞

∫

∞

−∞

exp
(

−π(x2 + y2)
)

exp(−2πjux) exp(−2πjvy) dxdy

=

∫

∞

−∞

exp(−πx2) exp(−2πjux) dx

∫

∞

−∞

exp(−πy2) exp(−2πjvy) dy

= exp(−πu2) exp(−πv2)

= exp
(

−π(u2 + v2)
)

(90)

and so on. More generally,
∫

∞

−∞

exp
(

−π xT x
)

exp
(

−2πj uT x
)

dx = exp
(

−π uT u
)

(91)

That is, the Fourier transform of an N-dimensional Gaussian is also an N-
dimensional Gaussian.

12.2 Fourier transform of the Gabor function

Given a Gaussian envelope and sinusoid carrier:

w(x) = exp(−π xT x) (92)

s(x) = exp(j2π uT
o x) (93)

We define a Gabor function as follows

g(x) = K exp(jP ) w(A(x − xo)) s(x) (94)

where K, P , A, uo and xo are function parameters. The Fourier transform of this
function is as follows

ĝ(u) =

∫

∞

−∞

g(x) exp(−2πj uT x) dx (95)

= K exp(jP )

∫

∞

−∞

w(A(x − x0)) exp(−2πj (u − u0)
T x) dx (96)

Letting x̃ = A(x − xo) we get x = A−1x̃ + xo, and10 dx̃ = Adx and therefore

ĝ(u) =
K

‖A‖ exp(jP )

∫

∞

−∞

w(x̃) exp(−2πj (u − u0)
T
(A−1x̃ − xo)) dx̃ (97)

=
K

‖A‖ exp(jP ) exp((u − uo)
T xo) (98)

∫

∞

−∞

w(x̃) exp(−2πj (A−T (u − u0))
T x̃) dx̃ (99)

Thus

ĝ(u) =
K

‖A‖ exp(jP ) exp(−j2π (u − uo)
T xo) w(A−T (u − uo)) (100)

where we used the fact that ŵ(·) = w(·).
10Note the dx symbol in the integral stands for the product dx1dx2



For the class of Gabor functions studied in the main section of this document we
let A = DV , where D is a diagonal matrix and V is a rotation matrix such that

D =

(

a 0

0 b

)

, V =

(

cos θ sin θ

− sin θ cos θ

)

(101)

Thus, since V is a rotation

A−1 = D−1V −T (102)

A−T = V D−1 = D−1V (103)

‖A‖ = ‖D‖‖V ‖ = ab (104)

and therefore,

g (x, y) =

K exp
(

−π
(

a2 (x − x0)r
2

+ b2 (y − y0)r
2
))

exp (j (2π (u0x0 + v0y0) + P ))

(105)
And its Fourier transform is:

ĝ(u, v) =
K

ab
exp(jP ) exp(−2jπ(x0(u − u0) + y0(v − v0))) (106)

exp(−π(
(u − u0)

2
r

a2
+

(v − v0)
2
r

b2
) (107)

where

(x − x0)r = (x − x0) cos θ + (y − y0) sin θ (108)

(y − y0)r = −(x − x0) sin θ + (y − y0) cos θ (109)

12.3 Eliminating the DC response of Gabor Filters

The Gabor function as defined above may have a non-zero DC response

ĝ(0) =
K

‖A‖ exp(jP ) exp(j2π uT
o xo) w(A−T uo) (110)

where we used the fact that w(x) = w(−x). In some cases it is useful to eliminate
the DC response, for example, we may not want the filter to respond to the absolute
intensity of an image. One approach to doing so is to subtract from the original
filter the output of a low-pass filter.

h(x) = g(x) − Cf(x) (111)

where C is a constant and f(·) is the low pass filter. A convenient and popular low
pass filter is as follows

f(x) =
K

‖A‖ w(A(x − xo)) (112)

Note in this case

f(x) =
K

‖A‖ w(A(x − xo))
(

exp(jP ) exp(j2π uT
o xo) − C

)

(113)

which corresponds to subtracting a complex constant from the complex sinusoid
carrier.



Note f is a Gabor filter with zero phase and zero peak response. Therefore it has
the following Fourier Transform

f̂(u) =
K

‖A‖ exp(−j2π uT xo) w(A−T u) (114)

Thus the DC response of the combined filter is as follows

ĥ(0) = ĝ(0) − Cf̂(0) =
K

‖A‖
(

exp(jP ) exp(j2π uT
o xo) w(A−T uo) − C

)

(115)

and thus get a zero DC response we simply need to set C as follows

C = exp(j(P + 2π uT
o xo)) w(A−T uo) (116)

12.4 Another formula of the Gabor function

In other papers, you may see another formula representation of the Gabor function.
For example, in most papers, x0 = y0 = 0, P = 0. Then,

g (x, y) = K exp
(

−π
(

a2 xr
2 + b2 yr

2
))

(

exp (2πj (u0x + v0y)) − exp

(

−π

(

u0r
2

a2
+

v0r
2

b2

)))

(117)

ĝ (u, v) =
K

ab

(

exp

(

−π

(

(u − u0)r
2

a2
+

(v − v0)r
2

b2

))

− exp

(

−π

(

u0r
2

a2
+

v0r
2

b2

))

exp

(

−π

(

ur
2

a2
+

vr
2

b2

))) (118)

Moreover, a = b ≡ σ in some paper. The rotation angle has no effect (θ = 0) in
this case.

g (x, y) = K exp
(

−πσ2
(

x2 + y2
))

(

exp (2πj (u0x + v0y)) − exp
(

− π

σ2

(

u0
2 + v0

2
)

)) (119)

ĝ (u, v) =
K

σ2

(

exp
(

− π

σ2

(

(u − u0)
2
+ (v − v0)

2
))

− exp
(

− π

σ2

(

u0
2 + v0

2
)

)

exp
(

− π

σ2

(

u2 + v2
)

)) (120)

Then if you restrict the magnitude of spatial frequency of the sinusoid carrier F0 to
satisfy this equation:

F0 =
√

u0
2 + v0

2 =
σ2

√
2π

(121)

the Gabor function will be

g (x, y) = K exp
(

−πσ2
(

x2 + y2
))

(

exp
(

j
√

2πσ2 (x cos ω0 + y sin ω0)
)

− exp

(

−σ2

2

)) (122)



ĝ (u, v) =
K

σ2

(

exp
(

− π

σ2

(

(u − u0)
2

+ (v − v0)
2
))

− exp

(

−σ2

2

)

exp
(

− π

σ2

(

u2 + v2
)

)

) (123)

Finally if you use K = 2πσ2,

g (x, y) = 2πσ2 exp
(

−πσ2
(

x2 + y2
))

(

exp
(

j
√

2πσ2 (x cos ω0 + y sin ω0)
)

− exp

(

−σ2

2

)) (124)

ĝ (u, v) = 2π
(

exp
(

− π

σ2

(

(u − u0)
2

+ (v − v0)
2
))

− exp

(

−σ2

2

)

exp
(

− π

σ2

(

u2 + v2
)

)

) (125)



Additionally, you can use angular frequency (ν, ξ) instead of (u, v). Then,

g (x, y) = 2πσ2 exp
(

−πσ2
(

x2 + y2
))

(

exp (j (ν0x + ξ0y)) − exp

(

−σ2

2

)) (126)

ĝ (u, v) = 2π

(

exp

(

− 1

4πσ2

(

(ν − ν0)
2

+ (ξ − ξ0)
2
)

)

− exp

(

−σ2

2

)

exp

(

− 1

4πσ2

(

ν2 + ξ2
)

)) (127)

In fact, angular frequency representation can be seen in many papers. So it may be
useful to have the quite general Gabor function11 in that format:

g (x, y) = K exp
(

−π
(

a2 xr
2 + b2 yr

2
))

(

exp (j (ν0x + ξ0y)) − exp

(

− 1

4π

(

ν0r
2

a2
+

ξ0r
2

b2

)))

(128)

ĝ (u, v) =
K

ab

(

exp

(

− 1

4π

(

(ν − ν0)r
2

a2
+

(ξ − ξ0)r
2

b2

))

− exp

(

− 1

4π

(

ν0r
2

a2
+

ξ0r
2

b2

))

exp

(

− 1

4π

(

νr
2

a2
+

ξr
2

b2

))) (129)

11Only x0 = y0 = 0, P = 0 are assumed.



13 History

• The first version of this document, which was 14 page long, was written by
Javier R. Movellan in 1996.

• On September 3 2002 we added the changes made by Kenta Kawamoto.
These included a 7 page Appendix with sections on the Fourier transform
of the Gabor function, and an altenative formula for the Gabor function.

• Fall 2005. Georgios Britzolakis reported a bug on equation 60.

• Summer 2008. Javier Movellan added 1-D temporal Gabor Section, and
polished the Appendix.
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