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The equations of motion for DC motors are as follows

V = L
dI

dt
+RI + kbθ̇ (1)

Mθ̈ = kT I − νθ̇ − τ (2)

where V is the voltage applied to the motor, L is the motor inductance, I
the current through the motor windings, R the motor winding resistance,
kb the motor’s back electro magnetic force constant, θ̇ the rotor’s angular
velocity, M the rotor’s moment of inertia, kT the motor’s torque constant, ν
the motor’s viscous friction constant, and τ the torque applied to the rotor
by an external load.

1 Equilibrium Analysis

We apply a voltage source to the motor’s terminal and a mechanical load
(a torque ) τ to its rotor. We let time pass until the motor’s rate of rota-
tion equilibrates. At that point the temporal derivatives of the current and
velocity are zero. Thus the equilibrium equations are as follows

V = RI + kbθ̇ (3)

τ = kT I − νθ̇ (4)

It follows that

V =
R

kT
τ +

Rν

kT
θ̇ + kbθ̇ (5)

or equivalently

θ̇ =
(Rν
kT

+ kb

)−1(
V − R

kT
τ
)

(6)

After some algebra we get the equations for the equilibrium velocity and
torque

θ̇ =
(
ν +

kbkT
R

)−1(
V
kT
R
− τ

)
(7)

τ = V
Kt

R
−

(
ν +

kbkT
R

)
θ̇ (8)
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Figure 1 shows the torque/velocity equation for a Maxxon AMax 22 motor
running at 6 Volts. The equations represent the load (applied torque) in
the vertical axis and the resulting equilibrium velocity of the rotor in the
horizontal axis.
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Figure 1: Torque vs speed (line) and power vs speed (parabola) for the Maxon
AMax 22 motor running at 6 Volts.

1.1 Stall Torque and No Load Velocity

Maximum torque is achieved when the load is such that the motor does not
move at all. This is called the stall torque τs

τs = V
kT
R

(9)

Since the current draw is proportional to the torque, then the stall current
is as follows

Is =
τs
kT

=
V

R
(10)
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Maximum velocity θ̇n is achieved when no load is applied. This is called the
no load velocity θ̇n

θ̇n = τs

(
ν +

kbkT
R

)−1

(11)

Thus for a fixed voltage V the equilibrium torque, velocity, and current can
be expressed as follows

θ̇ = θ̇n −
(
ν +

kbkT
R

)−1

τ (12)

τ = τs −
(
ν +

kbkT
R

)
θ̇ (13)

I = Is −
( ν

kT
+
kb
R

)
θ̇ (14)

1.2 Power Curve

The mechanical power P delivered by the motor is the applied torque τ times
its angular velocity θ̇. Thus

P = τ θ̇ = τsθ̇ −
(
ν +

kbkT
R

)
θ̇2 (15)

To find the velocity that delivers maximum power we take the gradient with
respect to θ̇

∇θ̇Pm = τs − 2
(
ν +

kbkT
R

)
θ̇ (16)

Setting the gradient to zero we obtain the maximum power velocity θ̇mp

θ̇mp =
1

2
τs

(
ν +

kbkT
R

)−1

=
1

2
θ̇n (17)

Thus maximum mechanical power is achieved when the motor is running at
half the no load velocity. At that point the torque is as follows

τmp = τs −
(
ν +

kbkT
R

)
θ̇mp =

1

2
τs (18)

Thus maximum mechanical power is achieved when the load is one half of
the stall torque. Since the current draw is proportional to the torque, then
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the current at the point of maximum power transfer shall also be one half of
the stall current

Imp =
1

2
Is =

V

2R
(19)

The maximum mechanical power produced by the motor is as follows

Pmp = τmp θ̇mp =
1

4
τsθn (20)

1.3 Motor Efficiency

The efficiency η of a motor is defined as the ratio between the input electrical
power, i.e., the product of voltage times current, and the output mechanical
power P

η =
P

V I
(21)

To get the efficiency as a function of the equilibrium velocity we express the
current and the torque as a function of the velocity

I =
V −Kbθ̇

R
(22)

τ = τs −
(
ν +

kbkT
R

)
θ̇ (23)

Thus

η =
τ θ̇

V I
=
τsθ̇ −

(
ν + kbkT

R

)
θ̇2

V 2

R
− τsθ̇

(24)

The velocity that maximizes this function, i.e. the most efficient angular
velocity, can be obtained using the following formula (see derivation in the
Appendix).

θ̇me =
bc−

√
b2c2 − a2bc

ab
(25)
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where

a = τs (26)

b = ν +
kbkT
R

(27)

c =
V 2

R
(28)

The most efficient velocity occurs for values of θ larger than the maximum
power velocity, i.e., torques smaller than the maximum power torque (see
Figure 2). The maximum motor efficiency ηme is found by using θ̇me on
equation (24).
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Figure 2: Efficiency as a function of Angular Velocity for a Maxxon Amax
22 running at 6 Volts.
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2 Transient Behavior

When a motor is at rest and we apply a voltage, the current increases ac-
cording to the equation below

V = L
dI

dt
+RI + kT θ̇ (29)

The changes in the current are much faster than the changes in rotor velocity
so we can treat the rotor velocity θ̇ as if it were approximately constant. Thus
the current will grow exponentially with a time constant of L/R. This is
known as the electrical time constant1. In general the electrical time constant
is much larger than the time constant for θ̇ and thus, when analyzing the
speed dynamics we can approximate I as being at equilibrium, i.e.,

V ≈ RI + kbθ̇ (30)

This approximation is equivalent to assuming a zero electrical time constant.
Figure 3 show the current and velocity dynamics using the differential equa-
tions for current and motion (blue), and the approximation assuming a zero
electrical time constant. We call this the zero inductance (or instantaneous
electrical response) approximation. Under this approximation

V =
RM

kT
θ̈ +

Rν

kT
θ̇ +

R

kT
τ + kbθ̇ (31)

θ̈ =
kT
RM

V − 1

M
τ −

(kTkb
RM

+
ν

M

)
θ̇

=
1

M

(kT
R
V − τ −

(kTkb
R

+ ν
)
θ̇
)

(32)

Thus the time constant for the motor speed, known as the mechanical time
constant, is as follows

cm = M
(kTkb

R
+ ν

)−1

(33)

1Given an arbitrary initial condition C > 0 and a zero input to the system the time
constant is the time to decay to C/e = 0.3679C. It takes three time constants to get a
95% decay, 4.6 time constants to get a 99 % decay. Ten time constants result in a 99.9955
% decay.
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Current Spikes: When we apply a voltage to a stationary DC motor or
when we reverse voltages we can get large current spikes. There is a mis-
conception that these spikes are due to the motor’s inductance, but that’s
not correct. The spikes are due to the mechanical time constant, not the
electrical time constant. In fact for a given winding resistance R and torque
constant kT the smaller the inductance the larger the current spikes will be.
The motor’s inductance acts as a low pass filter for the current, smoothing
down the current spikes (see Figure 3).
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Figure 3: Left: Current (blue) and approximation using a zero electrical
time constant (red) . Right: Angular velocity (blue) and approximation
using a zero electrical time constant (red).

The magnitude of the current spikes can be easily estimated. When the
motor is stationary and we apply a voltage V , the current will jump to the
following start up value

Istart up =
V − kbθ̇

R
=
V

R
(34)

as the motor speed catches up, the current will progressively decrease. For
a given voltage range [−V, V ] the largest current spike occurs when we are
running the motor at maximum speed, i.e., no load speed, and suddenly we
reverse the voltage. The no load speed is as follows

θ̇n = V
kT
R

(
ν +

kbkT
R

)−1

(35)
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An upper limit to this speed can be obtained by setting the viscous friction
to zero, in which case

θ̇n ≈
V

kb
(36)

Thus, the reversal current can be bounded as follows

Ireversal ≈ −
V

R
− kb

V kt
RkbkT/R

= −2
V

R
(37)

Thus, in general a useful bound on the current spikes is ±2V/R.
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Figure 4: Simulation of transient behavior of Maxxon Amax 22 motor. A 6
Volt step function is applied at the point in time showing a steep increase in
current. The voltage is maintained and then reverse to -6 Volt step. This
is done at the point in time showing a steep decline in current. The figure
shows the resulting current and angular velocity for a 100 millisecond period.

Because of the large current draws that may occur when suddenly chang-
ing the supply voltage, it is important to have hardware capable of handling
these current spikes. One approach is to avoid abrupt changes in voltage.
For example, to accelerate and decelerate by slowly changing the voltage (see
Figure 5).
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Figure 5: Simulation of transient behavior of Maxxon Amax 22 motor with
exponential voltage stepup. Note in this case the terminal speed is achieved
with a much smaller current spike than if we had suddenly increased the
voltage from zero to 6 Volts.

3 Example: Maxxon Amax 22, 5 Watt motor

The parameters for the Maxxon Amax 22, 5 Watt motor are as follows.

V= 6 Volts %Recommended Voltage.

% All the parameters are with respect to this voltage .

L = 0.11/1000 Henrys

R = 1.71; Ohmns

k_T = 5.9/1000 Newton Meters/Amp

M = 3.88/10^7 % Moment of intertia Kg m^2

nu = 12/10^7% .Motor damping. New M/(rad/sec)
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It follows that the stall torque, stall current , and no load velocities are as
follows

τs = V
kT
R

= (20.7018)10−3 Newton Meters (38)

Is =
V

R
= 3.5088 Amps (39)

θ̇n = V
kT
R

(
ν +

kbkT
R

)−1

= 1008.5 rads/sec = 9630.7 RPM (40)

Figure 1 shows the torque/velocity function. The torque, current and velocity
at the points of maximum mechanical power follow

τmp =
1

2
τs = (10.3509)10−3 Newton Meters (41)

Imp =
1

2
= Is = 1.7544 Amps (42)

θ̇mp =
1

2
θ̇n = 4815.4 RPM (43)

Thus the maximum mechanical power delivered by the motor is as follows

Pmp = τmp θ̇mp = 5.2196 Watts (44)

For maximum power transfer the input power is

V Imp = 10.5263 (45)

Thus the efficiency at the point of maximum mechanical power is

ηmp =
5.2196

10.5263
= 0.4959 (46)

The efficiency as a function of the angular velocity

η =
τsθ̇ −

(
ν + kbkT

R

)
θ̇2

V 2/R− τsθ̇
(47)

is displayed in Figure 2. Using equations (24) and (25) we find

θ̇me = 8827.38 RPMs (48)

ηme = 0.8332 (49)
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The electrical time constant is 6 hundredths of a millisecond

ce =
L

R
= 0.06 Milli secs (50)

The mechanical time constant is 18.9 milliseconds

cm = M
(kTkb

R
+ ν

)−1

= 18.9 Milli secs (51)

The current spikes that would occur when using voltage step functions in
the [−V, V ] range are bounded by

±2V

R
= ±7.02 Amps (52)

We simulated the transient response to a Voltage step function (0 to 6 Volts).
At equilibrium we then reverse the voltage (see Figure 3). We find that the
maximum current draw at start up is 3.4534 Amps. The maximum current
draw when we reverse voltage is 6.878 Amps.

Gears If we add the Maxxon 110338 gear we get that the reduction is 19:1,
the gear moment of inertia is 0.5(10−7 Kg M2 . There is no information
about the viscous friction but the maximum efficiency is said to be 84% We
will use the value of
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4 Appendix

Important Constants for DC Motors (SI Units)

• L: Inductance. In Henrys.

• R: Resistance. In Ohms.

• M : Moment of inertia. In Kg m2

• kT : Torque constant. NewtonMeters/Amp

• kb: or ke: Back Emf constant, or Voltage constant: Volts/(radians/sec).
When using SI units kb = kT

• Kv.: Velocity (or speed constant). (radians/sec)/Volts. When using SI
units, kv = 1/ke

• ν: Viscous Damping (Newton m/ (radians/sec)

• cm: Mechanical time constant (secs).

• ce: Electrical time constant (secs).

SI Units (International System of Units)

• Mass: Kg

• Force: Newton

• Pressure: Pascal (Newton/m2)

• Power: Watt

• Energy: Joule (Newton Meter)

• Electric Potential: Volt

• Charge: Coulomb

• Capacitance: Farad

• Resistance: Ohm
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• Inductance: Henry

• Length: Meter

• Current: Ampere

• Time: Second

• Torque (moment of force): Newton Meter

• Moment of Inertia: Kg m2

• Angular Velocity: Radian/Sec

4.1 Maximum Power Efficiency

We need to optimize

ρ(x) =
ax− bx2

c− ax
(53)

as a function of a. We do so by taking the gradient of the logarithm of ρ and
setting it to zero

∇x log ρ =
a− 2bx

ax− bx2
+

a

c− ax
=
ac− 2bcx− a2x+ 2abx2 + a2x− abx2

(ax− bx2)(c− ax)
(54)

=
abx2 − 2bc+ ac

(ax− bx2)(c− ax)
(55)

Setting the numerator to zero and solving for x we get

x =
bc±

√
b2c2 − a2bc

ab
(56)

When applying this to the maximum efficiency problem we find that the so-
lution with the plus sign produces a velocity larger than the no load velocity,
so the only value solution is the one with the minus sign.

14



4.2 Motor Simulator

clear

%Parameters for Maxxon Amax 22, 5 Watt, 6 Volts motor

R = 1.71; %motor resistance in ohms

L = 0.11/1000; % motor inductance in Henris

Kt = 5.9/1000; % torque constant in Newton Meters/Amps

Kb = Kt;

M = 3.88/10000000;

b = 17/100000000 ; % motor damping in New m/(rad/sec)

CI = 0.840; % Max current for continuous operation Amps

CT = CI*Kt; % Torque for continuous operation Newton Meters

Vs = 6; % Reference Voltage in Volts

taue = L/R; % electrical time constant

taum = M/(Kb*Kt/R + b); % mechanical time constant

dt = taue/100; % time step in seconds

T= 20*taum;; % simulation time in secs

s = ceil(T/dt);

V=Vs;

I=zeros(s,1);

I2=zeros(s,1);

Omega= zeros(s,1);

Omega2= zeros(s,1);

V= zeros(s,1);

I(1)=0;

Omega(1)=0;

Omega2(1)=0;

for t=1: s

V(t) = Vs;

dI = (V(t) - R*I(t) - Kb*Omega(t) )*dt/L;

tau = Kt *I(t);

dOmega = (tau - b*Omega(t))*dt/M;
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Omega(t+1) = Omega(t) + dOmega;

I(t+1) = I(t) + dI;

end

OmegaNL = Vs*Kt/(R*( b + (Kb*Kt)/R));

stallTorque = Kt*Vs/R;

stallCurrent = Vs/R;

maxPowerVelocity = 0.5*OmegaNL;

maxPowerTorque = 0.5*stallTorque;

maxPowerCurrent= 0.5*stallCurrent;

maxMechanicalPower = maxPowerTorque*maxPowerVelocity;

efficiencyAtMaxPower = maxMechanicalPower/(Vs*maxPowerCurrent);

do = OmegaNL/100000;

o = 0:do:OmegaNL;

a1 = stallTorque;

b1 = (b + Kt*Kb/R);

c1 = Vs^2/R;

efficiency = (a1*o - b1.*o.*o)./(c1 - a1*o);

mostEffVelocity = (b1*c1 - sqrt(b1*b1*c1*c1-a1*a1*b1*c1))/a1/b1;

maxEff= (a1*mostEffVelocity

- b1*mostEffVelocity*mostEffVelocity)/(c1-a1*mostEffVelocity);

disp(sprintf(’Stall Torque: %f milli Newton Meters’, stallTorque*1000))

disp(sprintf(’Stall Current: %f Amps’, stallCurrent))

disp(sprintf(’No Load Speed: %f RPM’, OmegaNL*60/2/pi))

disp(sprintf(’Max Power Torque: %f milli Newton Meters ’, ...

maxPowerTorque*1000))

disp(sprintf(’Max Power Current: %f Amps ’, ...

maxPowerCurrent))

disp(sprintf(’Max Power Velocity: %f RPM’, maxPowerVelocity*60/2/pi))

disp(sprintf(’Max Mechanical Power : %f Watts ’, maxMechanicalPower))

disp(sprintf(’Efficiency at Max Mechanical Power : %f Percent ’, ...

100*efficiencyAtMaxPower))
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disp(sprintf(’Max Motor Efficiency : %f Percent ’, ...

100*maxEff))

disp(sprintf(’Most Efficienct Velocity : %f RPMs’, ...

mostEffVelocity*60/2/pi))

disp(sprintf(’Electrical Time: Constant %f msecs’, 1000*taue))

disp(sprintf(’Mechanical Time: Constant %f msecs’, 1000*taum))

disp(sprintf(’Start Up Current: %f Amps’, V/R))

disp(sprintf(’Reverse Current: %f Amps’, 2*V/R))
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