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1 SVD Theorem

Let A be a real valued m×n matrix, where m ≥ n. Then A can be decomposed as
follows:

A = UWV T (1)

where U is a real valued m ×m orthonormal matrix: UUT = Im, W is an m × n
matrix whose diagonal elements are non-negative real values and whose off-diagonal
elements are zero, and V is a n × n real valued orthonormal matrix; V V T = In.
The columns of U are called the left singular vectors. the columns of V are called
the right singular vector, the diaonal elements of W are called called the singular
values. The singular value decomposition exists always and is unique up to 1) Same
permutations in columns of U , W and V . 2) Linear combinations of colummns of
U and V with equal singular values.

Note

AA′ = UWV TVWTUT = UWWTUT (2)

Thus the columsn of U are the eigenvectors of AAT and the diagonal elements of
WWT are its eigenvalues. Moreover

A′A = VWTUTUWV T = VWTWV T (3)

Thus the columsn of V are the eigenvectors of ATA and the diagonals elements of
WTW its eigenvalues.

If X is a matrix Xi,j will represent the element in the ith row, jth column, and Xi

will represent the ith column vector. Note Ai,j =
∑n

k=1 wk,kUi,kVi,k. Thus we can
approximate A well by deleting columns of U and V with small singular values.

2 Properties for Square Matrices

2.1 Definitions

1. A be an n× n square matrix.

2. NA = {x ∈ Rn : Ax = 0}, the null space of A.

3. dimNA, the dimensionality of the null space of A, also known as the nullity
of A.

4. RA = {x ∈ Rn : Ax 6= 0}, the range of A.

5. dimRA, the dimensionality of the range of A, also know as the rank of A.
It is well known that rank plus nullity equals n.

2.2 Properties

1. dimRA = card{wi ∈ diagW : wi > 0}
2. dimNA = card{wi ∈ diagW : wi = 0}
3. Let Ui the ith column of U . Then {Ui : wi > 0} is a basis of RA and
{Ui : wi = 0} is a basis of NA

4. Let W̃ be a diagonal matrix with

w̃i,i =

{
1

wi,i
if wi,i > 0

0 if wi,i = 0
(4)



5. If A is square (i.e., m = n ) and all wi > 0. Then A−1 = VW−1UT .

To see why simply note that (VW−1UT )(UWV T ) = In

6. The value x̂ = V W̃UT b solves for the linear equation Ax = b in the follow-
ing sense

(a) If A is non-singular x̂ is the unique solution to the equation.
(b) If A is singular and b ∈ RA then x̂ is the solution with smallest norm.
(c) If A is singular and b ∈ NA then x̂ = argminx |Ax− b|

2.3 Rectangular matrices

1. If m < n the system Ax = b has less equations than unknowns. Patch A
adn b with zeroes to form an n× n system. The solution found via SVD is
minimum norm.

2. If m > n there are more equations than unknowns. The solution found via
SVD is least squares.

2.4 Neural net interpretation

Let rows of A represent exemplars of dimensionality n. We know dropping n − p
small singular values and their associated columns in U and V allows us to get
an approximation to A. Let Û , Ŵ and V̂ represent “chopped” versions of the
corresponding matrices, and Â = ÛŴ V̂ T . We can retrieve the approximation to
the ith exemplar by premultiplying Â times a row vector with all components set
to 0 except the ith component which is set to 1.

ÂT
i = [0, · · · , 0, 1, 0 · · · , 0]Â = [0, · · · , 0, 1, 0 · · · , 0]ÛŴ V̂ T (5)

In a neural network interpretation, the input vector [0, · · · , 0, 1, · · · , 0] is a local
representation for the ith exemplar in the database. This exemplar is transformed
into a hidden representation by multiplication by the matrix of weights ÛŴ . This
results into a hidden representation of dimensionality p. This hidden representa-
tion is then multiplied times the orthonormal matrix V̂ T to obtain a representation
of dimensionality n. This representation should approximate the original dimen-
sions of the ith exemplar in the database. We can actually use the hidden layer
representation as a concise representation of the exemplar.

3 SVD and eigen decompositions

Let X be an m×n matrix of data, where m is the number of observations and n the
number dimensionality of each observation. In computer vision problems typically

m > n. The covariance matrix is Cx = X′X
m . The matrix of eigenvectors P is such

that Cx == PΛPT , where Λ is diagonal and P is orthonormal. Now define

A =
X ′√
m

therefore Cx = AA′.

A is an n ×m matrix and can be decomposed using singular value decomposition
(SVD) in A = UWV T We can then rewrite Cx as: Cov = AA′ = UWV TVWUT =
UW 2UT . Thus U columns of U are the eigenvectors of Cx an the squared singular
values are the eigenvalues of Cx.



3.0.1 Shortcuts

Consider T = XX′

m = A′A, an m×m matrix. In computer vision problems typically
the number of images in the database is smaller than the number of pixels per
image and thus it is preferable to work with T rather than Cn. If P is a matrix of
eigenvectors of T then AP is an eigenvector of Cx. To see why note that ei is an
eigenvector of T iff Tei = A′Aei = λiei. Thus AA′Aei = Cx(Aei) = λi(Aei) and
(Aei) is an eigenvector of Cs with eigenvalue Aλi.

If we are interested on geting only p eigenvectors (e.g., if we have more dimensions
(m) than samples (n) we certainly do not want more than m eigenvectors) we can
use an “economy” version of the SVD. There are routines that compute only the
first p columns of U and therefore the first m rows of W giving U of size n× p, W
of size p× p and V of size p× p. before.

These shortcuts avoid the multiplication needed to obtain Cx and the computation
of all the columns of U and W we are not interested in.


